Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts

Similar documents
Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders

EXPERIMENT: LIMITING REAGENT. NOTE: Students should have moles of reactants in DATASHEET converted into masses in grams prior to the lab period.

Nihal İKİZOĞLU 1. TYPE of CHEMICAL REACTIONS. Balance the following chemical equations. 1. Fe + H 2 SO 4 Fe 2 (SO 4 ) 3 + H 2

NET IONIC REACTIONS in AQUEOUS SOLUTIONS AB + CD AD + CB

Experiment 8 - Double Displacement Reactions

Eye on Ions: Electrical Conductivity of Aqueous Solutions

EXPERIMENT 7 Precipitation and Complex Formation

CSUS Department of Chemistry Experiment 3 Chem.1A

Naming salts. Metal Acid Salt. Sodium hydroxide reacts with Hydrochloric acid to make Sodium chloride

Studies of a Precipitation Reaction

EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT. Learning Outcomes. Introduction

Chapter 6. Types of Chemical Reactions and Solution Stoichiometry

Solubility of KHT and Common ion Effect

Name CHEMISTRY / / Oxide Reactions & Net Ionic Reactions

Chapter 3: Solution Chemistry (For best results when printing these notes, use the pdf version of this file)

Chapter 4: Stoichiometry of Chemical Reactions. 4.1 Writing and Balancing Chemical Equations

CHM 130LL: Double Replacement Reactions

EXPERIMENT A5: TYPES OF REACTIONS. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

EXPERIMENT 2. Gravimetric Analysis of a Soluble Chloride

Name HONORS CHEMISTRY / / Oxide Reactions & Net Ionic Reactions

Chemistry. Approximate Timeline. Students are expected to keep up with class work when absent.

Solubility Rules and Net Ionic Equations

Chapter 17. Additional Aspects of Equilibrium

Experiment 5E BOTTLES WITHOUT LABELS: STUDIES OF CHEMICAL REACTIONS

Chapter 4 Reactions in Aqueous Solutions. Copyright McGraw-Hill

Experiment Six Precipitation Reactions

Section B: Some Essential Background Chemistry

What Do You Think? Investigate GOALS

Chapter 4: Types of Chemical Reactions and Solution Stoichiometry

11.3 Reactions in Aqueous Solution. Chapter 11 Chemical Reactions Reactions in Aqueous Solution

"It s not that I m so smart, it s just that I stay with problems longer." --Albert Einstein--

Chapter 4. Types of Chemical Reactions and Solution Stoichiometry

GRAVIMETRIC ANALYSIS OF A CHLORIDE SALT. REFERENCES: Nelson, J., Chemistry: The Central Science, 3 rd edition, Prentice-Hall, 1985

Lab #5 - Limiting Reagent

DETERMINATION OF THE SOLUBILITY PRODUCT OF GROUPII HYDROXIDES

Funsheet 9.1 [VSEPR] Gu 2015

insoluble partial very soluble (< 0.1 g/100ml) solubility (> 1 g/100ml) Factors Affecting Solubility in Water

c. K 2 CO 3 d. (NH 4 ) 2 SO 4 Answer c

Santa Monica College Chemistry 11

E09. Exp 09 - Solubility. Solubility. Using Q. Solubility Equilibrium. This Weeks Experiment. Factors Effecting Solubility.

Chemistry 151 Last Updated Dec Lab 8: Precipitation Reactions and Limiting Reagents

Chapter 4 Types of Chemical Reaction and Solution Stoichiometry

Supernatant: The liquid layer lying above the solid layer after a precipitation reaction occurs.

TYPES OF CHEMICAL REACTIONS

Chapter 4 Reactions in Aqueous Solution

St. John s College High School Mr. Trubic AP Midterm Review Packet 1

Solution Chemistry: Making Solutions, Reactions, and Solubility

The solvent is the dissolving agent -- i.e., the most abundant component of the solution

Solutions. Heterogenous Mixture (Not a Solution) Ice Water (w/ Ice Cubes) Smog Oil and Water

CHEM 60 Spring 2016 Exam 2 Ch 5-8, 100 points total.

Chem 2115 Experiment #10. Acids, Bases, Salts, and Buffers

Chapter 4. Reactions in Aqueous Solution

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate.

5. Pb(IO 3) BaCO 3 8. (NH 4) 2SO 3

D O UBLE DISPL Ac EMENT REACTIONS

To understand concept of limiting reagents. To learn how to do a vacuum filtration. To understand the concept of recrystallization.

Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate

DETERMINING AND USING H

Name Chemistry Pre-AP. Notes: Solutions

Chemical Change. Section 9.1. Chapter 9. Electrolytes and Solution Conductivity. Goal 1. Electrical Conductivity

Experiment 7 Buffer Capacity & Buffer Preparation

Reactions in Aqueous Solutions

11. Introduction to Acids, Bases, ph, and Buffers

Chapter 4: Chemical Quantities and Aqueous Reactions

EXPERIMENT C3: SOLUBILITY PRODUCT & COMMON ION EFFECT. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

CHEMICAL REACTIONS. There are three ways we write chemical equations. 1. Molecular Equations 2. Full Ionic Equations 3. Net Ionic Equations

AP Chemistry Honors Unit Chemistry #4 2 Unit 3. Types of Chemical Reactions & Solution Stoichiometry

EXPERIMENT. Stoichiometry of a Precipitation Reaction

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals.

Stoichiometry ( ) ( )

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction:

(A) Composition (B) Decomposition (C) Single replacement (D) Double replacement: Acid-base (E) Combustion

Chapter 4: Phenomena. (aq)+ 4H + (aq)+ 2e - Chapter 4: Types of Chemical Reactions and Solution Stoichiometry

Solutions & Solubility: Net Ionic Equations (9.1 in MHR Chemistry 11)

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances.

Quick Review. - Chemical equations - Types of chemical reactions - Balancing chemical equations - Stoichiometry - Limiting reactant/reagent

Unit 1 - Foundations of Chemistry

CH204 Potions Class. Fall 2009 Professor Severus Snape. Experiment 3 Qualitative Chemical Analysis. Last Week in the Potions Laboratory

CH204. Potions Class. Fall 2009 Professor Severus Snape

ACP Chemistry (821) - Mid-Year Review

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals.

AP Chemistry Unit #4. Types of Chemical Reactions & Solution Stoichiometry

EXPERIMENT 15. USING CONDUCTIVITY TO LOOK AT SOLUTIONS: DO WE HAVE CHARGED IONS OR NEUTRAL MOLECULES? rev 7/09

CH 4 AP. Reactions in Aqueous Solutions

CH 241 EXPERIMENT #6 WEEK OF NOVEMBER 12, NUCLEOPHILIC SUBSTITUTION REACTIONS (S N 1 and S N 2)

REVIEW OF BASIC CHEMISTRY ANSWER KEY

Solubility Equilibrium

Types of Chemical Reactions and Equations

CHAPTER 4 TYPES OF CHEMICAL REACTIONS & SOLUTION STOICHIOMETRY

Session 8: LECTURE OUTLINE (SECTIONS I1 I4 pp F61 F67)

Write the ionic equation for this neutralisation reaction. Include state symbols.

Types of Chemical Reactions

Moorpark College Chemistry 11 Fall 2011 Instructor: Professor Gopal. Examination #2: Section Two October 17, Name: (print)

Net Ionic Reactions. The reaction between strong acids and strong bases is one example:

Ch 7 Chemical Reactions Study Guide Accelerated Chemistry SCANTRON

CHM-201 General Chemistry and Laboratory I Laboratory 4. Introduction to Chemical Reactions (based in part on Small Scale Chemistry methodology as

Supernatant: The liquid layer lying above the solid layer after a precipitation reaction occurs.

Chemical Equations. Chemical Reactions. The Hindenburg Reaction 5/25/11

Classifying Chemical Reactions

7/16/2012. Chapter Four: Like Dissolve Like. The Water Molecule. Ionic Compounds in Water. General Properties of Aqueous Solutions

Transcription:

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts Pre-lab Assignment: Reading: 1. Chapter sections 3.3, 3.4, 3.7 and 4.2 in your course text. 2. This lab handout. Questions: 1. What product(s) might be expected to form when solid cesium carbonate is added to an aqueous solution of calcium chloride? Write a balanced chemical equation for this process. 2. How many grams of cesium carbonate would you need to fully react with one mole of calcium chloride. Please show your work. Introduction The purpose of this lab is to help you discover the relationships between the reactants and products in a precipitation reaction. In this lab you will react a calcium chloride solution with lithium carbonate, sodium carbonate, or potassium carbonate. The precipitate that results will be filtered and weighed. In each determination you will use the same amount of calcium chloride and different amounts of your carbonate salt. This experiment is a "discovery"- type experiment. The procedure will be carefully described, but the analysis of the data is left purposely vague. You will work in small groups to decide how best to work up the data. In the process you will have the chance to discover some principles, to use what you have learned in lecture, and to practice thinking about manipulative details and theory at the same time. Plotting your data in an appropriate manner should verify the identity of the precipitate and clarify the relationship between the amount of carbonate salt and the yield of precipitate. Predicting the formulas of ionic compounds. Compounds like calcium chloride (CaCl 2 ) and sodium carbonate (Na 2 CO 3 ) are ionic substances. Soluble ionic substances dissociate in aqueous solution to form ions as shown below for calcium chloride. CaCl 2 (aq) Ca 2+ (aq) + 2 Cl (aq) A list of common ions is given in your text. A short excerpt is tabulated below. The charges on the ions can be used to predict the formulas of ionic compounds as the ions combine to give electrically neutral compounds. For example, the combination of K + and PO 4 3 would give K 3 PO 4, which has a net charge of zero. If more than one polyatomic ion such as nitrate ion is needed to balance the charge, it is enclosed in parentheses with the number of times it occurs indicated with a subscript to the right of the parentheses, for example, in calcium nitrate, Ca(NO 3 ) 2.

2 Some Common Ions Cations Anions H + hydrogen ion OH hydroxide ion Na + sodium ion Cl chloride ion K + potassium ion 2 CO 3 carbonate ion Ca 2+ calcium ion NO 3 nitrate ion Ag + silver ion 3 PO 4 phosphate ion + NH 4 ammonium ion 2 SO 4 sulfate ion Predicting the product of precipitation reactions. Sometimes a precipitate results when two soluble ionic compounds are mixed in aqueous solution. For example, a precipitate is formed when solutions of silver nitrate and sodium chloride are mixed. How would you predict the identity of the precipitate? This can be done in two steps. First, break the parent compounds into their respective ions, and then exchange the ions between partners to predict the products. For example, silver nitrate and sodium chloride dissociate into ions in solution: AgNO 3 (aq) NaCl (aq) Ag + (aq) + NO 3 (aq) Na + (aq) + Cl (aq) In the mixture of silver nitrate and sodium chloride solutions, we consider the products formed by the exchange of partners (each cation ends up with a different anion than it started with), predicting the possible products AgCl and NaNO 3. Therefore, the observed precipitate could be AgCl or NaNO 3, or it could be both. Later in this course you will learn how to predict which ionic substances will be insoluble. In this example, AgCl is insoluble in water and precipitates out of solution, while NaNO 3 is soluble, so the Na + and NO 3 ions remain dissolved and, therefore, uncombined in solution. This reaction would then have the balanced equation: AgNO 3 (aq) + NaCl (aq) AgCl (s) + Na + (aq) + NO 3 (aq) The net ionic equation for this reaction is: Ag + (aq) + Cl (aq) AgCl(s) The general rules for water solubility of common ionic compounds include the following two rules, with rule one taking precedence over rule two: 1. All common compounds of the alkali metals and the ammonium ion are soluble. 2. Almost all carbonate, phosphate, and hydroxide compounds are insoluble. Therefore, MgCO 3, Ag 3 PO 4, and Ca(OH) 2 are predicted to be insoluble in water, but Na 2 CO 3, (NH 4 ) 3 PO 4, and KOH are predicted to be soluble. Procedure for experiment You will work individually on the experimental portion of this laboratory with one carbonate salt assigned to you by your instructor. You will then partner with two other students to analyze the data for all three carbonate salts. The step by step instructions follow.

3 1. Weigh your assigned sample of carbonate salt into a weighing bottle ensuring that the mass is within the given range. Record the the weight (to an accuracy of 0.5 mg) and the balance number in your notebook. For example, if your instructor assigns the weight range of 0.30 to 0.45 g for one of your samples, any weight within this range is fine, but you must know that weight to 0.5 mg. Thus, 0.4255 g would be within the 0.30 to 0.45g range and to the required accuracy. 2. Empty the contents of the weighing bottle carefully into a clean 150 ml beaker. Measure 50 ml of 0.05 M ammonia solution in a graduated cyclinder and use small portions of this ammonia solution to rinse the weighing bottle, adding these rinses to the beaker. Be sure to use all 50 ml of the ammonia solution. Stir the solution with a glass-stirring rod until all of the solid dissolves. Do not remove the stirring rod once you have placed it into the beaker. If you have difficulty dissolving the salt, there is an ultrasonic bath available for your use. Simply place the beaker into the bath for a few minutes until dissolution is complete. 3. Heat the beaker on a hot plates until water vapor begins to condense on the wall of the beaker. Avoid boiling the solution. 4. Carefully add 10.0 ml of the CaCl 2 solution into the beaker. Record the concentration of CaCl 2 solution in your notebook. 5. Heat and stir the contents of the beaker for two more minutes after adding the CaCl 2 solution. Let the beaker cool to room temperature using an ice-water bath as necessary. 6. While your beaker is cooling, carefully weigh a clean and DRY Gooch crucibles to an accuracy of 0.5 mg (i.e. 0.0005 g). Use the same balance from Step 1 and record the weight in your notebook. 7. Carefully filter the contents of your beaker through the pre-weighed Gooch crucible. The filtration apparatus is shown in Figure 1. The goal is to ensure that all the precipitate in your beaker is quantittaively transferred to the crucible. So, when pouring out of the beaker, use the stirring rod as shown in Figure 2 to minimize spillage and loss of precipitate. Figure 1: Filtration set up. Figure 2: Poring technique. 8. Use a wash bottle containing cold 0.05 M ammonia solution to rinse the precipitate into the Gooch crucible. Rinse the beaker at least three times to ensure complete transfer.

4 9. Place the Gooch crucibles in an assigned Petri dish and record the number of the dish in your notebook. Place the Petri dish with your crucible in an oven for at least 30 minutes. Record the oven temperature. While you wait for the sample to dry, set up an EXCEL spreadsheet for data analysis with your partners. Please refer to instructions for data analysis that are given later in this handout. 10. Remove the Petri dish and crucible from the oven and allow them to cool to almost room temperature. Weigh the crucible to 0.0005 g. Use the same balance from Step 1 and record the weight in your notebook. Calculate the mass of your precipitate and record in your notebook. You should add this data point to your graph (see below) and clearly indentify it as yours. Procedure for data analysis: (Please do the following while you wait for your crucible to dry in the oven) (a) To make a sense out of your data you will first need to write a balanced equation for the chemical reaction between CaCl 2 and your carbonate salt. You should then identify the precipitate you made and recognize the quantitative relationship between the reactants and products. (b) From the data set distributed during the lab period, plot the data for your salt in a way that determines the stoichiometry of your precipitation reaction. After you make the final measurement on your precipitate (from step 10 above) you can add that to your graphed data. Please make sure your data point is clearly labeled to distinguish it from the other points on the line. (c) Your plot should have two regions separated by an inflection point. Do a separate linear fit to the data in each region. (d) Make sure that your plot as well as similar plots generated by your partners for the other two reactions, including fits, are all in the same graph. Then save the table and graph to the folder for each partner on the fileserver. Procedure for cleaning crucible after your graph is made and checked by the instructor: a) Leave the suction filtration apparatus set up with the ammonia solution still in the bottom of the flask. b) Return the crucibles to the suction filtration apparatus and carefully pour in some 3 M HCl with the suction off. After the fizzing stops, attach the hose and remove the solution by suction. Repeat. c) Use the suction to pull several portions of distilled water through the crucibles. What should be in your laboratory notebook? 1. Keep track of all weight measurements in your lab notebook, identify the balance used, and record all observations. Remember to include units. 2. Identify your precipitate and write a balanced chemical equation, in both total ionic and net ionic forms, for the reaction of your carbonate salt.

5 What should be in your laboratory report? You will submit only one report as a group and all members of the group will receive the same grade. So please talk with one another to make sure the report is just the way you want it before submitting. Your report will need to include the following and should be limited to two pages. A title for the experiment, names of all authors, lab section, and date. A Figure made up of a well constructed graph with an appropriate title, properly labeled axes, and equations for the trend lines with R 2 values included. The data points and trend lines for each of the three reactions should be clearly identified including the specific data point contributed by each partner. The graph should contain a caption, not to exceed 8 lines, that compares the trends observed for the three reactions and the meaning of those trends. Do not attach the table. A Results and Discussion section in which each partner contributes one paragraph describing the results of his/her reaction and discussing the meaning of the data for that particular reaction. The length of each paragraph should not exceed 75 words. The word count feature of the software should be used and the number of words should be included in parenthesis at the end of each paragraph.