x !1! + 1!2!

Similar documents
Bernoulli Polynomials Talks given at LSBU, October and November 2015 Tony Forbes

x+ 2 + c p () x c p () x is an arbitrary function. ( sin x ) dx p f() d d f() dx = x dx p cosx = cos x+ 2 d p () x + x-a r (1.

Bertrand s postulate Chapter 2

Σk=1. d n () z = () z Σ dz n. d n. 1 = () z. z (0.1 - ) d f 2 = dz 0 () z = 1 () z, log. f n = n-2 () z = n-1 () z. e log z. = e.

Orthogonal Functions

Binomial transform of products

Chapter 4. Fourier Series

Solutions to Final Exam Review Problems

A PROBABILITY PROBLEM

ECE Spring Prof. David R. Jackson ECE Dept. Notes 20

Integrals of Functions of Several Variables

Complete Solutions to Supplementary Exercises on Infinite Series

Bernoulli Number Identities via Euler-Maclaurin Summation

Solution: APPM 1360 Final Spring 2013

6.4 Binomial Coefficients

The natural exponential function

ENGI Series Page 6-01

A new sequence convergent to Euler Mascheroni constant

ECE 901 Lecture 4: Estimation of Lipschitz smooth functions

[ 11 ] z of degree 2 as both degree 2 each. The degree of a polynomial in n variables is the maximum of the degrees of its terms.

Topic 1 2: Sequences and Series. A sequence is an ordered list of numbers, e.g. 1, 2, 4, 8, 16, or

Problem. Consider the sequence a j for j N defined by the recurrence a j+1 = 2a j + j for j > 0

Sequences and Limits

FACTORS OF SUMS OF POWERS OF BINOMIAL COEFFICIENTS. Dedicated to the memory of Paul Erdős. 1. Introduction. n k. f n,a =

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0,

Chapter 2. Asymptotic Notation

SUMMARY OF SEQUENCES AND SERIES

n=1 a n is the sequence (s n ) n 1 n=1 a n converges to s. We write a n = s, n=1 n=1 a n

(s)h(s) = K( s + 8 ) = 5 and one finite zero is located at z 1

Ma/CS 6a Class 22: Power Series

Problem 4: Evaluate ( k ) by negating (actually un-negating) its upper index. Binomial coefficient

Automated Proofs for Some Stirling Number Identities

Name Period ALGEBRA II Chapter 1B and 2A Notes Solving Inequalities and Absolute Value / Numbers and Functions

Fourier Series and their Applications

Some remarks on the paper Some elementary inequalities of G. Bennett

Chapter 8. Euler s Gamma function

Section 7 Fundamentals of Sequences and Series

Chapter 8. Euler s Gamma function

Math 4707 Spring 2018 (Darij Grinberg): midterm 2 page 1. Math 4707 Spring 2018 (Darij Grinberg): midterm 2 with solutions [preliminary version]

CHAPTER 10 INFINITE SEQUENCES AND SERIES

The Binomial Multi-Section Transformer

CERTAIN CONGRUENCES FOR HARMONIC NUMBERS Kotor, Montenegro

SphericalHarmonicY. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Assignment Number 3 Solutions

X. Perturbation Theory

radians A function f ( x ) is called periodic if it is defined for all real x and if there is some positive number P such that:

(1 x n ) 1, (1 + x n ). (1 + g n x n ) r n

A Pair of Operator Summation Formulas and Their Applications

Physics 116A Solutions to Homework Set #9 Winter 2012

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1.

MAT1026 Calculus II Basic Convergence Tests for Series

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

SEQUENCE AND SERIES NCERT

Summer MA Lesson 13 Section 1.6, Section 1.7 (part 1)

Some results on the Apostol-Bernoulli and Apostol-Euler polynomials

Fall 2013 MTH431/531 Real analysis Section Notes

Ma 530 Introduction to Power Series

Annotations to Abramowitz & Stegun

ADVANCED PROBLEMS AND SOLUTIONS

The Riemann Zeta Function

18.S34 (FALL, 2007) GREATEST INTEGER PROBLEMS. n + n + 1 = 4n + 2.

WHAT ARE THE BERNOULLI NUMBERS? 1. Introduction

f x x c x c x c... x c...

: Transforms and Partial Differential Equations

Q-BINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA.

distinct distinct n k n k n! n n k k n 1 if k n, identical identical p j (k) p 0 if k > n n (k)

CALCULATION OF FIBONACCI VECTORS

Mathematical Preliminaries

Proof of Goldbach s Conjecture. Reza Javaherdashti

Z ß cos x + si x R du We start with the substitutio u = si(x), so du = cos(x). The itegral becomes but +u we should chage the limits to go with the ew

REVIEW 1, MATH n=1 is convergent. (b) Determine whether a n is convergent.

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n

MAT 271 Project: Partial Fractions for certain rational functions

Math 106 Fall 2014 Exam 3.2 December 10, 2014

5.6 Binomial Multi-section Matching Transformer

Lommel Polynomials. Dr. Klaus Braun taken from [GWa] source. , defined by ( [GWa] 9-6)

1 Generating functions for balls in boxes

Sequences and Series of Functions

8.3 Perturbation theory

A GENERALIZED BERNSTEIN APPROXIMATION THEOREM

Chapter 6 Infinite Series

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

Bernoulli Numbers. n(n+1) = n(n+1)(2n+1) = n(n 1) 2

Power Series Expansions of Binomials

REVIEW OF CALCULUS Herman J. Bierens Pennsylvania State University (January 28, 2004) x 2., or x 1. x j. ' ' n i'1 x i well.,y 2

Riemann Hypothesis Proof

Random Models. Tusheng Zhang. February 14, 2013

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

A New Type of q-szász-mirakjan Operators

Differentiable Convex Functions

Recurrence Relations

Math 104: Homework 2 solutions

Math 142, Final Exam. 5/2/11.

1. By using truth tables prove that, for all statements P and Q, the statement

Jacobi symbols. p 1. Note: The Jacobi symbol does not necessarily distinguish between quadratic residues and nonresidues. That is, we could have ( a

Generating Functions and Their Applications

Zeros of Polynomials

Dirichlet s Theorem on Arithmetic Progressions

Bernoulli Numbers and a New Binomial Transform Identity

Transcription:

4 Euler-Maclauri Suatio Forula 4. Beroulli Nuber & Beroulli Polyoial 4.. Defiitio of Beroulli Nuber Beroulli ubers B (,,3,) are defied as coefficiets of the followig equatio. x e x - B x! 4.. Expreesio of Beroulli Nubers x B B B B + x + x 3 B + x 3 4 + x 4 + e x (,) -!!! 3! 4! e x - x x x 3 x 4 + + + + + (.) x!! 3! 4! 5! Maig the Cauchy product of (.) ad (.), B +!! B +!! B B B B +!! x + +!!!3! I order to holds this for arbitrary x, x + B, B B +,!!!! B B B + +,!!!!!3! The coefficiet of x is as follows. B B - B - B + + + B + +!! ( -)!! ( -)!3!!!!( + )! Multiplyig both sides by ( + )!, B ( + )! B - ( + )! B - ( + )! B + + + ( + )! B + +!! ( -)!! ( -)!3!!!! Usig bioial coefficiets, +C B + +C - B - + +C - B - + + +C B + +C B Replacig + with, C - B - + C - B - + C -3 B -3 + + C B + C B (.3) Substitutig, 3, 4, for this oe by oe, C B + C B B - C3 B + C3 B + C3 B B Thus, we obtai Beroulli ubers. The first few Beroulli ubers are as follows. 5 B, B, B4 -, B6, B8 -, B, 6 3 4 3 66 B -, B3 B 5 B 7 6 - -

4..3 Calculatio of Beroulli uber () Method of substitutio oe by oe Geerally, it is perfored by the ethod of substitutig, 3, 4, for (.3) oe by oe. Sice it is ecessary to calculate fro the sall uber oe by oe, it is difficult to obtai a large Beroulli uber directly. This ethod is suitable for the sall uber. () Method by double sus. It is calculated by the followig double sus of bioial coefficiets B r + (-) r C r r If the first few are writte dow, it is as follows. B C B C + C - C B C + C - C + C - C + C 3 Usig this, a large Beroulli uber ca be obtaied directly. However, sice the uber of ters icreases with acceleratig speed, this is ot suitable for aual calculatio. 4..4 Beroulli Polyoial () Defiitio Whe B are Beroulli ubers, polyoial B () Beroulli Polyoial. B () x d B () x B - () x ( ) B () x ( ) x that satisfies the followig three expressios is called () Properties The followig expressios follow directly fro the defiitio. x B () x B- () t dt + B ( ) B () x B () B B - x B x - B () B () ( ) B ( x+ ) - B () x x - ( ) B ( -x ) (-) B () x ( ) - -

Furtherore, the followigs are ow although ot directly followed fro the defiitio. For arbitrary atural uber ad iterval [, ], B () x B B + () x ( +) B Exaples B () x x-, B () x x -x+, B3 () x x 3 3 - x + x, 6 B 4 () x x 4 -x 3 +x -, B5 () x x 5 5 - x 4 5 + x 3 - x, 3 3 6 B 6 () x x 6-3x 5 5 + x 4 - x +, B7 () x x 7 7 - x 6 7 + x 5 7 - x 3 + x, 4 6 B 8 () x x 8-4x 7 4 + x 6 7 - x 4 + x -, 3 3 3 3 B 9 () x x 9 9 - x 8 +6x 7 - x 5 +x 3 3 - x, 5 B () x x -5x 9 5 + x 8-7x 6 +5x 4 3 - x 5 +, 66 4..5 Fourier Expasio of Beroulli Polyoial Beroulli Polyoial B () x ca be expaded to Fourier series o x. This eas that Beroulli Polyoial B x - x ca be expaded to Fourier series o x. Forula 4..5 Whe is a atural uber, x is a floor fuctio ad B are Beroulli ubers, B x- x -! s cos sx- x ( s) Accordig to Forula 5.. (" 5 Geeralized Beroulli Polyoials "), the followig expressio holds. B () x -! s ( s) cos sx- x - x B () x o x <, B x- x -! s ( s) cos sx- Sice B O x <, Left: B x+- x+ B x+- x - B x- x Right: -! s ( s ) B x- x -! s cos s( x +) - -! s cos sx- ( s) ( s ) x x < cos sx- x < - 3 -

Hereafter by iductio, the followig expressio holds for arbitrary atural uber. B x- x -! s ( s) cos sx- x < + Q.E.D. Exaples If the left side ad the right side are illustrated for,, it is as follows. Blue is ad Red is. Left side Right side - 4 -

4. Euler-Maclauri Suatio Forula Forula 4.. Whe f( x) is a fuctio of class C o a closed iterval [ a,b ], x is the floor fuctio, are Beroulli ubers ad B () x are Beroulli polyoials, the followig expressio holds. b - b f() a f() x + a r Whe li r! f ( r- ) () r- () (-) + b R! B x- xf ( ) () x a ( ) s ( s) cos sx- b - f ( ) a + R (.) - a b R is a eve uber s.t. () x ( ) f ( ) x are Beroulli polyoials, Whe are Beroulli ubers ad B () x B () x, B () x + B + () x -B + B + () B + () B + Usig these, f() x B () x f() x Here, Ad Therefore,! B () x f() x -! B () x f() x -!! B () x f() x -! B () x f() B () x f! ' () x B () x f ' () B () x f ' () x + x + 3! B 3 () x f " () x ( - ) r- r r! () x f ( r- ) () x + ( ) x - f() - f ( ) () x (.r) (.r') iiu for x[ ] a,b - - B () x f! " () x B 3 () x f "' () x 3! B () x ( f ) () x! - f() f( + ) f( ) (-) r- B ( ) r (-) r- B ( ) r - for r - 5 -

(-) r- () x f ( r- ) () -Br f ( r- ) () - f ( r- ) () Substituti these for the above, x B r f() x f( + ) f( ) - r r! Replacig f( x) with f( x + ), f( x+) f( + ) + f( ) That is, + f() x f( + ) + f( ) Accuulatig this fro a to b -, b b - f() x a a f( + ) + f( ) Here, b - f ( ) a b - a r- ( +) - f ( ) f( + ) + f( ) B ( x- ) B r- () + f( ) x- + f ( r- ) () r- () - f ( ) (-)! B () x f ( ) () x - r + - r + - r r! r- ( +) - f ( ) f ( ) r- () (-)! B () x f ( ) ( x+) r! r- ( +) - f ( ) f ( ) r- () (-) +! B ( x-) f ( ) () x r! a b - f ( ) r- ( +) - f ( ) r- () (-) b - + +! a B ( x-) f ( ) () x f ( r- ) () b - f ( r- ) ( a) a +f( ) b b a f() x ( x +) Therefore, b b f() x a f() - a f( a ) +f( ) Trasposig the ters, b - r b b f() a f() x + a f( a ) +f( ) Subtractig f( b) fro both sides, + b + r - r! f ( r- ) () b - f ( r- ) ( a) (-) b! B x- xf ( ) () x a r! f ( r- ) () b - f ( r- ) ( a) (-) b! B x- xf ( ) () x a - 6 -

b - b f() a f() x - a f( b) -f( ) a + r - r! f ( r- ) () Sice B -/, icludig the d ter of the right side ito, we obtai b - b f() a f() x + a r R Last, substitutig Forula 4..5 B x- for (.r), we obtai x -! s r! f ( r- ) () b - f ( r- ) ( a) (-) b! B x- xf ( ) () x a r- () (-) + b! B x- xf ( ) () x a ( s) R (-) b a s b - f ( ) a + R (.) cos sx- ( s) Whe R is diverget, the aplitude is alost deteried by eve uber should be chose such that () x ( ) f ( ) x ( cos sx- f ) () x f ( ) () x ( ). Therefore, at this tie, becoes iiu for x [ a,b ]. (.r) (.r') Q.E.D. Reovig the ters of larger odd uber tha i the Forula 4.., we obtai the followig forula. Forula 4.. Whe f( x) is a fuctio of class C o a closed iterval [ a,b ], x is the floor fuctio, are Beroulli ubers ad B () x are Beroulli polyoials, the followig expressio holds. b - b f() a f() x - a f( b) - f( a) Whe li R + r ( r )! f ( ) () b - f ( ) () a + R (.) b R - ( )! B x- xf ( ) () x a (.r) - a b s ( s) ( ) cos( sx), is atural uber s.t. f ( ) () x ( ) f ( ) () x (.r') iiu for x [ a,b] Reovig B 3, B 5, B 7, fro Forula 4.., we obtai (.), (.r). Ad, fro Forula 4..5, - 7 -

B x- x -( )! s ( s) -(-) ( )! s Substitutig this for (.r), we obta (.r'). cos( sx-) cos( sx) ( s) Whe R is diverget, the aplitude is alost deteried by atural uber should be chose such that Forula 4..' f ( ) () x ( ) f ( ) () x ( ). Therefore, at this tie, becoes iiu for x [ a,b ]. Whe f( x) is a fuctio of class C o a closed iterval [ a,b ], x is the floor fuctio, are Beroulli ubers ad B () x are Beroulli polyoials, the followig expressio holds. b b f() a f() x + a f( b ) + f( a) Whe li R + r ( r )! f ( r- ) () b - f ( r- ) () a + R (.') b R - ( )! B x- xf ( ) () x a - a b s ( s) ( ) cos( sx), is atural uber s.t. f ( ) () x ( ) f ( ) () x Q.E.D. (.r) (.r') iiu for x [ a,b] Addig f( b) to both sides of Forula 4.. (.), we obtai the desired expressio iediately. Q.E.D. - 8 -

4.3 Su of Eleetary Sequece 4.3. Su of Arithetic Sequece Forula 4.3. - ( a +d ) a +( -) d (.) Fro this, S - a, a+d, a+d, a+3d,, a+( -) d f( x ) a+xd () x d, f () () x f () 3 () x f () Substitutig these for Forula 4.., - ( a +d ) ( a +xd) - ( a +d) - ( a +d) xa x d +!! B + { d - d } +! r - d + R a d d + - + R!! R - ( )! Thus, we obtai the desired expressio. 4.3. Su of Geoetric Sequece Forula 4.3. - r r - s B x- x { - } + R ( r )! B s ( log r) s- + R s! (.) ( ) R (-) + log r! B x- x r x (.r) - r r - s B s ( log r) s- r - s! r - (.') S - r, r, r, r 3,, r - Fro this, f( x ) r x f() x r x log r r -r log r - 9 -

f ( s- ) () x r x ( log r) s- ( s,,+) Substitutig these for Forula 4.., - r r -r + log r s B s r s! ( log r) s- - r ( log r) s- + R R Icludig the st ter of the right side ito, we obtai (-) +! B x-[ x ] r x ( log r) - r r - s B s ( log r) s- + R s! (.) R (-) ( log r)! B x- x r (.r) This is the su of geoetric sequece by Euler-Maclauri Suatio Forula. Here, substitutig x log r for s s Fro this, s Furtherore, li B s ( log r) s! s log r e log r - B s ( log r) s- s! r - ( log r)! The R. Thus, - r r - s B s x s x s! e x - log r r - B s ( log r) s- r - s! r - 4.3.3 Su of iteger powers of atural ubers Forula 4.3.3 ( Jacob Beroulli ) ( defiitioal idetity of Beroulli ubers ) - + + r r +-r (3.) + B + () - B + () (3.') Fro this, S -,,, 3,, ( -) f( x ) x f() x x + - + + - -

f ( r- )! () x ( -r+ )! Substitutig these for Forula 4.., i.e. - + - + + + r R r + r ( )! x -r+ ( r,,+)! -r+ - -r+ + R r! ( -r+ )!! -r+ - -r+ + R r! ( -r+ )! ( + )! B r!( +-r )! r +-r - +-r + R - + B x-[ x] - + r R Here, B ( - ) +! B x-[ x] x-[ ] The R. Therefore - x r - + r Furtherore + r! x! + r +-r - +-r + R B () x + r + r + + B + - The, (3.w) is rewritte as follows. - + + r + Expressig this with the Beroulli polyoial, - + B + () - B + () r +-r - +-r (3.w) +-r (3.) +-r - +-r (3.') Exaple: 3, - 3 3 + 3 + 3 + + 3 555 3+ B 3+ ( ) -B 3+ () 3699999 + 3 4 3 555 - -

4.3.4 Su of alterative iteger powers of atural ubers Forula 4.3.4 - (-) - + r Whe is a eve uber, i.e. + + r - + 3-4 +- +( -) - +-r - + +-r B + () - B + - + B + - B + +3 +5 ++( -) - +4 +6 ++ + +3 ++ - +4 +6 ++ + +3 ++ - + + +3 ++ (-) - r - + r r r Addig ( +) to both sides, + (-) - + r - + r r r Let +, + (-) - r Whe, (-) - r Replacig with +, - (-) - r Applyig Forula 4.3.3 to this, - r r r Usig these, - + r r +. The r - + r r - + r r r - r - + r - r r - + r r r - + r +-r + + r +-r + - r B + () - B + () B + - B + () - -

- (-) - + r Exaple: 3, + + r +-r - + +-r B + () - B + - + B + - B + - (-) - 3 3-3 +3 3-4 3 + +99 3-3 -575 B 3+ ( ) - B - 3+ 3+ B 3+ 3+ - B 3+ -575 Especially i the case of, the followig iterestig forula holds. Forula 4.3.4' (-) - (-) - (-) - Whe is a eve uber, i.e. - + 3-4 +- +( -) - ( +) - ( +) - - ( 3+) -3 - - ( -) + -( -) -( + ) - ( 3+ ) - ( 5+ ) - - ( -) + -+3+5++( -) - ( +++) -+3+5++( -) - ( +4+6++) -( ++3++) (-) - - Whe is a odd uber, i.e. ( +) - - + - +3-4 +5 -+ + - ( -) - - ( 3-) -3 - - ( -) - -(-+) - (-3+) - (-5+) - - (- +) { +3+5++ } - ( +++) +3+5++ + ++4++( -) ++3++ (-) - ( +) Cobiig both, we obtai the desired expressio. - 3 -

Exaple: 999 999 (-) - - +3-4 +- +999 4995 (-) 999- ( ++3++999 ) 4.3.5 Su of Trigooetric Sequece Forula 4.3.5s 999 4995 - si si - - ( cos -) + (-) r r (-) + R ( )! B x- - si si - - ( cos - ) cot - si si / si + R r! (5.s) ( ) x six (5.sr) (5.s') (5.s") S - si, si, si3,, si( -) Fro this, f( x ) si x f() x [-cosx] -cos + cos -cos + f ( r- ) () x (-) r- cosx ( r,,) f ( ) () x (-) si x Substitutig these for Forula 4.., i.e. - si -cos + cos - ( si - si ) R - ( )! + r (-) r- { cos -cos} + R ( r )! B x- x (-) si x - si B si - - ( cos -) + (-) r r r ( r )! + R (5.s) (-) R ( )! B x- x six (5.sr) This is the su of sie sequece by Euler-Maclauri Suatio Forula. Here, let. The, B li (-) r x- + r cot, li r! ( ) ( )! x six - 4 -

Therefore, (5.s) becoes as follows. - si si - - ( cos - ) Moreover, usig forulus of trigooetric fuctios, cot (5.s') i.e. - si - cot ( cos - ) - si - cos ( cos - ) - si si / si - - - si si - - si si si / si / si (5.s") This is cosistet with the result of havig applied Trigooetric Additio Forulas to - si directly. Forula 4.3.5c - cos si R + r B (-) r r - ( cos -) ( r )! (5.c) (-) + ( )! B x- x cosx (5.cr) - cos si cot - ( cos -) - cos si / si (5.c') (5.c") S - cos, cos, cos3,, cos( -) Fro this, f( x ) cosx f() x [ si x] si - si si f ( r- ) () x (-) r si x ( r,,) f ( ) () x (-) cosx Substitutig these for Forula 4.., - cos si - ( cos - cos) R + r ( -) ( r )! r si - (-) r si + R + R ( r )! si - ( cos - cos ) + si (-) r r (-) + ( )! B x- x cosx - 5 -

i.e. - cos si R + r B (-) r r - ( cos -) + R ( r )! (5.c) (-) + ( )! B x- x cosx (5.cr) This is the su of cosie sequece by Euler-Maclauri Suatio Forula. Here, let. The, B li (-) x- + Therefore, (5.c) becoes as follows. B cot, li ( )! ( )! x cosx - cos si cot - ( cos -) Moreover, usig forulus of trigooetric fuctios, - - cos cos si / si (5.c') (5.c") This is cosistet with the result of havig applied Trigooetric Additio Forulas to - cos directly. - 6 -

4.4 Su of Haroic Sequece & Euler-Mascheroi Costat 4.4. Su of Haroic Sequece Forula 4.4. Whe is Euler-Mascheroi Costat, - + log - -r R Where, < B x- x x + + R (.) r r (.r) Fro this, S -,,,, 3 - f( x ) x h f() x [ log x] h log h - log < < h, h, are itegers f ( r- ) () x (-) r- ( r- )!, f ( ) x r Substitutig these for Forula 4.., h - Fro this, - log h - log - h - h - R - h h - - B - h -r x- x x + - log h + log + - h () x r + r ( )! x + - h r r r Whe h, sice r, h - li h - log h, li h, li h h h r The, - + log - -r R - B x- - r r R x x + Reversig the sig of the reaider ter, we obtai the desired expressio. + R - h r r - R 7

Exaple: Whe, / + log - - B B 4 + 5.87377576396 4 4 This all digits (4 digits below the decial poit) are sigificat digits. Furtherore, if the is calculated to 8, the sigificat digit reaches 34 digits below the decial poit. c.f. If Forula 4.. is applied straight to f( x ) /x, it is as follows. - log -log - R - - x + B x- x - r r - r r + R However, the degree of the approxiatio of this forula is very bad. If is calculated to 3 i the above exaple, the sigificat digit reaches digits below the decial poit. Ad, it is the best approxiatio of the above exaple by this forula. 4.4. Calculatio of Euler-Mascheroi Costat Trasposig the ters of (.), we obtai as follows. - - log + +r R - B x- x x + + R (.) r r Where, : (uber of sigificat digits +?) / (.r) That is, we ca calculate Euler-Mascheroi Costat coversely fro (.). Whe, the uber of sigificat digits is roughly give by -?. Exaple: - - log + + r r r.577566495386 This all digits (8 digits below the decial poit) are sigificat digits. (.) is a quite good approxiate expressio of. However, regrettably expasio. li R for defiite. That is, (.) is oly a asyptotic 8

4.5 Su of Zeta Sequece & Zeta Fuctio 4.5. Su of Zeta Sequece Forula 4.5. Whe ( p) is the Riea Zeta Fuctio ad ( p,q) is the beta fuctio, the followig expressio hols for p. - -p ( p ) + p -p r r -p-r + R (.) B R (,p) x- x x p+ (.r) Where, is a eve uber s.t. p <. S - -p, -p, 3 -p,, ( -) -p ( p >) Fro this, f( x ) x -p h f() x x -p - p f ( r- ) () x -(-) r ( p +r-) x -p-r () p Substitutig these for Forula 4.., Here, h - Usig this, h -p - -p B - p - p (-) r r r r! B (-) r r r! h - h h -p - -p < < h, h, are itegers - p ( r,,+) ( p +r-) h -p-r - -p-r + R () p ( p +r- ) (-) r (-) r +r+( p-) () p ( +r) p - +( p -) (-) r +r+( p-) - -p ( +r) +( p -) - ( - ) r p-+r -p p- -p + - -p r B r r h -p - -p + p - p -p r R -! b B x- x a -p r ( p +) ( p) h -p-r - -p-r + R x -p- - 9 -

i.e. h - Fro this, - p -p r -p r h -p-r - -p-r + R B x- x R - (,p) h - p h - h h - - p p - p -p r R - (,p) h x p+ -p r h -p-r - -p-r - R x- x B x p+ Here, let h. sice p >, li h h p--r. Therefore, - ( p ) + p -p r R - (,p) -p r B x- x x p+ Reversig the sig of the reaider ter, we obtai the desired expressio. -p-r - R (.) (.)r Exaple: /. Whe., - (. ) +. -. r -. r -.-r 4.7843 This all digits (9 digits below the decial poit) are sigificat digits. O practical use, it sees that this is eough. Whe 6, 4 digits (3 digits below the decial poit) are sigificat digits. c.f. If Forula 4.. is applied straight to f( x ) x -p, it is as follows. - p -p r -p r R - (,p) -p-r - + R B x- x x p+ However, the degree of the approxiatio of this forula is very bad. If is calculated to 4 i the above exaple, the sigificat digit reaches digits below the decial poit. Ad, it is the best approxiatio of the above exaple by this forula. 4.5. Calculatio of Riea Zeta Fuctio Trasposig the ters of (.), we obtai as follows. - -

- ( p ) - p -p r R - (,p) -p r B x- x x p+ Where, : uber of sigificat digits +? -p-r + R (.) That is, we ca calculate Riea Zeta Fuctio ( s) coversely fro (.). Whe, the uber of sigificat digits is roughly give by -?. Exaple: (.3) Whe, - -.3 -.3 r -.3 r -.3r 3.93949895 This all digits (3 digits after the decial poit) are sigificat digits. (.) is a quite good approxiate expressio of ( p ). However, regrettably li R for defiite. That is, (.) is oly a asyptotic expasio. (.r) - -

4.6 Su of real uber powers of atural ubers Forula 4.6. Whe ( p) is the Riea Zeta Fuctio ad ( p,q) for p -. - p +p ( -p) + +p r r +p-r + R B R (,-p) x- x x -p+ Where, is a eve uber s.t. p <. Reversig the sig of p i Forula 4.5., we obtai the desired expressio. is the beta fuctio, the followig expressio hols Exaple :. Whe, -. ( -. ) + +. r +. r +.-r 44.456549944 This all digits (9 digits below the decial poit) are sigificat digits. O practical use, it sees that this is eough. Whe 6, 5 digits ( digits after the decial poit) are sigificat digits. Exaple : 3 Whe, - 3 ( -3) + +3 r This result is cosistet with the exaple by Forula 4.3.3. +3 r +3-r 555 Exaple 3 : -. Whe, - -. (. ) + -. r This reduce to the exaple of Forula 4.5.. -. r c.f. If Forula 4.. is applied straight to f( x ) x p, it is as follows. - p +p +p r r R - (,-p) + p-r - + R B x- x -.-r 4.7843 x p- - -

However, the degree of the approxiatio of this forula is very bad. If is calculated to 6 i Exaple the sigificat digit reaches 4 digits below the decial poit. Ad, it is the best approxiatio of Exaple by this forula. - 3 -

4.7 Su of alterative real powers 4.7. Su of alterative positive powers of atural ubers Forula 4.7. Whe ( p) is the Riea Zeta Fuctio ad ( p,q) for p -. - (-) - p - +p ( -p) +p + +p r B r r R (,-p) B x- x x -p+ Where, is a eve uber s.t. p <. is the beta fuctio, the followig expressio hols +p-r - +p - +p / The followig equatio was obtaied i the proof of Forula 4.3.4. - r - (-) - r - r - + r x -p+ +p-r B x- x This equatio holds eve if the atural uber is exteded to the real uber p. That is, - (-) - p r Applyig Forula 4.6. to this, The - r p - p+ r - r p ( -p) + r +p r - r r p ( -p) + +p R (,-p) R (,-p) r +p r - r p +p r +p-r + R B x- x x -p+ B x- x / x -p+ - (-) - p ( -p) + +p r +p-r + R +p + R r +p-r - +p +p +p-r ( -p) + +p r r + R +p r +p-r - +p - +p ( -p) + +p r + R - +p R +p-r - 4 -

i.e. - (-) - p - +p ( -p) +p + +p r r B R (,-p) x x -p+ x- Where, is a eve uber s.t. p <. +p-r - +p - p+ / x -p+ +p-r B x- x + R Exaple : p.6, I this case, 4 gives the best approxiatio ( digits below the decial poit). c.f. - If Forula 4.. is applied straight to ( -) - p, it is as follows. - (-) - p +pr R - (,-p) +p r + p-r - + p B x - x x -p+ + p-r - +p / -- + p + R B x - x x -p+ However, the degree of the approxiatio of this forula is very bad. If is calculated to 6 i the above exaple, the sigificat digit reaches 3 digits below the decial poit. Ad, it is the best approxiatio of the above exaple by this forula. 4.7. Su of Eta Sequece ad Dirichlet Eta Fuctio Forula 4.7. Whe ( p) is the Riea Zeta Fuctio, ( p) is the Dirichlet Eta Fuctio ad ( p,q) is the Beta Fuctio, the followig expressio hols for p -. - (-) - p - -p () p + -p r -p r -p-r - -p -p-r + R - 5 -

R (,p) B x- x x p+ Where, is a eve uber s.t. p <. Especially, whe, ( p ) - -p () p - -p / Reversig the sig of p i Forula 4.7., we obtai the desired expressio. B x- x x p+ Whe, sice the rage of the itegral is fro to, R for ay. Exaples : p.7,, Referece Let - f(), The the followig forula also holds. - (-) - p - r f() x -x p cos x, E () x r- r! s e -tx t dt, ( x ) e -t t x- dt +p E -p (- i ) + E -p ( i ) - E -p (- i ) + E -p ( i) r - (-) R! B x - x s ( +p) ( -) p-s + r--s cos s ( +p -s) ( +p) x p-s -s cos s ( +p -s) x + However, this is too coplicated ad does ot have a great erit, either.. ( r --s) + R ( -s) 3.8.6 Reewal Alie's Matheatics K. Koo - 6 -