Introduction Phase-Averaged Phase-Resolved Outlook PSR B Monitoring with RXTE from 1996 to Katja Pottschmidt (UCSD) May 2007

Similar documents
ACIS ( , ) Total e e e e-10 4.

e e-03. which is distributed with standard chandra processing. visual inspection are included.

Sequence Obs ID Instrument Exposure uf Exposure f Date Observed Aimpoint (J2000) (ks) (ks) (α, δ)

Hughes et al., 1998 ApJ, 505, 732 : ASCA. Westerlund, 1990 A&ARv, 2, 29 : Distance to LMC 1 ) ) (ergs s F X L X. 2 s 1. ) (ergs cm

Mapping the non thermal emission in Coma cluster of galaxies using the FeXXV/FeXXVI line ratio

arxiv: v2 [astro-ph.he] 3 Aug 2015

Anomalous X-ray Pulsars

4U : a well-hidden pearl

Pulse phase resolved spectroscopy: Probe of the dip phenomenon in the pulse profiles of GX 304-1

Simultaneous XMM-Newton Radio Observations of the Mode-switching Radio Pulsar PSR B Wim Hermsen 1,2

Spectral Analysis of High Resolution X-ray Binary Data

The Orbital Ephemeris and X-Ray Light Curve of Cyg X-3

AXP 1RXS J :

The Orbit and Position of the X-ray Pulsar XTE J an Eclipsing Supergiant System

XMM-Newton's view of the multiple uorescence lines of GX 301 2

arxiv: v2 [astro-ph.he] 24 Nov 2015

arxiv: v1 [astro-ph.he] 25 Jun 2009

The geometric origin of quasi-periodic oscillations in black hole binaries

1 About EDSER. 2 Processing. MEMORANDUM September 21, To: From: Subject: File

Status of the EPIC calibration

NuSTAR observation of the Arches cluster: X-ray spectrum extraction from a 2D image

A search for burst spectral features with NICER. Jérôme Chenevez Gaurava Jaisawal DTU Space

Variation of the broad X-ray iron line in MCG± during a flare

Spectral Analysis of the Double Pulsar PSR J with XMM-Newton

Resolving the Space-Time Around Black Holes

Evidence for an evolving cyclotron line energy in 4U

arxiv: v1 [astro-ph.he] 15 Aug 2014

arxiv: v1 [astro-ph.he] 25 Jun 2013

Creative Commons: Attribution 3.0 Hong Kong License

UC Santa Cruz UC Santa Cruz Previously Published Works

arxiv: v1 [astro-ph.he] 22 Jan 2016

arxiv:astro-ph/ v2 23 May 2006

AC Fabian, M. Cappi, J Sanders. Cosmic Feedback from AGN

A relativistically smeared line profile in the spectrum of the bright Z-source GX 340+0

Improving the Relative Accuracy of the HETGS Effective Area

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope

Andy Ptak NASA/GSFC Active Galactic Nuclei

Galaxy Clusters with Swift/BAT

Measurements of Neutron Star Masses and Radii from Thermonuclear X-ray Bursts. Tolga GÜVER İstanbul University

Discovery of powerful millisecond flares from Cygnus X-1

Hard X-ray/soft γ-ray Characteristics of the Persistent Emission from Magnetars

9.1 Years of All-Sky Hard X-ray Monitoring with BATSE

ASTRONOMY AND ASTROPHYSICS. COMPTEL detection of pulsed γ-ray emission from PSR B up to at least 10 MeV

ACE/EPAM Interplanetary Particles at L1 and RBSPICE Observations. Thomas P. Armstrong Fundamental Technologies, LLC August 12, 2013

1. INTRODUCTION. Received 2000 January 14; accepted 2000 July 17

Calibration Activities the MOS perspective

Dan Evans (Harvard), Julia Lee (Harvard), Jane Turner (UMBC/GSFC), Kim Weaver (GSFC), Herman Marshall (MIT) NGC 2110 Spectroscopy

When a Standard Candle Flickers: The Dimming of the Crab Nebula. Gary Case

RXTE Observations of PKS during the November 1997 Gamma-Ray Outburst

1 The Problem. MEMORANDUM July 20, 2013

arxiv: v2 [astro-ph.he] 23 Jul 2013

arxiv:astro-ph/ v1 16 Dec 1998

Corrections for time-dependence of ACIS gain

Probing Neutron Star Physics using Thermonuclear X-ray Bursts

PoS(extremesky2009)103

On-flight calibration of the Swift-XRT telescope

Suzaku observation of the eclipsing high mass X-ray binary pulsar XTE J

New measurements of pulsar braking indices (obtained via phase-coherent timing)

arxiv:astro-ph/ v3 24 Mar 2006

MILLISECOND PULSARS. Merve Çolak

PoS(INTEGRAL 2012)049

On the Nature of the Nonthermal Emission from the Supernova Remnant IC 443

arxiv: v2 [astro-ph.he] 26 Mar 2010

PoS(Integral08)120. Scanning the Egress of Vela X-1

Cooling Limits for the

High-resolution X-ray Spectroscopy of the Black Hole Cygnus X-1 with the Chandra X-ray observatory

Chandra Analysis of a Possible Cooling Core Galaxy Cluster at z = 1.03

IBIS - IN FLIGHT CALIBRATION ACTIVITIES

Infrared-Optical observations of magnetars

Sgr A : from 10 0 to m in 3000 seconds

Kilo-Hertz QPO and X-ray Bursts in 4U in Low Intensity State

Chapter 4 COMPTEL detection of pulsed -ray emission from PSR B up to at least 10 MeV

Wide-Band Spectral Studies of Magnetar Burst and Persistent Emissions

Analysis of extended sources with the EPIC cameras

THE PRELUDE TO AND AFTERMATH OF THE GIANT FLARE OF 2004 DECEMBER 27: PERSISTENT AND PULSED X-RAY PROPERTIES OF SGR FROM 1993 TO 2005

Research Article X-Ray Pulsar Profile Recovery Based on Tracking-Differentiator

AGN Feedback in the Hot Halo of NGC 4649

Clear anti-correlation between luminosity and high energy cutoff in the low/hard state of the black hole candidate GX339 4

XMM-Newton Observations of the Isolated Neutron Star 1RXS J / RBS 1774

Spatially resolved spectroscopy of NGC 4945

A Suzaku, NuSTAR, and XMM-Newton view on variable absorption and relativistic reflection in NGC 4151

Multi epoch variability of αox in the CDFS

The XMM-Newton (and multiwavelength) view of the nonthermal supernova remnant HESS J

FOURIER-RESOLVED SPECTROSCOPY OF 4U DURING THE 2002 OUTBURST

RXTE View of the Starburst Galaxies M82 and NGC 253

Unveiling the nature of the high energy source IGR J

v Characteristics v Possible Interpretations L X = erg s -1

Pulsar Observations with the Fermi Large Area Telescope

Using Gamma Ray Bursts to Estimate Luminosity Distances. Shanel Deal

The dominant emission process of the X-ray spectrum of Cen A

1 Statistics Aneta Siemiginowska a chapter for X-ray Astronomy Handbook October 2008

H.E.S.S. Unidentified Gamma-ray Sources in a Pulsar Wind Nebula Scenario And HESS J

arxiv:astro-ph/ v1 5 Oct 2003

arxiv:astro-ph/ v1 17 Oct 2001

Giant Flares and Offstates

Fitting Narrow Emission Lines in X-ray Spectra

arxiv: v1 [astro-ph.he] 19 Aug 2017

Extended X- ray emission from PSR B /LS 2883 and other gamma- ray binaries

PoS(Extremesky 2011)070

Variable X-ray absorption in the mini-bal QSO PG

Transcription:

Monitoring with RXTE from 1996 to 2005 May 2007 S. Suchy (UCSD), J. Wilms (FAU), S. Haney (UCSB) R.E. Rothschild (UCSD)

Source current RXTE-PCA PCU 2 rate, 3 20 kev top layer: 14.5 counts/s (Crab 1800 counts/s) D 4.2 kpc P 150 ms unusually high Ṗ characteristic age 1600 yr Ginga (Kawai 93) CGRO (Ulmer 93, Matz 94, Kuiper 99) RXTE (Marsden 97, Rots 98) BeppoSax (Cusumano 01) Chandra (Yatsu 05, DeLaney 05) INTEGRAL (Forot 06)

RXTE Monitoring about 1 ObsID/month here: AO1 AO10 1996 2005 PCA calibration epochs 3 5 average exposure 2.7 ks 4.1 ks in 2001, for less PCUs HEXTE not rocking in epoch 3 30704: 6 ObsIDs offset 80803-01-07-01: no GoodXenon 90803-01-09-02: enhanced bkg 40704-01-09-00: short Exposure [ks] 7 6 5 4 3 2 1 JD 2450000 1000 2000 3000 3 4 5 0 19961997 1998 1999 2000 2001 2002 2003 2004 2005

RXTE: Timing & Early Spectra Phase-Coherent Timing Livingstone et al., 2005 radio & RXTE-PCA residuals wrt Taylor expansion in Φ (3rd-5th derivative in ν) Early Spectra Marsden et al. (1997) Rots et al. (1998) monitoring aspect not explored

Spectroscopy Outline Pulse-phase-averaged monitoring (PCA) time-averaged (PCA+HEXTE) Pulse-phase-resolved (work in progress) monitoring (PCA on-pulse) time-averaged (PCA+HEXTE) determine source stability Goals identify possible calibration effects most detailed phase-resolved analysis

Rates 3-20 kev, top layer faint bkg subtracted version emv20051128 all available PCUs <1999: 5 PCUs on >1999: <5 PCUs on >2001: sub-obsids, different # of PCUs PCU 2 on during all ObsIDs best calibrated gradual decrease, modeled in response Rate [cps] 80 70 60 50 40 JD 2450000 1000 2000 3000 30 19961997 1998 1999 2000 2001 2002 2003 2004 2005

Rates 3-20 kev, top layer faint bkg subtracted version emv20051128 all available PCUs <1999: 5 PCUs on >1999: <5 PCUs on >2001: sub-obsids, different # of PCUs Rate [cps] 17 16 15 JD 2450000 1000 2000 3000 PCU 2 on during all ObsIDs best calibrated gradual decrease, modeled in response 14 19961997 1998 1999 2000 2001 2002 2003 2004 2005

Spectral Model phabs*(power+gauss) 3-20 kev, faint bkg background as correction files no systematics, typical χ 2 red =0.7 0.8 Standard2f Data Mode all available PCUs 1 all parameters free (E Fe, σ Fe restricted), top layer 2 the same for all layers PCU 2, top layer 1 all parameters free (E Fe, σ Fe restricted) 2 E Fe =6.4 kev, σ Fe =0.1 3 N H = 0.6

Spectral Fit Parameters N H a Typical Monitoring Observation = 0.63 +0.74 0.63 Γ = 2.06 +0.06 0.06 A Γ b = 7.4 +1.0 0.9 E Fe [kev] = 6.5 +0.3 0.3 σ Fe [kev] = 0.4 +0.4 0.4 A Fe c = 2.1 +1.8 0.9 EW [ev] = 133 = 9.6 A bkgcorr [%] = 5.4 F 4 10 kev d a 10 22 /cm 2, b 10 2 ph kevcm 2 s @1keV c 10 4 ph cm 2 s, d 10 11 erg cm 2 s Norm. Counts s 1 kev 1 χ χ χ 1.0 0.1 4 2 02 4 4 2 02 4 4 2 02 4 Power Law ObsID 80803 01 06 Date 10/09/2003 Exposure 4.9 ks Power Law + Gauss Power Law + Gauss, Fe Norm=0 10 Energy [kev] PCU 2 Top Layer χ 2 red=1.4 χ 2 red=0.9 χ 2 red=2.0

(Absorbed) Flux Evolution all available PCUs 7% down since 2000 clear drop at epoch 4/5 boundary calibration effect PCU 2 no drop at epoch 4/5 boundary maybe gradual decline of 2% since 2000 calibration? use PCU 2 data for time-averaged and phase-resolved 4 10 kev Flux [10 11 erg s 1 cm 2 ] 10.5 10.0 9.5 9.0 8.5 8.0 JD 2450000 1000 2000 3000 7.5 19961997 1998 1999 2000 2001 2002 2003 2004 2005

(Absorbed) Flux Evolution all available PCUs 7% down since 2000 clear drop at epoch 4/5 boundary calibration effect PCU 2 no drop at epoch 4/5 boundary maybe gradual decline of 2% since 2000 calibration? use PCU 2 data for time-averaged and phase-resolved 4 10 kev Flux [10 11 erg s 1 cm 2 ] 10.5 10.0 9.5 9.0 8.5 8.0 JD 2450000 1000 2000 3000 7.5 19961997 1998 1999 2000 2001 2002 2003 2004 2005

Power Law Norm & N H Calibration effect visible in other parameters? all available PCUs 10% drop in power law normalization N H increasingly difficult to determine PCU 2 no drop in power law normalization why 2% flux drop? N H constrained to < 1.5 10 22 cm 2 only Γ Norm [10 2 ph kev 1 cm 2 s 1 @ 1 kev] 10 9 8 7 6 JD 2450000 1000 2000 3000 5 19961997 1998 1999 2000 2001 2002 2003 2004 2005

Power Law Norm & N H Calibration effect visible in other parameters? all available PCUs 10% drop in power law normalization N H increasingly difficult to determine PCU 2 no drop in power law normalization why 2% flux drop? N H constrained to < 1.5 10 22 cm 2 only N H [10 22 cm 2 ] 2.0 1.5 1.0 0.5 0.0 JD 2450000 1000 2000 3000 19961997 1998 1999 2000 2001 2002 2003 2004 2005

Power Law Norm & N H Calibration effect visible in other parameters? all available PCUs 10% drop in power law normalization N H increasingly difficult to determine PCU 2 no drop in power law normalization why 2% flux drop? N H constrained to < 1.5 10 22 cm 2 only Γ Norm [10 2 ph kev 1 cm 2 s 1 @ 1 kev] 10 9 8 7 6 JD 2450000 1000 2000 3000 5 19961997 1998 1999 2000 2001 2002 2003 2004 2005

Power Law Index PCU 2 4 10 kev flux drop marginally softer (norm @ 1 kev) Gaussian distribution with Γ=2.03, σ Γ =0.05 2.20 2.10 JD 2450000 1000 2000 3000 all available PCUs no trend in Γ Γ 2.00 Gaussian distribution with Γ=2.02, σ Γ =0.03 1.90 19961997 1998 1999 2000 2001 2002 2003 2004 2005

Power Law Index PCU 2 4 10 kev flux drop marginally softer (norm @ 1 kev) Gaussian distribution with Γ=2.03, σ Γ =0.05 all available PCUs no trend in Γ Gaussian distribution with Γ=2.02, σ Γ =0.03 Number of Observations 25 20 15 10 5 0 1.80 1.90 2.00 2.10 2.20 Γ

Power Law Index PCU 2 4 10 kev flux drop marginally softer (norm @ 1 kev) Gaussian distribution with Γ=2.03, σ Γ =0.05 all available PCUs no trend in Γ Gaussian distribution with Γ=2.02, σ Γ =0.03 Number of Observations 30 20 10 0 1.80 1.90 2.00 2.10 2.20 Γ

Iron Line PCU 2 E Fe constrainable to 6 7 kev (uncertainties often peg) σ Fe consistent with 0 norm not consistent with 0 norm stable and, especially for frozen E Fe and σ Fe, well constrained Fe Line Norm [10 4 ph cm 2 s 1 ] 4 3 2 1 JD 2450000 1000 2000 3000 0 19961997 1998 1999 2000 2001 2002 2003 2004 2005

Iron Line PCU 2 E Fe constrainable to 6 7 kev (uncertainties often peg) σ Fe consistent with 0 norm not consistent with 0 norm stable and, especially for frozen E Fe and σ Fe, well constrained Fe Line Norm [10 4 ph cm 2 s 1 ] 4 3 2 1 JD 2450000 1000 2000 3000 0 19961997 1998 1999 2000 2001 2002 2003 2004 2005

Long-Term Stability, PCU 2 Avg. Parameter 1996 1997 2004 2005 exposure [ks] 2.8±0.1 4.1±0.2 3 20 kev rate [cps] 15.82±0.05 14.53±0.04 4 10 kev flux [10 11 erg ] 9.92±0.04 9.71±0.02 cm 2 s A Γ [10 2 N H [10 22 cm 2 ] 0.54±0.09 0.30±0.07 Γ 2.02±0.01 2.05±0.01 ph @ 1keV] 0.071±0.001 0.072±0.001 kevcm 2 s bkg correction [%] 2±1 0.3±3 χ 2 red 0.68±0.03 0.70±0.05

Epoch-Averaged Spectra PCU 2 Top: 3 25 kev 0.5% systematics epoch 5: Xe L edge HEXTE: epoch 3: no bkg epoch 4: 20 100 kev epoch 5: 20 200 kev Previous background model, fits will be redone. normalized counts/s/kev χ χ 10 0 10 1 10 2 10 3 10 4 10 5 0 5 10 4 2 0 2 4 Epoch 4 PCU2 Top Layer HEXTE without Fe with Fe 10 100 Energy [kev]

Epoch-Averaged Spectra PCU 2 Top: 3 25 kev 0.5% systematics epoch 5: Xe L edge HEXTE: epoch 3: no bkg epoch 4: 20 100 kev epoch 5: 20 200 kev Previous background model, fits will be redone. normalized counts/s/kev χ χ 10 0 10 1 10 2 10 3 10 4 10 5 0 5 10 4 2 0 2 4 Epoch 5 PCU2 Top Layer HEXTE without Fe with Fe 10 100 Energy [kev]

Epoch-Averaged Parameters Parameter Epoch 3 Epoch 4 Epoch 5 exp. PCA/HEXTE [ks] 81.2/ 37.6/24.0 224.6/179.7 N H [10 22 /cm 2 ] 0.60 +0.09 0.1 0.59 +0.17 0.28 0.39 +0.09 0.1 Γ 2.02 +0.01 0.01 2.03 +0.02 0.02 2.03 +0.00 0.01 EW 74 77 83 F 4 10 kev [10 11 erg ] cm 2 s 10.01 10.03 9.85 flux constant (HEXTE) 0.84 +0.04 0.06 0.84 +0.02 0.02 χ 2 red/dof 0.83/46 0.88/89 1.11/89

Monitoring Pulse Profiles Extraction filter GoodXenon rsp, bkg: seextract pha2 (Φ- & E-bins): (ik)fasebin 5 ephemrides from www.atnf.csiro.au Φ: -0.05, 0., 0., 0.02, 0. offset from radio by 0.27 (Kawai et al., 1991) Examples 1/ephemeris, random 3 40 kev, 0.05 Φ-bins normalized to off-pulse Norm. Count Rate [cps] 2.0 1.5 1.0 0.5 Peak Off 20802 01 02 00 PCU 2 Top Layer 0.0 0.0 0.5 1.0 1.5 2.0 Pulse Phase

Monitoring Pulse Profiles Extraction filter GoodXenon rsp, bkg: seextract pha2 (Φ- & E-bins): (ik)fasebin 5 ephemrides from www.atnf.csiro.au Φ: -0.05, 0., 0., 0.02, 0. offset from radio by 0.27 (Kawai et al., 1991) Examples 1/ephemeris, random 3 40 kev, 0.05 Φ-bins normalized to off-pulse Norm. Count Rate [cps] 2.0 1.5 1.0 0.5 Peak Off 40704 01 10 00 PCU 2 Top Layer 0.0 0.0 0.5 1.0 1.5 2.0 Pulse Phase

Monitoring Pulse Profiles Extraction filter GoodXenon rsp, bkg: seextract pha2 (Φ- & E-bins): (ik)fasebin 5 ephemrides from www.atnf.csiro.au Φ: -0.05, 0., 0., 0.02, 0. offset from radio by 0.27 (Kawai et al., 1991) Examples 1/ephemeris, random 3 40 kev, 0.05 Φ-bins normalized to off-pulse Norm. Count Rate [cps] 2.0 1.5 1.0 0.5 Peak Off 50705 01 10 00 PCU 2 Top Layer 0.0 0.0 0.5 1.0 1.5 2.0 Pulse Phase

Monitoring Pulse Profiles Extraction filter GoodXenon rsp, bkg: seextract pha2 (Φ- & E-bins): (ik)fasebin 5 ephemrides from www.atnf.csiro.au Φ: -0.05, 0., 0., 0.02, 0. offset from radio by 0.27 (Kawai et al., 1991) Examples 1/ephemeris, random 3 40 kev, 0.05 Φ-bins normalized to off-pulse Norm. Count Rate [cps] 2.0 1.5 1.0 0.5 Peak Off 60703 01 09 00 PCU 2 Top Layer 0.0 0.0 0.5 1.0 1.5 2.0 Pulse Phase

Monitoring Pulse Profiles Extraction filter GoodXenon rsp, bkg: seextract pha2 (Φ- & E-bins): (ik)fasebin 5 ephemrides from www.atnf.csiro.au Φ: -0.05, 0., 0., 0.02, 0. offset from radio by 0.27 (Kawai et al., 1991) Examples 1/ephemeris, random 3 40 kev, 0.05 Φ-bins normalized to off-pulse Norm. Count Rate [cps] 2.0 1.5 1.0 0.5 Peak Off 90803 01 10 00 PCU 2 Top Layer 0.0 0.0 0.5 1.0 1.5 2.0 Pulse Phase

Pulse Off-Pulse Fit add sub-obsids Φ=0.12 0.48 peak.pha Φ=0.72 1.02 off.pha (Rots et al., 1998) data 1:1 peak.pha back 1:1 off.pha phabs power Typical Parameters N H [10 22 cm 2 ] = 3.3 +3.7 3.3 Γ = 1.4 +0.2 0.2 a A Γ = 1.1 +0.6 0.4 b F 4 10 kev = 4.4 a 10 2 ph kevcm 2 s @ 1keV, b 10 11 erg cm 2 s Norm. Counts s 1 kev 1 1.00 0.10 0.01 Off ObsID 80803 01 06 Date 10/09/2003 10 Energy [kev] PCU 2 Top Layer Peak

Pulse Off-Pulse Fit add sub-obsids Φ=0.12 0.48 peak.pha Φ=0.72 1.02 off.pha (Rots et al., 1998) 1.0 PCU 2 Top Layer data 1:1 peak.pha back 1:1 off.pha phabs power Typical Parameters Norm. Counts s 1 kev 1 0.1 ObsID 80803 01 06 Date 10/09/2003 Peak Off N H [10 22 cm 2 ] = 3.3 +3.7 3.3 Γ = 1.4 +0.2 0.2 a A Γ b F 4 10 kev a 10 2 ph kevcm 2 s @ 1keV, b 10 11 erg cm 2 s = 1.1 +0.6 0.4 = 4.4 χ 4 2 0 2 4 Power Law χ 2 red=1.0 10 Energy [kev]

Pulsed Rate & Flux Evolution rates less constrained, still overall declining F 4 10 kev : no trend F 10 20 kev : decline? (pulsed flux harder) 1996/1997 2004/2005 flux comparison: 3 5% decline Rate [cps] 8.0 7.5 7.0 6.5 JD 2450000 1000 2000 3000 Average General Parameters χ 2 red =1.00 ± 0.05 exposures: 1.02(4) ks 1.52(7) ks 6.0 5.5 5.0 19961997 1998 1999 2000 2001 2002 2003 2004 2005

Pulsed Rate & Flux Evolution rates less constrained, still overall declining F 4 10 kev : no trend F 10 20 kev : decline? (pulsed flux harder) 1996/1997 2004/2005 flux comparison: 3 5% decline Average General Parameters χ 2 red =1.00 ± 0.05 exposures: 1.02(4) ks 1.52(7) ks 4 10 kev Flux [10 11 erg s 1 cm 2 ] 7 6 5 4 3 2 1 JD 2450000 1000 2000 3000 0 19961997 1998 1999 2000 2001 2002 2003 2004 2005

Pulsed Rate & Flux Evolution rates less constrained, still overall declining F 4 10 kev : no trend F 10 20 kev : decline? (pulsed flux harder) 1996/1997 2004/2005 flux comparison: 3 5% decline Average General Parameters χ 2 red =1.00 ± 0.05 exposures: 1.02(4) ks 1.52(7) ks 10 20 kev Flux [10 11 erg s 1 cm 2 ] 7 6 5 4 3 2 1 JD 2450000 1000 2000 3000 0 19961997 1998 1999 2000 2001 2002 2003 2004 2005

Pulsed Component N H & Γ Comparison to phase-averaged average N H : (2 3) 10 22 cm 2 (mostly consist. with 0) harder, Gaussian distribution: Γ=1.36, σ Γ =0.11 Consistent with previous time-averaged results: Kawai et al., 93: N H, Γ 1.30(5) Γ 2.5 2.0 1.5 1.0 0.5 JD 2450000 1000 2000 3000 phase averaged Γ Rots et al., 98: N H, Γ 1.35(1) 0.0 19961997 1998 1999 2000 2001 2002 2003 2004 2005

Pulsed Component N H & Γ Comparison to phase-averaged 30 25 average N H : (2 3) 10 22 cm 2 (mostly consist. with 0) harder, Gaussian distribution: Γ=1.36, σ Γ =0.11 Consistent with previous time-averaged results: Kawai et al., 93: N H, Γ 1.30(5) Rots et al., 98: N H, Γ 1.35(1) Number of Observations 20 15 10 5 0 1.0 1.2 1.4 1.6 1.8 2.0 Γ

Epoch-Averaged Pulse Profiles 25 Epoch 3 Epoch 4 Epoch 5 81.2 ks 37.6 ks 224.6 ks 20 Next Step phase-resolved spectroscopy for Φ 0.03 bins highest resolution so far (?) Count Rate [cps] 15 10 Epoch 3 5 2.8 37.0 kev PCU 2 Top Layer 0 0.0 0.5 1.0 1.5 2.0 Pulse Phase

Epoch-Averaged Pulse Profiles 25 Epoch 3 Epoch 4 Epoch 5 81.2 ks 37.6 ks 224.6 ks 20 Next Step phase-resolved spectroscopy for Φ 0.03 bins highest resolution so far (?) Count Rate [cps] 15 10 Epoch 4 5 3.3 43.1 kev PCU 2 Top Layer 0 0.0 0.5 1.0 1.5 2.0 Pulse Phase

Epoch-Averaged Pulse Profiles 25 Epoch 3 Epoch 4 Epoch 5 81.2 ks 37.6 ks 224.6 ks 20 Next Step phase-resolved spectroscopy for Φ 0.03 bins highest resolution so far (?) Count Rate [cps] 15 10 Epoch 5 5 3.2 42.7 kev PCU 2 Top Layer 0 0.0 0.5 1.0 1.5 2.0 Pulse Phase

To Do revise PCA+HEXTE epoch averaged & phase-averaged spectra create HEXTE epoch averaged pulse profiles check energy dependence of the pulse profiles model PCA+HEXTE epoch averaged & phase-resolved spectra are the (calibration) trends F, Γ, N H also visible in: other PCUs individually? other 0.01 Crab sources?