Consider a system of n ODEs. parameter t, periodic with period T, Let Φ t to be the fundamental matrix of this system, satisfying the following:

Similar documents
16. GAUGE THEORY AND THE CREATION OF PHOTONS

Quantum Physics 2: Homework #6

Green s function, wavefunction and Wigner function of the MIC-Kepler problem

The Quantum Heisenberg Ferromagnet

Classical-field description of the quantum effects in the light-atom interaction

The interaction of light and matter

Floquet formulation for the investigation of multiphoton quantum interference in a superconducting qubit driven by a strong field

arxiv: v1 [quant-ph] 29 Mar 2014

Typicality paradigm in Quantum Statistical Thermodynamics Barbara Fresch, Giorgio Moro Dipartimento Scienze Chimiche Università di Padova

An inverse scattering problem for short-range systems in a time-periodic electric field. François Nicoleau

Chapter 29. Quantum Chaos

Perturbation Theory. Andreas Wacker Mathematical Physics Lund University

Plan of the lectures

Non-Markovian Quantum Dynamics of Open Systems: Foundations and Perspectives

Time-dependent density functional theory

Control of quantum two-level systems

10.6 Propagating quantum microwaves

Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle

Lindblad Equation for Harmonic Oscillator: Uncertainty Relation Depending on Temperature

( r) = 1 Z. e Zr/a 0. + n +1δ n', n+1 ). dt ' e i ( ε n ε i )t'/! a n ( t) = n ψ t = 1 i! e iε n t/! n' x n = Physics 624, Quantum II -- Exam 1

An Inverse Problem for the Matrix Schrödinger Equation

5.74 Introductory Quantum Mechanics II

(a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron, but neglecting spin-orbit interactions.

Numerical Simulation of Spin Dynamics

The Density Matrix for the Ground State of 1-d Impenetrable Bosons in a Harmonic Trap

Classical and quantum simulation of dissipative quantum many-body systems

Geometric Aspects of Quantum Condensed Matter

Generalized Nyquist theorem

LECTURE III Asymmetric Simple Exclusion Process: Bethe Ansatz Approach to the Kolmogorov Equations. Craig A. Tracy UC Davis

Jyrki Piilo NON-MARKOVIAN OPEN QUANTUM SYSTEMS. Turku Centre for Quantum Physics Non-Markovian Processes and Complex Systems Group

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets!

1 Math 241A-B Homework Problem List for F2015 and W2016

Radiating Dipoles in Quantum Mechanics

Internal consistency of fault-tolerant quantum error correction in light of rigorous derivations of the quantum Markovian limit

Quantum Systems Measurement through Product Hamiltonians

Chapter 2 Heisenberg s Matrix Mechanics

MP 472 Quantum Information and Computation

Spin-Boson Model. A simple Open Quantum System. M. Miller F. Tschirsich. Quantum Mechanics on Macroscopic Scales Theory of Condensed Matter July 2012

Estimation of Variance and Skewness of Non-Gaussian Zero mean Color Noise from Measurements of the Atomic Transition Probabilities

B2.III Revision notes: quantum physics

Quantum Molecular Dynamics Basics

Chemistry 532 Practice Final Exam Fall 2012 Solutions

22.51 Quantum Theory of Radiation Interactions

Applications of the Stroboscopic Tomography to Selected 2-Level Decoherence Models

Models for Time-Dependent Phenomena

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar

Diagonal Representation of Density Matrix Using q-coherent States

Microlocal analysis and inverse problems Lecture 3 : Carleman estimates

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT

LINEAR RESPONSE THEORY

The Postulates of Quantum Mechanics

11 Perturbation Theory

Mean-Field Limits for Large Particle Systems Lecture 2: From Schrödinger to Hartree

8 Quantized Interaction of Light and Matter

Interplay of micromotion and interactions

Solution Set 3. Hand out : i d dt. Ψ(t) = Ĥ Ψ(t) + and

Lecture 6 Photons, electrons and other quanta. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Atkins & de Paula: Atkins Physical Chemistry 9e Checklist of key ideas. Chapter 7: Quantum Theory: Introduction and Principles

Thermalization time bounds for Pauli stabilizer Hamiltonians

Electromagnetic waves in magnetized plasma The dispersion relation

Classical-quantum Correspondence and Wave Packet Solutions of the Dirac Equation in a Curved Spacetime

Control of quantum two-level systems

a = ( a σ )( b σ ) = a b + iσ ( a b) mω 2! x + i 1 2! x i 1 2m!ω p, a = mω 2m!ω p Physics 624, Quantum II -- Final Exam

Evolution problems involving the fractional Laplace operator: HUM control and Fourier analysis

Quantum Computing Lecture 2. Review of Linear Algebra

Spontaneous Emission and the Vacuum State of EM Radiation. Miriam Klopotek 10 December 2007

Chapter 2 The Group U(1) and its Representations

CHE3935. Lecture 2. Introduction to Quantum Mechanics

Hopping transport in disordered solids

The Theory of the Photon Planck, Einstein the origins of quantum theory Dirac the first quantum field theory The equations of electromagnetism in

Harmonic Oscillator. Robert B. Griffiths Version of 5 December Notation 1. 3 Position and Momentum Representations of Number Eigenstates 2

ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ αβγδεζηθικλμνξοπρςστυφχψω +<=>± ħ

Introduction to Quantum Spin Systems

Quantum Mechanics C (130C) Winter 2014 Assignment 7

Two and Three-Dimensional Systems

Joint Entrance Examination for Postgraduate Courses in Physics EUF

Symmetry of the Dielectric Tensor

The Klein-Gordon Equation Meets the Cauchy Horizon

Entanglement of indistinguishable particles

The integrating factor method (Sect. 1.1)

Einstein-Hilbert action on Connes-Landi noncommutative manifolds

Non-Markovian stochastic Schrödinger equation

Inequivalent bundle representations for the Noncommutative Torus

Positive Hamiltonians can give purely exponential decay

10. Zwanzig-Mori Formalism

Thermalization in Quantum Systems

Phase Synchronization

2 Resolvents and Green s Functions

Fractional exclusion statistics: A generalised Pauli principle

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension

Floquet Topological Insulator:

Surface Code Threshold in the Presence of Correlated Errors

Quantum control of dissipative systems. 1 Density operators and mixed quantum states

2.4.8 Heisenberg Algebra, Fock Space and Harmonic Oscillator

4.3 Classical model at low temperature: an example Continuum limit and path integral The two-point function: perturbative

Path Integral for Spin

arxiv: v1 [quant-ph] 3 Nov 2009

1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q.

Trapped ion spin-boson quantum simulators: Non-equilibrium physics and thermalization. Diego Porras

Transcription:

Consider a system of n ODEs d ψ t = A t ψ t, dt ψ: R M n 1 C where A: R M n n C is a continuous, (n n) matrix-valued function of real parameter t, periodic with period T, t R k Z A t + kt = A t. Let Φ t to be the fundamental matrix of this system, satisfying the following: d Φ t = A t Φ t, det Φ t 0, ψ t = Φ t c dt Wrońskian Any general solution (c = const.) of system of ODEs

Proposition 1. a) There exists some t 0 R such that ψ t = E t, t 0 ψ t 0 where E t, t 0 Φ t Φ t 1 0 is called the resolvent matrix or state transition matrix. b) Resolvent matrix is a fundamental matrix itself, i.e. it satisfies the same differential equation d dt E t, t 0 = A t E t, t 0. Proposition 2. Resolvent matrix has some basic properties: n a) Divisibility: E t, t 0 = k=1 E t k+1, t k for any partition t k, t k+1 of t 0, t, iff t 0, t = n k=1 t k, t k+1, and t k, t k+1 t k, t k +1 = for k k b) E t, t 0 1 = E t 0, t c) E t 0, t 0 = id Mn C.

Theorem 1 (Floquet s). If Φ t is a fundamental matrix of a system of n ODEs and A t is a T-periodic function of codomain in the M n C linear space of n-by-n matrices, then a matrix Φ t + T is also a fundamental matrix of this system. Remark: If Φ t + T such that is a fundamental matrix then there exist two constant matrices C and B Φ t + T = Φ t C, C = e BT. Assume a spectral decomposition B = k μ k φ k,. φ k : e BT = λ k φ k,. φ k, λ k = e μkt. k μ k : Floquet exponents

Let ψ t to be a solution of a system of ODEs, i.e. let it fulfill d ψ t = A t ψ t. dt Define ψ k t Φ t φ k. Then it follows from Floquet s theorem that Φ t + T φ k = Φ t e BT φ k = e μ kt ψ k t = ψ k t + T Putting φ k t = ψ k t e μ kt one gets a set of base solutions of system of ODEs, ψ k t = e μ kt φ k t, φ k t + T = φ k t. T-periodic

Considering ψ k t 0 + T one obtains an eigenequation of Φ t 0 + T Φ 1 t 0 : ψ k t 0 + T = Φ t 0 + T Φ 1 t 0 φ k t 0 = e μ kt φ k t 0 E t 0 + T, t 0 Floquet s operator Floquet s basis F t 0 E t 0 + T, t 0 {φ k φ k t 0 }

A t = H t periodic, self-adjoint Hamiltonian of quantum-mechanical system ODEs describe an evolution of wavefunction (state) ψ t Schrödinger equation: d dt ψ t = i H t ψ t, H t + T = H t. ħ Resolvent matrix unitary propagator U t, t 0 : E t, t 0 = U t, t 0 = T exp i ħ t0 t H t dt, du t, t 0 dt = i ħ H t U t, t 0. Floquet s operator F t 0 = U t 0 + T, t 0 = e it ħ H : F t 0 φ k t 0 = e it ħ ε k φ k t 0, φ k φ k t 0 Floquet basis, ε k set of Bohr-Floquet quasienergies.

Floquet Hamiltonian: H F r, t = H r, t iħ d dt, H Fψ r, t = 0 Main analysis based on Schrödinger equation for states φ k r, t = φ k r, t + T : Solutions are not unique: H F φ k r, t = ε k φ k r, t φ kn r, t φ k r, t e inωt H F φ kn r, t = ε k + nħω φ k r, t Higher Floquet modes ε kn They generate the same physical state ψ k r, t

Extended Hilbert space H H = R T (example: particle in free space) R = L 2 R 3, dv = span f k : R 3 C Space of square-integrable functions defined over R 3. f k, f k = n f k R 3 f k r f k r dv r = δ kk f k = id R T = L 2 T T 1, dt = span χ n t e inωt Space of square-integrable functions with period T = 2π/Ω, defined over a circle T 1. χ n, χ n = 1 T T 1χ n t χ n t dt = δ nn q χ q χ q = id T R T = span e kn f k χ n, e kn r, t = f k r e inωt kn e kn e kn = id R T, e kn e k n = δ kk δ nn, e kn R T

Structure of Hamiltonian: H r, t = H 0 r + V r, t, V r, t + T = V r, t. Idea: We are applying a transformation of variables: θ = Ωt, θ = Ω H r, θ, θ = H 0 r + V r, θ + θp θ Canonical quantization: θ θ, p θ iħ θ, θ, p θ = iħ H r, θ, θ = H 0 r + V r, θ iħω θ, H r, θ, θ φ kn r, θ = ε kn φ kn r, θ

H r, θ, θ φ kn r, θ = ε kn φ kn r, θ, ε kn = ε k + nħω φ kn R T, T = L 2 T 1 2π, 1 Ω dθ Square-integrable functions of period 2π over a unit circle T 1 = θ = Ωt How to include multi-mode setting? Ansatz: add a sufficient number of new θ i variables, such that H r, θ, θ = H 0 r + V r, θ 1,, θ N iħ N j=1 Ω j θ j, Ω i = 2π T i

New Schrödinger equation: H r, θ 1, θ 2,, θ N φ kn1 n 2 n N r, θ 1, θ 2,, θ N = ε kn1 n 2 n N φ kn1 n 2 n N r, θ 1, θ 2,, θ N Periodicity of φ functions: φ kn1 n 2 n N r, θ 1 + 2π, θ 2 + 2π,, θ N + 2π = φ kn1 n 2 n N r, θ 1, θ 2,, θ N Extension of Hilbert space of φ functions: φ kn1 n 2 n N R T 1 T 2 T N, 2 T j = L 2π T 1, 1 dθ Ω j j N j=1 2 L 2π T 1, 1 dθ Ω j L 2 T 1 T 1 T 1, dτ = L 2 T N, dτ, dτ = j N j=1 dθj Ω j Product measure

Qpen problem: How to incorporate the multi-mode Floquet theory into Open Quantum Systems realm? Possible answer for N = 2 (2-dimensional torus) (H. R. Jauslin and J. L. Lebowitz, Chaos 1, 114 (1991)) Generalized Floquet operator F θ 1 : R T 1 R T 1, F θ 1 = X T 2 U T 2, 0, X T 2 φ θ 1 0 = φ θ 1 0 T 2.

Theorem 2. If φ R T 1 is an eigenfunction of Floquet operator, Fφ = e iλt 2φ, then the function ψ R T 1 T 2 defined ψ θ 1, θ 2 = e iθ 2λ U 0, θ 2 φ θ 1 θ 2 is an eigenfunction of H r, θ 1, θ 2, θ 1, θ 2 with eigenvalue (quasienergy) λ. Proof in: H. R. Jauslin and J. L. Lebowitz, Chaos 1, 114 (1991) Problem: Spectrum of H may become very complex (p.p., a.c. or s.c.), even in finite dimensional case.

H = H S H R1 H RN N N H = H S + H Rj + j=1 j=1 V j R 1, H R1 R N, H RN V N V 1 R 2, H R2 H S H S I R1 I RN H Rj I S H Rj I RN S, H S V 2 V 4 V 3 V j = λ j S j,α R j,α α R 4, H R4 R 3, H R3 S j,α : H S H S, R j,α : H Rj H Rj

V j t = U t V j U t = λ j k S j,k t R j,k t, U t = Τ exp i ħ 0 t H S t dt Floquet Theorem Fφ k = e i ħ εkt ε k quasienergies φ k φ k Floquet basis Bohr frequencies ω = 1 ħ ε k ε l ω + qω, q Z Bohr Floquet quasifrequencies Fourier transform of S j,k t dρ t Lρ t = dt = j,k ω q Z G k j ω + qω S j,k q, ω ρ t S j,k q, ω 1 2 S j,k q, ω S j,k q, ω, ρ t, G k j ω = e iωt R j,k t R j,k dt, G ω = e ħω k BT G ω KMS condition (in equilibrium)

Dynamical map reconstructed from its interaction picture: Λ t,t0 = Τ exp t L t dt U t, t 0 e t t 0 L t 0 U t, t 0 one-parameter unitary map defined on C*-algebra of operators A, U: A 0, A defined as U t A = U t AU t. ρ t = Λ t ρ 0 = U t e tl ρ 0 U t ρ t in Schrödinger picture ρ t in interaction picture

Bosonic heat bath (EM field) F + H ph = 1 N=0 N! H ph N + R em, H em V e V e = σ 1 a f + a f Two-level system H S C 2 ω 0 laser, Ω Dephasing bath (molecular gas), H g L 2 R 3, dv r R g, H g V g V g = σ 3 F g F g : H g H g 9 Floquet quasifrequencies: 0, ±Ω R, ±Ω, ± Ω Ω R, ± Ω + Ω R Interaction with molecular gas Interaction with electromagnetic field

Markovian master equation in interaction picture: d dt ρ t = L bosonic + L dephasing ρ t dρ 11 t dt dρ 22 t dt = α + e Ω Ω R T e δ + δ + ρ 11 t + e Ω R T d α + δ + e Ω+Ω R T e δ + ρ 22 t = dρ 11 t dt, dρ 21 t dt = γρ 21 t, dρ 12 t dt = γρ 12 t. γ = 1 2 α 0 + α 1 + e Ω R T d + δ 0 1 + e Ω T e + δ 1 + e Ω Ω R T e + δ + 1 + e Ω+Ω R T e δ ± = Ω R ± Δ 2Ω R 2 G e Ω ± Ω R, α 0 = 2Δ Ω R 2 G g 0, α = 2g Ω R 2 G g Ω R,

1. U. Vogl, M. Weitz: Laser cooling by collisional redistribution of radiation, Nature 461, 70-73 (3 Sep. 2009). 2. R. Alicki, K. Lendi: Quantum Dynamical Semigroups and Applications, Lecture Notes in Physics; Springer 2006. 3. R. Alicki, D. Gelbwaser-Klimovsky, G. Kurizki: Periodically driven quantum open systems: Tutorial, arxiv:1205.4552v1. 4. K. Szczygielski, D. Gelbwaser-Klimovsky, R. Alicki: Markovian master equation and thermodynamics of a two-level system in a strong laser field, Phys. Rev. E 87, 012120 (2013) 5. D. Gelbwaser-Klimovsky, K. Szczygielski, R. Alicki: Laser cooling by collisional redistribution of radiation: Theoretical model (in preparation) 6. R. Alicki, D. A. Lidar, P. Zanardi: Internal consistency of fault-tolerant quantum error correction in light of rigorous derivations of the quantum Markovian limit Phys. Rev. A 73, 052311 (2006)