Heavy-Quark Kinetics in the Quark-Gluon Plasma

Similar documents
Heavy-Quark Transport in the QGP

T-Matrix approach to heavy quarks in the Quark-Gluon Plasma

Heavy-Quark Transport in the QGP

Heavy Quarks in Heavy-Ion Collisions

Heavy flavor with

Phenomenology of Heavy-Ion Collisions

Heavy Probes in Heavy-Ion Collisions Theory Part IV

Heavy Ions at the LHC: First Results

Outline: Open charm in heavy-ion collisions. A Heavy-Ion Seminar talk by Szymon Harabasz

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma

Shingo Sakai Univ. of California, Los Angeles

Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario.

Prospects with Heavy Ions at the LHC

Partonic transport simulations of jet quenching

Charm production at RHIC

Duke University Chiho NONAKA. in Collaboration with R. J. Fries (Duke), S. A. Bass (Duke & RIKEN), B. Muller (Duke) nucl-th/ to appear in PRL

Hydrodynamical description of ultrarelativistic heavy-ion collisions

The direct photon puzzle

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model

The Dilepton Probe from SIS to RHIC

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape

51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016. Manuel Calderón de la Barca Sánchez

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC

arxiv: v1 [nucl-ex] 12 May 2008

Ruth-Moufang-Str. 1, Frankfurt am Main, Germany. Max-von-Laue-Str. 1, Frankfurt am Main, Germany and

Collisional energy loss in the sqgp

The Dilepton Probe from SIS to RHIC

Dynamical equilibration of stronglyinteracting

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond

Some aspects of dilepton production in HIC

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC

Charmed hadrons from coalescence plus fragmentation in relativistic nucleus-nucleus collisions at RHIC and LHC

Hagedorn States in Relativistic Heavy Ion Collisions

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk

Strongly interacting quantum fluids: Experimental status

Quarkonia Production and Dissociation in a Langevin Approach

Jet and bulk observables within a partonic transport approach

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC

STAR Open Heavy Flavor Measurements

The Quark-Gluon plasma in the LHC era

Electromagnetic Probes in Ultrarelativistic Heavy-Ion Collisions

Thermal dileptons as fireball probes at SIS energies

Magnetic field in heavy-ion collision and anisotropy of photon production

Exploring quark-gluon plasma in relativistic heavy-ion collisions

Heavy-flavour meson production at RHIC

Photon and neutral meson production in pp and PbPb collisions at ALICE

The Quark-Gluon Plasma and the ALICE Experiment

Jet Physics with ALICE

Heavy quark production and elliptic flow at RHIC and LHC

Relativistic Heavy Ions Collisions at PHENIX (some of) Recent results

Bottomonia physics at RHIC and LHC energies

Elliptic flow and R AA of D mesons at FAIR comparing the UrQMD hybrid model and the coarse-graining approach

Modelling Early Time Dynamics of Relativistic Heavy Ion Collisions

arxiv: v1 [hep-ex] 14 Jan 2016

Introduction to Relativistic Heavy Ion Physics

(Some) Bulk Properties at RHIC

Bulk matter formed in Pb Pb collisions at the LHC

Small Collision Systems at RHIC

HOT HADRONIC MATTER. Hampton University and Jefferson Lab

Space-time Evolution of A+A collision

High Energy Frontier Recent Results from the LHC: Heavy Ions I

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University

Introduction to Relativistic Heavy Ion Physics

Monte Carlo Non-Linear Flow modes studies with AMPT

Creating a Quark Gluon Plasma With Heavy Ion Collisions

Introduction to the physics of the Quark-Gluon Plasma and the relativistic heavy-ion collisions

A fresh look at the radiation from the QGP

Experimental signatures of perfect fluidity at RHIC. Derek Teaney Arkansas State University

Fluctuations of Conserved Charges

Ultra-Relativistic Heavy Ion Collision Results

arxiv: v2 [hep-ph] 2 Nov 2015

arxiv:nucl-th/ v2 8 Jun 2006

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions

What do we see? LHC lecture, Heidelberg, 1 Feb, Kai Schweda

Parton dynamics in heavy-ion collisions from FAIR to LHC

Thermal dileptons from coarse-grained transport as probes of hot and dense QCD matter

Off-shell dynamical approach for relativistic heavy-ion collisions

Outline: Introduction

Review of collective flow at RHIC and LHC

Lepton and Charm Measurements in the First Two Years of RHIC: An Experimental Overview

Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics

Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model

Studies of QCD Matter From E178 at NAL to CMS at LHC

Parton matter in the early stage of ultrarelativistic heavy ion collisions

arxiv: v1 [nucl-ex] 7 Jan 2019

QCD in Heavy-ion collisions

The QGP phase in relativistic heavy-ion collisions

Medium Modifications of Hadrons and Electromagnetic Probe

An Overview of Recent Results from the ALICE Experiment

Heavy flavour production at RHIC and LHC

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned:

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV

2. HEAVY QUARK PRODUCTION

J/Ψ-suppression in the hadron resonance gas

Transcription:

Heavy-Quark Kinetics in the Quark-Gluon Plasma Hendrik van Hees Justus-Liebig Universität Gießen May 3, 28 with M. Mannarelli, V. Greco, L. Ravagli and R. Rapp Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 1 / 32

Outline 1 Heavy-quark interactions in the sqgp Heavy-quark observables in heavy-ion collisions Heavy-quark diffusion: The Fokker-Planck Equation Elastic pqcd heavy-quark scattering Non-perturbative interactions: effective resonance model 2 Non-photonic electrons at RHIC 3 Microscopic model for non-pert. HQ interactions Static heavy-quark potentials from lattice QCD T-matrix approach 4 Resonance-Recombination Model 5 Summary and Outlook Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 2 / 32

Heavy-Ion collisions in a Nutshell Theory of strong interactions: Quantum Chromo Dynamics, QCD At high enough densities/temperatures: hadrons dissolve into a Quark-Gluon Plasma (QGP) hope to create QGP in Heavy-Ion Collisions at RHIC (and LHC) RHIC: collide gold nuclei with energy of 2 GeV per nucleon: Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 3 / 32

Evidence for QGP from heavy-ion observables particle p T spectra show hydrodynamical behavior collective flow of matter in local thermal equilibrium nuclear modification factor degree of thermalization R AA (p T ) = dn AA/dp T N coll dn pp /dp T no QGP R AA = 1; observed: R AA < 1 (suppression) at high p T in non-central collisions: anisotropic collective flow initially reaction zone of elliptic shape pressure gradients: p x > p y measure of flow anisotropy: p 2 x p 2 y v 2 = p 2 x + p 2 = cos(2φ p ) y Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 4 / 32

Heavy Quarks in Heavy-Ion collisions c q g hard production of HQs described by PDF s + pqcd (PYTHIA) c,b quark sqgp HQ rescattering in QGP: Langevin simulation drag and diffusion coefficients from microscopic model for HQ interactions in the sqgp q c Hadronization to D,B mesons via quark coalescence + fragmentation V. Greco, C. M. Ko, R. Rapp, PLB 595, 22 (24) K ν e e ± semileptonic decay non-photonic electron observables Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 5 / 32

correct equil. lim. Einstein relation: B 1 (t, p) = T (t)e p A(t, p) Hendrik Relativistic van Hees (JLU Gießen) Langevin simulation Heavy-Quark Kinetics for flowing the QGP medium May 3, 28 6 / 32 Heavy-Quark diffusion Fokker Planck Equation f(t, p) t = p i [ p i A(t, p) + ] B ij (t, p) f(t, p) p j drag (friction) and diffusion coefficients p i A(t, p) = p i p i B ij (t, p) = 1 (pi p 2 i)(p j p j) ( = B (t, p) δ ij p ) ip j p 2 + B 1 (t, p) p ip j p 2 transport coefficients defined via M X( p ) = 1 1 d 3 q d 3 q d 3 p γ c 2E p (2π) 3 2E q (2π) 3 2E q (2π) 3 2E p M 2 (2π) 4 δ (4) (p + q p q ) ˆf( q)x( p )

Meaning of Fokker-Planck coefficients non-relativistic equation with constant A = γ and B = D 1 = D f t = γ p ( pf) + D 2 f p 2 Green s function: { } γ 3/2 G(t, p; p ) = 2πD[1 exp( 2γt)] { exp γ [ p p exp( γt)] 2 } 2D 1 exp( 2γt) Gaussian with p(t) = p exp( γt), p 2 (t) p(t) 2 = 3D γ [1 exp( 2γt)] = t 6Dt γ: friction (drag) coefficient; D: diffusion coefficient equilibrium limit for t : D = mt γ (Einstein s dissipation-fluctuation relation) Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 7 / 32

Relativistic Langevin process Fokker-Planck equation equivalent to stochastic differential equation Langevin process: friction force + Gaussian random force in the (local) rest frame of the heat bath d x = p E p dt, d p = A p dt + 2dt[ B P + B 1 P ] w w: normal-distributed random variable dependent on realization of stochastic process to guarantee correct equilibrium limit: Use Hänggi-Klimontovich calculus, i.e., use B /1 (t, p + d p) for constant coefficients: Einstein dissipation-fluctuation relation B = B 1 = E p T A. to implement flow of the medium use Lorentz boost to change into local heat-bath frame use update rule in heat-bath frame boost back into lab frame Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 8 / 32

Elastic pqcd processes Lowest-order matrix elements [Combridge 79] Debye-screening mass for t-channel gluon exch. µ g = gt, α s =.4 not sufficient to understand RHIC data on non-photonic electrons Hendrik [Moore, van Hees Teaney (JLU 25] Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 9 / 32

Non-perturbative interactions: effective resonance model General idea: Survival of D- and B-meson like resonances above T c Chiral symmetry SU V (2) SU A (2) in light-quark sector of QCD 2 D = [( µ Φ i )( µ Φ i ) m 2 DΦ i Φ i] + massive (pseudo-)vectors D L () i=1 Φ i : two doublets: pseudo-scalar ( D D ) and scalar Φ i : two doublets: vector ( D D ) and pseudo-vector L () qc = qi/ q + c(i/ m c )c q: light-quark doublet ( ) u d c: singlet Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 1 / 32

Interactions Interactions determined by chiral symmetry For transversality of vector mesons: heavy-quark effective theory vertices ( L int = G S q 1 + /v 2 Φ 1c v + q 1 + /v ) 2 iγ5 Φ 2 c v + h.c. G V ( q 1 + /v 2 γµ Φ 1µc v + q 1 + /v 2 iγµ γ 5 Φ 2µc v + h.c. v: four velocity of heavy quark in HQET: spin symmetry G S = G V ) Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 11 / 32

Resonance Scattering elastic heavy-light-(anti-)quark scattering q c q c D, D, D s c s q c u D, D, D s q D- and B-meson like resonances in sqgp q D, D, D s D, D, D s parameters m D = 2 GeV, Γ D =.4....75 GeV m B = 5 GeV, Γ B =.4....75 GeV k c k Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 12 / 32

Cross sections σ [mb] 12 1 8 6 4 Res. s-channel Res. u-channel pqcd qc scatt. pqcd gc scatt. 2 1.5 2 2.5 3 3.5 4 s [GeV] total pqcd and resonance cross sections: comparable in size BUT pqcd forward peaked resonance isotropic resonance scattering more effective for friction and diffusion Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 13 / 32

Transport coefficients: pqcd vs. resonance scattering three-momentum dependence γ [1/fm].2.15.1.5 T=2 MeV resonances Γ=.3 GeV resonances Γ=.4 GeV resonances Γ=.5 GeV pqcd: α s =.3 pqcd: α s =.4 pqcd: α s =.5 D [GeV/fm].7.6.5.4.3.2.1 T=2 MeV resonances Γ=.3 GeV resonances Γ=.4 GeV resonances Γ=.5 GeV pqcd: α s =.3 pqcd: α s =.4 pqcd: α s =.5.5 1 1.5 p[gev].5 1 1.5 p[gev] resonance contributions factor 2... 3 higher than pqcd! Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 14 / 32

Transport coefficients: pqcd vs. resonance scattering Temperature dependence γ [1/fm].5.4.3.2 resonances: Γ=.4 GeV pqcd: α s =.4 total D [GeV/fm].4.3.2 resonances: Γ=.4 GeV pqcd: α s =.4 total.1.1.2.25.3.35.4 T [GeV].2.25.3.35.4 T [GeV] Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 15 / 32

Time evolution of the fire ball Elliptic fire-ball parameterization fitted to hydrodynamical flow pattern [Kolb ] V (t) = π(z + v z t)a(t)b(t), a, b: half-axes of ellipse, v a,b = v [1 exp( αt)] v[1 exp( βt)] Isentropic expansion: S = const (fixed from N ch ) QGP Equation of state: s = S V (t) = 4π2 9 T 3 (16 + 1.5n f ), n f = 2.5 obtain T (t) A(t, p), B (t, p) and B 1 = T EA for semicentral collisions (b = 7 fm): T = 34 MeV, QGP lifetime 5 fm/c. simulate FP equation as relativistic Langevin process Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 16 / 32

Initial conditions need initial p T -spectra of charm and bottom quarks (modified) PYTHIA to describe exp. D meson spectra, assuming δ-function fragmentation exp. non-photonic single-e ± spectra: Fix bottom/charm ratio 1/(2 πp T ) d 2 N/dp T dy [a.u.] 1-2 1-3 1-4 1-5 1-6 d+au s NN =2 GeV STAR D STAR prelim. D * ( 2.5) c-quark (mod. PYTHIA) c-quark (CompHEP) 1-7 1 2 3 4 5 6 7 8 p T [GeV] 1/(2πp T ) dn/dp T [a.u.] 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-1 e ± σ bb /σ cc = 4.9 x1-3 STAR (prel, pp) STAR (prel, d+au/7.5) STAR (pp) D e B e sum 1-11 1 2 3 4 5 6 7 8 p T [GeV] Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 17 / 32

Spectra and elliptic flow for heavy quarks 1.5 c, reso (Γ=.4-.75 GeV) c, pqcd, α s =.4 b, reso (Γ=.4-.75 GeV) R AA 1.4 1.2 1 D (2πT) = 1.5 D (2πT) = 3 D (2πT) = 6 D (2πT) = 12 D (2πT) = 24 α α s = α s = 1.7 αs=.5 αs=.35.25 s = R AA 1.5 Au-Au s=2 GeV (b=7 fm) 1 2 3 4 5 p T [GeV] µ D = gt, α s = g 2 /(4π) =.4 resonances c-quark thermalization without upscaling of cross sections Fireball parametrization consistent with hydro.8.6.4.2 [Moore, Teaney 4].5 1 1.5 2 2.5 3 3.5 4 4.5 5 p T (GeV) µ D = 1.5T fixed spatial diff. coefficient: D = D s = T ma 2πT D 3 2α 2 s Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 18 / 32

Spectra and elliptic flow for heavy quarks v 2 [%] 2 15 1 5 c, reso (Γ=.4-.75 GeV) c, pqcd, α s =.4 b, reso (Γ=.4-.75 GeV) Au-Au s=2 GeV (b=7 fm) 1 2 3 4 5 p T [GeV] (p T ) v 2.22.2.18.16.14.12.1.8.6.4.2 LO QCD [Moore, Teaney 4].5 1 1.5 2 2.5 3 3.5 4 4.5 5 p T (GeV) Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 19 / 32

Observables: p T -spectra (R AA ), v 2 Hadronization: Coalescence with light quarks + fragmentation c c, b b conserved single electrons from decay of D- and B-mesons 2 1.5 PHENIX prel (2-4%) STAR (1-4%) Au-Au s=2 GeV (b=7 fm) c+b reso c+b pqcd c reso 2 15 PHENIX prel (min bias) Au-Au s=2 GeV (b=7 fm) c+b reso c+b pqcd R AA 1 v 2 [%] 1 5.5 1 2 3 4 5 6 7 8 p T [GeV] -5 1 2 3 4 5 p T [GeV] Without further adjustments: data quite well described [HvH, V. Greco, R. Rapp, Phys. Rev. C 73, 34913 (26)] Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 2 / 32

Observables: p T -spectra (R AA ), v 2 Hadronization: Fragmentation only single electrons from decay of D- and B-mesons R AA 2 1.5 1 PHENIX prel (2-4%) c+b reso STAR (1-4%) c+b pqcd c reso Au-Au s=2 GeV (b=7 fm) v 2 [%] 2 15 1 5 PHENIX prel (min bias) Au-Au s=2 GeV (b=7 fm) c+b reso c+b pqcd.5 1 2 3 4 5 6 7 8 p T [GeV] -5 1 2 3 4 5 p T [GeV] Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 2 / 32

Observables: p T -spectra (R AA ), v 2 Central Collisions single electrons from decay of D- and B-mesons Coalescence+Fragmentation Fragmentation only R AA 1.5 1 central Au-Au s=2 GeV c+b reso c+b pqcd c reso PHENIX prel (-1%) STAR (-5%) R AA 1.5 1 central Au-Au s=2 GeV c+b reso c+b pqcd c reso PHENIX prel (-1%) STAR (-5%).5.5 1 2 3 4 5 6 7 8 p T [GeV] 1 2 3 4 5 6 7 8 p T [GeV] Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 2 / 32

Comparison to newer data R AA 1.8 1.6 (a) 1% central Armesto et al. (I) 1.4 1.2 1 van Hees et al. (II) 3/(2πT) Moore & 12/(2πT) Teaney (III).8.6.4 HF v 2.2.2.15.1.5 Au+Au @ s NN = 2 GeV (b) minimum bias π R AA, p T π v 2, p T e ± R, e ± vhf AA 2 > 4 GeV/c > 2 GeV/c PHENIX Collaboration PRL 98 17231 (27) 1 2 3 4 5 6 7 8 9 p [GeV/c] T Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 21 / 32

Microscopic model: Static potentials from lattice QCD V lqcd Kaczmarek et al color-singlet free energy from lattice use internal energy U 1 (r, T ) = F 1 (r, T ) T F 1(r, T ), T V 1 (r, T ) = U 1 (r, T ) U 1 (r, T ) Casimir scaling for other color channels [Nakamura et al 5; Döring et al 7] V 3 = 1 2 V 1, V 6 = 1 4 V 1, V 8 = 1 8 V 1 Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 22 / 32

T-matrix Brueckner many-body approach for elastic Qq, Q q scattering q, q c T = V + V T Σ = Σ glu + T reduction scheme: 4D Bethe-Salpeter 3D Lipmann-Schwinger S- and P waves same scheme for light quarks (self consistent!) Relation to invariant matrix elements M(s) 2 ( d a Ta,l= (s) 2 + 3 T a,l=1 (s) 2 ) cos θ cm q Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 23 / 32

T-matrix -Im T (GeV -2 ) 12 1 8 6 4 2 s wave color singlet T=1.1 T c T=1.2 T c T=1.3 T c T=1.4 T c T=1.5 T c T=1.6 T c T=1.7 T c T=1.8 T c 1 2 3 4 E cm (GeV) -Im T (GeV -2 ) 3 2 1 s wave color triplet T=1.1 T c T=1.2 T c T=1.3 T c T=1.4 T c T=1.5 T c T=1.6 T c T=1.7 T c T=1.8 T c 1 2 3 4 E cm (GeV) resonance formation at lower temperatures T T c melting of resonances at higher T! sqgp P wave smaller resonances near T c : natural connection to quark coalescence [Ravagli, Rapp 7] model-independent assessment of elastic Qq, Q q scattering problems: uncertainties in extracting potential from lqcd in-medium potential V vs. F? Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 24 / 32

Transport coefficients.15.1 T-matrix: 1.1 T c T-matrix: 1.4 T c T-matrix: 1.8 T c pqcd: 1.1 T c pqcd: 1.4 T c pqcd: 1.8 T c 4 3 pqcd+t-mat pqcd Α (1/fm) 2πT D s 2.5 1 1 2 3 4 5 p (GeV).2.22.24.26.28.3.32.34 T (GeV) from non-pert. interactions reach A non-pert 1/(7 fm/c) 4A pqcd A decreases with higher temperature higher density (over)compensated by melting of resonances! spatial diffusion coefficient increases with temperature D s = T ma Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 25 / 32

Non-photonic electrons at RHIC same model for bottom quark coalescence+fragmentation D/B e + X R AA v 2 (%) 1.6 1.4 1.2 1.8.6.4.2 T-matrix pqcd, α s =.4 Au-Au s=2 GeV (central).5 1 2 3 4 5 p T (GeV) 15 T-matrix pqcd, α s =.4.15 1 5 Au-Au s=2 GeV b=7 fm R AA v 2 1.5 1.1.5-1% central Au+Au s=2 AGeV minimum bias theory [Wo] frag. only [Wo] theory [SZ] PHENIX STAR PHENIX PHENIX QM8 1 2 3 4 5 p T (GeV) 1 2 3 4 5 p T [GeV] coalescence crucial for explanation of data increases both, R AA and v 2 momentum kick from light quarks! resonance formation towards T c coalescence natural [Ravagli, Rapp 7] Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 26 / 32

Properties of the sqgp measure for coupling strength in plasma: η/s relation to spatial diffusion coefficient η s 1 2 T D s (AdS/CFT), η s 1 5 T D s (wqgp) η/s 2 1.5 1.5 T-mat + pqcd reso + pqcd pqcd KSS bound -.5.2.25.3.35.4 T (GeV) Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 27 / 32

Resonance-Recombination Model successes of quark-coalescence models in HI phenomenology high baryon/meson ration in heavy-ion compared to pp collisions compared Constituent-quark number scaling of v 2 v 2,had (p T ) = n q v 2,q (p T /n q ) experiment: CQNS better for KE T than p t problems with naive coalescence models violates conservation laws (energy, momentum!) violates 2 nd theorem of thermodynamics (entropy) Resonance structures close to T c transport process with q q(qq) R Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 28 / 32

Resonance-Recombination Model t f M(t, p) = Γ f M (t, p) + g(p) f (eq) M γ (p) = γ p p Γ g(p) d 3 p 1 d 3 p 2 g(p) = (2π) 6 d 3 xf q (x, p 1 )f q (x, p 2 )σ(s)v rel δ (3) (p p 1 p 2 ) 4π (Γm) 2 σ(s) = g σ kcm 2 (s m 2 ) 2 + (Γm) 2 1 1 1 T=18 MeV, β =.55 E dn/d 3 p (GeV -2 ) 1-1 1-2 1-3 1-4 output 1-5 blast wave 1 2 3 4 5 p T (GeV) Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 29 / 32

Meson spectra q- q input: Langevin simulation meson output: resonance-recombination model E dn/d 3 p (GeV -2 ) 1 1 1 1-1 1-2 1-3 φ T=18 MeV 1-4 PHENIX STAR 1-5 STAR (new) 1 2 3 4 5 p T (GeV) E dn/d 3 p (GeV -2 ) 1-3 1-4 1-5 1-6 J/ψ T=18 MeV 1-7 PHENIX 1 2 3 4 5 p T (GeV) Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 3 / 32

Constituent-quark number scaling usual coalescence models: factorization ansatz f q (p, x, ϕ) = f q (p, x)[1 + 2v q 2 (p T ) cos(2ϕ)] CQNS usually not robust with more realistic parametrizations of v 2 here: q input from Langevin simulation.1.2.8.15.6 v 2 v 2.1.4.2 charm strange light 1 2 3 4 5 KE T (GeV).5 J/ψ φ D 1 2 3 4 5 KE T (GeV) Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 31 / 32

Summary and Outlook Summary Heavy quarks in the sqgp non-perturbative interactions mechanism for strong coupling: resonance formation at T T c lqcd potentials parameter free res. melt at higher temperatures consistency betw. R AA and v 2! also provides natural mechanism for quark coalescence resonance-recombination model problems extraction of V from lattice data potential approach at finite T : F, V or combination? Outlook include inelastic heavy-quark processes (gluon-radiation processes) other heavy-quark observables like charmonium suppression/regeneration Hendrik van Hees (JLU Gießen) Heavy-Quark Kinetics in the QGP May 3, 28 32 / 32