Material covered: Class numbers of quadratic fields, Valuations, Completions of fields.

Similar documents
x = π m (a 0 + a 1 π + a 2 π ) where a i R, a 0 = 0, m Z.

Local Fields. Chapter Absolute Values and Discrete Valuations Definitions and Comments

Introduction to Arithmetic Geometry Fall 2013 Lecture #5 09/19/2013

ABSOLUTE VALUES AND VALUATIONS

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2

Introduction to Arithmetic Geometry Fall 2013 Lecture #7 09/26/2013

Algebraic function fields

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES

1 Absolute values and discrete valuations

p-adic Analysis Compared to Real Lecture 1

8 Complete fields and valuation rings

1 Adeles over Q. 1.1 Absolute values

OSTROWSKI S THEOREM FOR Q(i)

Chapter 8. P-adic numbers. 8.1 Absolute values

Number Theory Fall 2016 Problem Set #6

The p-adic numbers. Given a prime p, we define a valuation on the rationals by

Absolute Values and Completions

14 Ordinary and supersingular elliptic curves

x mv = 1, v v M K IxI v = 1,

The p-adic Numbers. Akhil Mathew

NOTES ON DIOPHANTINE APPROXIMATION

Places of Number Fields and Function Fields MATH 681, Spring 2018

Zair Ibragimov CSUF. Talk at Fullerton College July 14, Geometry of p-adic numbers. Zair Ibragimov CSUF. Valuations on Rational Numbers

Defining Valuation Rings

Valuations. 6.1 Definitions. Chapter 6

Quaternion algebras over local fields

Solutions, Project on p-adic Numbers, Real Analysis I, Fall, 2010.

Algebraic Number Theory Notes: Local Fields

These warmup exercises do not need to be written up or turned in.

The p-adic Numbers. Akhil Mathew. 4 May Math 155, Professor Alan Candiotti

Algebraic Number Theory and Representation Theory

Part 1. For any A-module, let M[x] denote the set of all polynomials in x with coefficients in M, that is to say expressions of the form

LOCAL FIELDS AND p-adic GROUPS. In these notes, we follow [N, Chapter II] most, but we also use parts of [FT, L, RV, S].

Nonarchimedean Local Fields. Patrick Allen

12 Ramification, Haar measure, the product formula

Definability in fields Lecture 2: Defining valuations

LINEAR FORMS IN LOGARITHMS

Imaginary Quadratic Fields With Isomorphic Abelian Galois Groups

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

6 Lecture 6: More constructions with Huber rings

0.1 Valuations on a number field

Lecture 4: Completion of a Metric Space

A Course in Computational Algebraic Number Theory

February 1, 2005 INTRODUCTION TO p-adic NUMBERS. 1. p-adic Expansions

Metric Spaces Math 413 Honors Project

OLIVIA BECKWITH. 3 g+2

OSTROWSKI S THEOREM. Contents

Standard forms for writing numbers

Abstracts of papers. Amod Agashe

Immerse Metric Space Homework

0 Sets and Induction. Sets

Introduction to Arithmetic Geometry Fall 2013 Lecture #24 12/03/2013

Part III. x 2 + y 2 n mod m

TEST CODE: PMB SYLLABUS

The Completion of a Metric Space

In Theorem 2.2.4, we generalized a result about field extensions to rings. Here is another variation.

Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman

LECTURE 2. Hilbert Symbols

Discrete Mathematics. Spring 2017

CLASS FIELD THEORY WEEK Motivation

15 Dirichlet s unit theorem

2.2 Some Consequences of the Completeness Axiom

Computing a Lower Bound for the Canonical Height on Elliptic Curves over Q

Some algebraic number theory and the reciprocity map

Math 259: Introduction to Analytic Number Theory How small can disc(k) be for a number field K of degree n = r 1 + 2r 2?

ZEROES OF INTEGER LINEAR RECURRENCES. 1. Introduction. 4 ( )( 2 1) n

Using Elliptic Curves

Basic Algorithms in Number Theory

Math 40510, Algebraic Geometry

Math 210B. Artin Rees and completions

Discrete Logarithms. Let s begin by recalling the definitions and a theorem. Let m be a given modulus. Then the finite set

ABSTRACT NONSINGULAR CURVES

Higher Ramification Groups

One square and an odd number of triangles. Chapter 22

Lifting to non-integral idempotents

Grade 11/12 Math Circles Rational Points on an Elliptic Curves Dr. Carmen Bruni November 11, Lest We Forget

MATH 117 LECTURE NOTES

Proof. The sufficiency has already been noted, so the only issue is necessity. Consider the binomial theorem

Commutative Rings and Fields

To hand in: (a) Prove that a group G is abelian (= commutative) if and only if (xy) 2 = x 2 y 2 for all x, y G.

Congruent Number Problem and Elliptic curves

Uniqueness of Factorization in Quadratic Fields

arxiv: v1 [math.nt] 15 Mar 2012

Introduction to Cryptology. Lecture 20

Math 109 HW 9 Solutions

Cullen Numbers in Binary Recurrent Sequences

ORAL QUALIFYING EXAM QUESTIONS. 1. Algebra

ALGEBRAIC STRUCTURE AND DEGREE REDUCTION

Projects on elliptic curves and modular forms

On Siegel s lemma outside of a union of varieties. Lenny Fukshansky Claremont McKenna College & IHES

PELL S EQUATION, II KEITH CONRAD

What is p-adic geometry?

Quadratic Residues, Quadratic Reciprocity. 2 4 So we may as well start with x 2 a mod p. p 1 1 mod p a 2 ±1 mod p

On Kronecker s Theorem

Modular Arithmetic Instructor: Marizza Bailey Name:

MATH 25 CLASS 21 NOTES, NOV Contents. 2. Subgroups 2 3. Isomorphisms 4

TORSION AND TAMAGAWA NUMBERS

THE UNIT GROUP OF A REAL QUADRATIC FIELD

Identifying supersingular elliptic curves

(1) A frac = b : a, b A, b 0. We can define addition and multiplication of fractions as we normally would. a b + c d

Transcription:

ALGEBRAIC NUMBER THEORY LECTURE 6 NOTES Material covered: Class numbers of quadratic fields, Valuations, Completions of fields. 1. Ideal class groups of quadratic fields These are the ideal class groups of the Dedekind domains O K for quadratic fields K. We already saw that we can have examples of non-pids even for quadratic fields. For instance, a homework problem is to show that the class group of Z[ m] ( = O Q( m) if m 2 or 3 mod 4) is nontrivial for m squarefree and composite. Gauss conjecture: Let h(d) be the class number of Q( d). Then h(d) as d. In particular, there are only finitely many fields with a given class number. The class number 1 problem is to find all the imaginary quadratic fields whose ring of integers are PIDs. Heilbronn (1934) proved the Gauss conjecture and showed that there were at most 10 imaginary quadratic fields with class number one. Nine of them correspond to d = 3, 4, 7, 8, 11, 19, 43, 67, 163 and conjecturally there was no tenth. This was proved by Heegner in 1952 using modular forms (Stark and Birch in the 1960s clarified Heegner s proof which was not believed at first). An independent proof was given by Baker in 1966 using transcendental number theory. (Baker won the Fields medal for his work on linear forms in logarithms, which provides the basis for many explicit methods in diophantine equations). Goldfeld s work in 1985 connected the class number problem to L-functions of elliptic curves, and reduced it to a finite computation in principle, for any given n. π 163 The discriminants above are quite special, for instance notice that e is almost an integer (640320 2 +744 + error of less than 10 12 ), and that x 2 +x+41 which has discriminant 163, is prime for x = 0, 1,..., 39. For real quadratic fields, much less is known: for instance, it is not known if class number one happens infinitely often. Cohen-Lenstra heuristics are some precise conjectures which predict, for instance, that more than 75% of real quadratic fields will have class number 1. 1

2 LECTURE 6 NOTES 2. Local fields 2.1. Valuations. Let K be a field. An absolute value or valuation on K is a function : K R such that (1) x 0 for all x K, with equality iff x = 0. (2) xy = x y for all x, y K. (3) x + y x + y for all x, y K (the triangle inequality). We say that is a non-archimedean valuation iff in addition to (1) and (2), satisfies the stronger inequality (than (3)) x + y max( x, y ). Else we say is archimedean. Example. If K = Q, we have the archimedean absolute value which we shall label. Now let s define p by p k a = p k if k Z and a, b are not divisible b by p. So p p = 1/p and a p = 1 if p doesn t divide a. It is easy to check that p is a non-archimedean valuation on Q: the triangle inequality just says that k l min(k,l) if p a and p b then p a + b. Remark. For any field, there is a trivial valuation given by x = 1 if x = 0, and 0 = 0. From now on we shall exclude the trivial valuation. Remark. For any valuation, 1 = 1 = 1. For we have 1 = 1 1 = 1 2, so 1 = 0 or 1. The former cannot hold by property (1). Similarly it s easy to show 1 = 1. Lemma 1. Let be a valuation of a field K. Let n K be the element 1+ +1 (n times). Then is nonarchimedean iff n is bounded. Proof. Suppose is nonarchimedean. Then 1 = 1, 1 + 1 max( 1, 1 ) = 1 and by induction n 1 for all n. Now suppose n N for some N R. Then let x, y K and suppose w.lo.g. x y. ( ) x + y = (x + y) n = n x y n i n i i n i n N x y N(n + 1) x i Taking n th roots and letting n we get x + y x = max( x, y ). We say the valuations 1 and 2 are equivalent if x 1 < 1 x 2 < 1, for all x K. Exercise. Show that two valuations 1 and 2 are equivalent iff there is a real s number s > 0 such that 1 = 2. Remark. If is nonarchimedean and x = y then x + y = max( x, y ). This is because if for instance x > y then x = x+y y max( x+y, y ), forcing x x + y which alongwith x + y max( x, y ) = x implies x + y = x. Theorem 1 (Ostrowski s theorem). Every valuation of Q is equivalent to or to p for some p.

ALGEBRAIC NUMBER THEORY 3 Proof. Suppose first is nonarchimedean. Then by the proof of the above lemma, n 1 for all positive integers n. Since the valuation is nontrivial and 1 = 1, we must have n < 1 for some n (else by multiplicativity, the absolute value of every nonzero rational number would be 1). The smallest such n is clearly a prime, say p. Now if q = p is another prime, then ap + bq = 1 for some integers p. So b q = 1 ap = 1 by the remark above. Since b 1, we have q 1 and so q = 1. So the valuation of every prime other than p is 1, and this shows that must be equivalent to p. Namely, if c = 1/ p > 1 equals s p s, s > 0, then = p. Now let s assume is archimedean. We ll show that for positive integers 1 1 m, n > 1, that m log m = n. Then if this common value is c, it will follow log m log c log m log c that m = c = e = m for natural numbers m > 1, and therefore log c that x = x for all rational numbers x. Note that c > 1 because the valuation is archimedean, and so exceeds 1 for some natural number. The proof of the claim is as follows. Write m in base n as m = a 0 +a 1 n+ + r r log m a r n where a i {0, 1,..., n 1} and n m < n r+1, so that r. Then a i = 1 + + 1 a i 1 n, so we get r ( log m ) log m m i a i n n 1 + n i=0 If we plug in m k instead of m, we get ( k k log m ) m n 1 + n log m k log m 1 1 log m Taking k th roots and letting k we get m n or m n. By symmetry, we get the other inequality. Definition 1. An exponential valuation v of K is a function v : K = K\{0} R such that (1) v(xy) = v(x) + v(y). (2) v(x + y) min(v(x), v(y)). We an extend to all of K by defining v(0) =. Note that c v(x) for any c > 1 defines a nonarchimedean valuation of K. We say v is a discrete valuation if v(k) is a discrete subgroup of R (hence = Z as a group). We say that a discrete valuation is normalized if v(k) = Z, i.e. the smallest positive value of v is 1. Example. v p (x) = log x p defines a normalized discrete valuation. v p (x) is p nothing but the highest power of p dividing x.

4 LECTURE 6 NOTES If v is a normalized discrete valuation of K, then we let o = {x K v(x) 0} be the valuation ring of v, and p = {x K v(x) 1} be the prime associated to v. It is easy to check that p is maximal and then o/p is a field, the residue field of v. Let π o be any element of o with v(π) = 1. Then for any x K we have x = π n y for some integer n and some y with v(y) = 0, i.e. y o is a unit of o. So o is in fact a PID with unique maximal ideal p which is principal, equal to (π). Such an element π is called a uniformizer of o (or of v). Such a ring o, which comes from a discrete valuation of a field K, is called a discrete valuation ring, or DVR for short. 2.2. Completions. We ll now construct the p-adic numbers. Let be an absolute value on a field K. We say a sequence {a n } of elements of K is a Cauchy sequence of for all ǫ > 0, there is an N such that m, n N implies a m a n < ǫ. Recall that the field R is constructed from Q as the set of Cauchy sequences (for the usual archimedean valuation) modulo the null sequences, i.e. those which tend to zero. We will imitate that construction for an arbitrary absolute value. Let C = Cauchy sequences = {{a n } n N ǫ > 0, N such that m, n N a m a n < ǫ} and M = Null sequences = {{a n } n N ǫ > 0, N such that m N a m < ǫ} Then C is a ring under componentwise addition and multiplication. The field K embeds inside C by taking x K to the constant sequence {x, x,... }. The subset M is a maximal ideal of C (check!) and so C/M = K is a field containing K, called the completion of K with respect to. We will make some observations before we describe the structure of K a little more explicitly. First note that the valuation extends to K by defining {a n } = lim n a n. The limit exists because we have from the triangle inequality that a m a n a m a n and similarly ( a m a n ) a m a n, so that a m a n a m a n. Therefore { a n } is a Cauchy sequence of real numbers, so it converges. Check that the extension satisfies the properties of a valuation. This extension is unique in the following sense: the valuation makes K into a metric space, and for any metric space X, there is a unique metric space Xˆ which is complete and into which X embeds isometrically as a dense subspace. So the metric and hence the valuation on K is forced. From now on assume is nonarchimedean, corresponding to an exponential valuation v. Let ˆv be the extension of v to K as above. Lemma 2. Let {a n } be a Cauchy sequence in K converging to an element different from 0. Then lim n a n = a m for m large enough.

ALGEBRAIC NUMBER THEORY 5 Proof. Let 0 < r = lim n a n. Choose ǫ < r/2. Let N be large enough such that a m > r ǫ for m N and also such that a m a n < ǫ for m, n N. Then a m > a n a m and so a n = a m, for all n m N. So the sequence of a n is constant beyond n = N, and therefore equals the limit r. Hence a m = r = lim n a n for m N. Corollary 1. The value group vˆ(k ) of K, equals that of K.

MIT OpenCourseWare http://ocw.mit.edu 18.786 Topics in Algebraic Number Theory Spring 2010 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.