How does natural selection change allele frequencies?

Similar documents
Genetical theory of natural selection

Mechanisms of Evolution Microevolution. Key Concepts. Population Genetics

Is there any difference between adaptation fueled by standing genetic variation and adaptation fueled by new (de novo) mutations?

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section C: Genetic Variation, the Substrate for Natural Selection

Natural Selection results in increase in one (or more) genotypes relative to other genotypes.

REVIEW 6: EVOLUTION. 1. Define evolution: Was not the first to think of evolution, but he did figure out how it works (mostly).

NOTES CH 17 Evolution of. Populations

(Write your name on every page. One point will be deducted for every page without your name!)

I. Multiple choice. Select the best answer from the choices given and circle the appropriate letter of that answer.

Biological Change Over Time. Lecture 12: Evolution. Microevolution. Microevolutionary Processes. Genotypes, Phenotypes and Environmental Effects

Problems for 3505 (2011)

Darwinian Selection. Chapter 7 Selection I 12/5/14. v evolution vs. natural selection? v evolution. v natural selection

Chapter 17: Population Genetics and Speciation

Processes of Evolution

Life Cycles, Meiosis and Genetic Variability24/02/2015 2:26 PM

Study of similarities and differences in body plans of major groups Puzzling patterns:

NOTES Ch 17: Genes and. Variation

Migration In evolutionary terms, migration is defined as movement that will result in gene flow, or the movement of genes from one place to another

Application Evolution: Part 1.1 Basics of Coevolution Dynamics

Biology 11 UNIT 1: EVOLUTION LESSON 2: HOW EVOLUTION?? (MICRO-EVOLUTION AND POPULATIONS)

Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution

How to Use This Presentation

Microevolution Changing Allele Frequencies

Evolution of Populations. Chapter 17

Genetics and Natural Selection

Q Expected Coverage Achievement Merit Excellence. Punnett square completed with correct gametes and F2.

Natural Selection. DNA encodes information that interacts with the environment to influence phenotype

POPULATIONS. p t+1 = p t (1-u) + q t (v) p t+1 = p t (1-u) + (1-p t ) (v) Phenotypic Evolution: Process HOW DOES MUTATION CHANGE ALLELE FREQUENCIES?

Reproduction and Evolution Practice Exam

Functional divergence 1: FFTNS and Shifting balance theory

Evolution of Populations

Outline of lectures 3-6

Lecture #4-1/25/02 Dr. Kopeny

Evolutionary Genetics Midterm 2008

Outline of lectures 3-6

Observing Patterns in Inherited Traits

BIG IDEA 4: BIOLOGICAL SYSTEMS INTERACT, AND THESE SYSTEMS AND THEIR INTERACTIONS POSSESS COMPLEX PROPERTIES.

Selection and Population Genetics

Natural Selection. Population Dynamics. The Origins of Genetic Variation. The Origins of Genetic Variation. Intergenerational Mutation Rate

19. Genetic Drift. The biological context. There are four basic consequences of genetic drift:

Enduring Understanding: Change in the genetic makeup of a population over time is evolution Pearson Education, Inc.

Evolution PCB4674 Midterm exam2 Mar

CH 16: Evolution of Population

BIOL 1010 Introduction to Biology: The Evolution and Diversity of Life. Spring 2011 Sections A & B

Evolution - Unifying Theme of Biology Microevolution Chapters 13 &14

Genes Within Populations

overproduction variation adaptation Natural Selection speciation adaptation Natural Selection speciation

AP Biology Evolution Review Slides

Mechanisms of Evolution

Evolution by Natural Selection

Selection Page 1 sur 11. Atlas of Genetics and Cytogenetics in Oncology and Haematology SELECTION

STAT 536: Migration. Karin S. Dorman. October 3, Department of Statistics Iowa State University

Darwinian Selection. Chapter 6 Natural Selection Basics 3/25/13. v evolution vs. natural selection? v evolution. v natural selection

Pre-Lab: Aipotu: Evolution

Mathematical modelling of Population Genetics: Daniel Bichener

Regents Biology REVIEW 6: EVOLUTION. 1. Define evolution:

1 Errors in mitosis and meiosis can result in chromosomal abnormalities.

Introduction to Digital Evolution Handout Answers

Big Idea #1: The process of evolution drives the diversity and unity of life

Mechanisms of Evolution. Adaptations. Old Ideas about Evolution. Behavioral. Structural. Biochemical. Physiological

Homework. Antibiotic Resistance article and questions Study evolution flash cards for Vocab quiz on Friday!

Microevolution. Chapter 17

Long-Term Response and Selection limits

6.891: Computational Evolutionary Biology. R.C. Berwick & a cast of thousands Today: the forces of evolution, III

Febuary 1 st, 2010 Bioe 109 Winter 2010 Lecture 11 Molecular evolution. Classical vs. balanced views of genome structure

Untitled Document. A. antibiotics B. cell structure C. DNA structure D. sterile procedures

1. What is the definition of Evolution? a. Descent with modification b. Changes in the heritable traits present in a population over time c.

Vocab. ! Evolution - change in a kind of organism over time; process by which modern organisms have descended from ancient organisms

The Genetics of Natural Selection

Lecture 2: Introduction to Quantitative Genetics

WTHS Biology Keystone Exams

Evolution and the Genetics of Structured populations. Charles Goodnight Department of Biology University of Vermont

Question: If mating occurs at random in the population, what will the frequencies of A 1 and A 2 be in the next generation?

because more individuals are heterozygous than homozygous recessive.

Microevolution (Ch 16) Test Bank

Review sheet for Mendelian genetics through human evolution. What organism did Mendel study? What characteristics of this organism did he examine?

List the five conditions that can disturb genetic equilibrium in a population.(10)

- interactions between alleles. - multiple phenotypic effects of one gene. - phenotypic variability in single genes. - interactions between genes

THE OHIO JOURNAL OF SCIENCE

What is Evolution? Evolution = Most changes occur gradually, but can happen on a shorter time scale Variations in populations come from

Progressive Science Initiative. Click to go to website:

It all depends on barriers that prevent members of two species from producing viable, fertile hybrids.

Name Period. 3. How many rounds of DNA replication and cell division occur during meiosis?

Chapter 16. Table of Contents. Section 1 Genetic Equilibrium. Section 2 Disruption of Genetic Equilibrium. Section 3 Formation of Species

Slide 1. Slide 2. Slide 3. Concepts of Evolution. Isn t Evolution Just A Theory? Evolution

chatper 17 Multiple Choice Identify the choice that best completes the statement or answers the question.

UNIT V. Chapter 11 Evolution of Populations. Pre-AP Biology

Linking levels of selection with genetic modifiers

Biology 213 Summer 2004 Midterm III Choose the most correct answer and mark it on the scantron sheet. (2 pts each)

Evolutionary Genetics

Guided Notes: Evolution. is the change in traits through generations over! Occurs in, NOT individual organisms

Perplexing Observations. Today: Thinking About Darwinian Evolution. We owe much of our understanding of EVOLUTION to CHARLES DARWIN.

Gene Pool Genetic Drift Geographic Isolation Fitness Hardy-Weinberg Equilibrium Natural Selection

- mutations can occur at different levels from single nucleotide positions in DNA to entire genomes.

Ecology and Evolutionary Biology 2245/2245W Exam 3 April 5, 2012

Processes of Evolution

Name Period. 2. Name the 3 parts of interphase AND briefly explain what happens in each:

Evolution. Part 1: Historical Perspective on the Theory of Natural Selection

Objective 3.01 (DNA, RNA and Protein Synthesis)

NGSS UNIT OVERVIEW EVOLUTION

Transcription:

How does natural selection change allele frequencies? Alleles conferring resistance to insecticides and antibiotics have recently increased to high frequencies in many species of insects and bacteria. Numbers of insect species resistant to insecticides Year How did this happen (within a typical species)? Which of these factors (or others) do we need to include in the explanation? Anth/Biol 5221, October 18 and 20, 2017 Population size (N) Time to last common ancestor (T) Mutation rate (μ) Neutral polymorphism (π) Allele frequency (p) Survival probabilities of different genotypes Expected reproductive success of genotypes

Selection is a bias in the relationship between p and p. That is, E(p ) p. Gillespie models it as a difference in survival to adulthood, which is caused by phenotypic effects of A 1 and A 2. Selection But alternatively, it could be a difference in reproductive success among adults who had survived equally well regardless of genotype.

A general model of selection for two alleles (no mutation, no drift) Let p be the frequency of allele A 1 in the current generation [q = 1-p =freq(a 2 )]. Let p be its frequency next generation. Assume that the population mates at random with respect to genotypes at the A locus. (This does not require truly random mating!) Let W 11, W 12, and W 22 be the relative fitnesses (average surviving offspring) of the three diploid genotypes (A 1 A 1, A 1 A 2, A 2 A 2 ). The population s average fitness is a weighted mean of the genotypic fitnesses. Dividing the genotypic components of W-bar by W-bar gives the proportional reproductive contributions of the genotypes to next generation s gene pool.

Next generation s allele frequency p is the contribution of A 1 A 1 genotypes plus one half of the contribution of A 1 A 2 (since half of their gametes will be A 1 ). The term in square brackets is the average or marginal fitness of allele A 1 (because a proportion p of all A 1 alleles find themselves in A 1 A 1 homozygotes). Our updating rule or recurrence equation for p therefore reduces to If we subtract p we get the change in p expected in one generation: But the population s mean fitness can be rewritten as a weighted average of the allelic marginal fitnesses: By substituting the RHS into the equation for Δp (above) and simplifying, we get

Allele-frequency histories ( trajectories ) can easily be calculated by iterating the recurrence equation: p = f(p) (1) The rate of allelefrequency change is fastest at intermediate allele frequencies (when pq is greatest). (2) Rare recessive alleles (whether advantageous or harmful) are almost invisible to selection. (3) Smaller fitness differences lead to proportionally slower rates of allele-frequency change.

Fitnesses are often described by the selection coefficient (s) For example, it is common practice to write W 11 = 1, W 12 = 1-hs, andw 22 = 1-s. If h = 0, allele 1 is dominant. If h = 1, allele 2 is dominant. And if h = 0.5, the heterozygotes are intermediate in fitness (codominance or additivity). In the examples below, h = 0.5. In the first case (red), s = 0.2. In the last case (blue), s = 0.004.

An important special case: lethal recessive alleles W 11 = W 12 = 1 W 22 = 0 (A 1 A x are fine.) (A 2 A 2 are dead.) W 1 = 1 (marginal fitness of A 1 ) W 2 = [(1)½2pq + (0)q 2 ]/[q] = p W bar = p(1) + q(p) = p(1+q) = p(2-p) p = p[w 1 /W] = p[1/p(2-p)] = 1/(2-p) E.g., suppose p = 0.5 Triangles and circles are data from two replicates of the experiment. Then p = 1/(2-0.5) = 1/1.5 = 0.67 Peter Dawson (1970) used a recessive lethal allele in the flour beetle (Tribolium confusum) to test this prediction of the model. His data are shown in the graphs on the right. The theoretical prediction is graphed as continuous gray lines. Amazing!

Modes of selection: directional, balancing and disruptive Selection may favor a certain allele unconditionally, regardless of its frequency. Such directional or positive selection, if continued, will sooner or later fix the favored allele (i.e., increase its frequency to 1.0). But there are other possibilities! 1. Balancing selection keeps two or more alleles at intermediate frequencies and prevents fixation. 2. Disruptive selection can fix either allele, if its frequency is already high enough. rr Rr RR A simple flower-color polymorphism in elderflower orchids (Dactylorhiza sambucina), controlled by two alleles at one genetic locus. From Gigord et al. (2001) PNAS 98, 6253-6255.

Two kinds of balancing selection: different processes, same result Heterozygote advantage or overdominance : fitness of A 1 A 2 > A 1 A 1, A 2 A 2. Negative frequency dependence: fitnesses go down as frequencies go up. Gillespie s example of heterozygote advantage W 11 = 1.0 W 12 = 1-hs = 1-(-0.5)(0.1) = 1+0.05 = 1.05 W 22 = 1-s = 1-0.1 = 0.9

The Mukai and Burdick experiment: another recessive lethal allele Like Dawson s experiment with flour beetles. But here the lethal allele (L) is not driven extinct by the viable allele (V). In fact, L increases from a low initial frequency! This implies that VL heterozygotes must be fitter than VV homozygotes. mostly V, little L equal frequencies of Lethal and Viable At equilibrium (when p(v) 0.8), which of these statements about the marginal fitnesses is true? 1. W V > W L 2. W V = W L 3. W V < W L

The best-understood case: hemoglobin S and falciparum malaria Where Hb S is common (light gray) Where malaria was common (darker gray) Both common (darkest gray) AA: standard β Hb AS: resists malaria SS: sickle-cell anemia Note how the fitnesses depend on the environment: AS is fitter than AA if (1) malaria is endemic and (2) there is no other defense.

Negative frequency dependence: where I m my own worst enemy Here the fitnesses of the genotypes (not just the marginal fitnesses of the alleles) depend on their own frequencies. In this made-up example, the fitness of the heterozygote is always half way between those of the homozygotes, so there s never any heterozygote advantage.

Frustrated bumblebees go to differently colored elderflower orchids Flowers give no reward to bees. Naïve bees alternate between colors. The rarer color therefore tends to get more visits per flower. Fitnesses equalize at P(yellow) = 0.6-0.7 in experimental populations (right). Natural populations have P(yellow) = 0.69.

Negative frequency dependence is probably very common. It will arise from competition for resources of almost any kind. Also escape from diseases, predators and other enemies. Some classic examples: Self-incompatibility alleles in plants Sex ratios and mating strategies Major histocompatibility (MHC) alleles in all vertebrates Nicotiana Petunia Nicotiana Positive frequency dependence is not so common. Would it tend to maintain genetic polymorphism? Or eliminate it? Solanum Trans-specific polymorphism of selfincompatibility alleles in members of the family Solanaceae. Some S-alleles in tobacco (Nicotiana) are more closely related to S-alleles in Petunia than to some other S-alleles in their own species!

How and when do typical genes contribute to fitness? A major puzzle: Most genes appear to be unnecessary! Half or more can be knocked out (fully disabled) in yeast, worms, flies and even mice, without any obvious phenotypic effects (in the lab, anyway). But these genes are maintained in evolution, so they must be useful. How? Two hypotheses: (1) Most are special-purpose genes needed only under certain circumstances (stresses that occur in nature but not in the lab). (2) Most are fine-tuning genes that increase the efficiency or accuracy of some physiological or developmental process in most environments. Experimental test devised by Joe Dickinson: Compete no-phenotype knockouts against genotypes that are identical except for the knockout, and let natural selection measure their relative fitnesses. Dickinson talked Janet Shaw (a yeast cell biologist) and John Thatcher (an undergraduate) into helping him try to do this with yeast.

How to ask cells if they miss a (random) gene Mark either the random, no-phenotype knockout, or the wild-type parent, with lacz so that you can score their relative numbers on indicator plates. Start populations with equal numbers of wild-type and knockout cells; grow them for many generations in complete (rich) liquid media. Sample the populations every 10-20 generations and score the relative numbers of marked and unmarked cells.

Plot the frequency of the knockout as a function of generations (A, C) Also plot the log of the ratio of the allele frequencies [ln(q/p)] versus generation (B, D). The slope of this (straight) line is an estimate of the selection coefficient (-s). Gene TD64 Gene TD63 s = 0.045 s = 0.004

Summary of results for 27 no-phenotype knockouts Nineteen mutations (70%) showed statistically significant fitness defects ranging from 0.3% (s = 0.003) to 23% (s = 0.23). Among these, the typical (median) selection coefficient was 1-2%. Six mutations (22%) were not statistically distinguishable from neutral. (Five of the six appeared to be weakly deleterious, and one appeared to be beneficial.) A more sensitive experimental design (with larger populations and allele-frequency assays) would probably show most of these to be significant, raising the fraction of deleterious no-phenotype knockouts to 85-90%. Two of the 27 knockouts (7%) were significantly advantageous, with negative coefficients of s = -0.005 and s = -0.007.

Conclusion: Most genes make modest contributions to fitness This finding (in bacteria, too) supports the fine-tuning hypothesis. Such small effects could not be detected except by natural selection. Read the paper: Thatcher, Shaw & Dickinson, PNAS 95, 253-257 (1998).

What other (non-selective) population process might explain this trend?

Adh F beats Adh S on laboratory fly food soaked in EtOH Homework problem: Let FF homozygotes have a fitness of 1.0 (W FF =1), and assume F/S heterozygotes have intermediate fitness (h = ½). Very roughly, what is the fitness of the SS homozygotes, in the ethanol-soaked environment?