Dirac gauginos, R symmetry and the 125 GeV Higgs

Similar documents
Andrey Katz C. Brust, AK, S. Lawrence, and R. Sundrum; arxiv:

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

Natural SUSY and the LHC

Split SUSY at LHC and a 100 TeV collider

Background photo: CMS detector in access (i.e., broken-symmetry) mode. David Stuart, UCSB 1

This work is supported in part by the

A light singlet at the LHC and DM

The Physics of Heavy Z-prime Gauge Bosons

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

Search for physics beyond the Standard Model at LEP 2

Searches for Natural SUSY with RPV. Andrey Katz. C. Brust, AK, R. Sundrum, Z. Han, AK, M. Son, B. Tweedie, 1210.XXXX. Harvard University

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Lecture 18 - Beyond the Standard Model

(Non-minimal) SUSY Phenomenology of the minimal R-symmetric SUSY model

Introduction to Supersymmetry

Supersymmetry: A status report

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Searches for Supersymmetry at ATLAS

Supersoft Supersymmetry at the LHC. Mainz, Jan 22 nd, 2013

sin(2θ ) t 1 χ o o o

How high could SUSY go?

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis

SUSY Phenomenology & Experimental searches

Status of Supersymmetric Models

Beyond the SM: SUSY. Marina Cobal University of Udine

Searches for Beyond SM Physics with ATLAS and CMS

SUSY searches at LHC and HL-LHC perspectives

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Introduction: SUSY with 5 fb-1 at the LHC. Maxim Perelstein, LEPP/Cornell University May 2, 2012, BNL

Light generations partners at the LHC

Supersymmetry Basics. J. Hewett SSI J. Hewett

Exceptional Supersymmetry. at the Large Hadron Collider

Ricerca di nuova fisica a HERA

Dynamical Solution to the µ/b µ Problem in Gauge Mediated Supersymmetry Breaking

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

LHC Phenomenology of SUSY multi-step GUTs

Supersymmetry, Baryon Number Violation and a Hidden Higgs. David E Kaplan Johns Hopkins University

Stop NLSPs. David Shih Rutgers University. Based on: Kats & DS ( ) Kats, Meade, Reece & DS ( )

Baryogenesis and Particle Antiparticle Oscillations

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

Composite gluino at the LHC

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

SUSY Phenomenology & Experimental searches

MSSM4G: MOTIVATIONS AND ALLOWED REGIONS

Fermion Electric Dipole Moments in R-parity violating Supersymmetry.

Search for R-parity violating Supersymmetry. III Phys. Inst. A, RWTH Aachen

arxiv:hep-ph/ v1 17 Apr 2000

Split SUSY and the LHC

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

Beyond the MSSM (BMSSM)

Higgs Signals and Implications for MSSM

SEARCHES FOR THE NEUTRAL HIGGS BOSONS OF THE MSSM

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

arxiv: v3 [hep-ph] 6 Oct 2014

Supersymmetric Origin of Matter (both the bright and the dark)

The Standard Model and Beyond

EDMs and flavor violation in SUSY models

The Constrained E 6 SSM

Search for New Physics in the Multijet and Missing Transverse Momentum Final State at CMS

Lepton-flavor violation in tau-lepton decay and the related topics

Higgs boson(s) in the NMSSM

Supersymmetry and the LHC: An Introduction

mh = 125 GeV and SUSY naturalness

BSM Higgs Searches at ATLAS

Non-Abelian SU(2) H and Two-Higgs Doublets

Supersymmetry Breaking

Discovery potential for SUGRA/SUSY at CMS

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Crosschecks for Unification

arxiv: v2 [hep-ph] 9 Jul 2013

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

A model of the basic interactions between elementary particles is defined by the following three ingredients:

(Non-degenerate) light generation compositeness in composite Higgs models

Early SUSY Searches in Events with Leptons with the ATLAS-Detector

Supersymmetry and the LHC: An Introduction

SUSY at Accelerators (other than the LHC)

Outline: Introduction Search for new Physics Model driven Signature based General searches. Search for new Physics at CDF

Minimal SUSY SU(5) GUT in High- scale SUSY

SUSY at Accelerators (other than the LHC)

Lepton-flavor violation in tau-lepton decay and the related topics

Supersymmetry at the LHC

New Physics from the String Vacuum

Neutrinos and Fundamental Symmetries: L, CP, and CP T

SUSY Phenomenology a

Probing SUSY Dark Matter at the LHC

SUSY w/o the LHC: Neutralino & Gravitino LSPs

Split Supersymmetry A Model Building Approach

arxiv: v1 [hep-ph] 31 Oct 2011

Little Higgs Models Theory & Phenomenology

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia

SUPERSYMETRY FOR ASTROPHYSICISTS

Yasunori Nomura. UC Berkeley; LBNL. hep-ph/ [PLB] hep-ph/ [PLB] hep-ph/ [PRD] Based on work with Ryuichiro Kitano (SLAC)

Status of low energy SUSY models confronted with the 125 GeV Higgs data

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ.

SUSY & Non SM Higgs Searches

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

New Physics at the (HL)LHC and LHeC

Transcription:

Claudia Frugiuele Dirac gauginos, R symmetry and the 125 GeV Higgs with E.Bertuzzo, T. Grègoire and E. Ponton hep ph 1402.5432 GOAL 8, 14/08/2014

OUTLINE Dirac gauginos and natural SUSY R symmetric models How to raise the Higgs mass up to 125 GeV in this framework Conclusions

Waiting for LHC13...and coping with the lack of discoveries Rethinking the concept of naturalness More exotic scenarios to hide new physics from LHC searches If the EW scale is somewhat tuned, what is the next scale? Minisplit, high scale SUSY..

Waiting for LHC13...and coping with the lack of discoveries Rethinking the concept of naturalness focus of my talk More exotic scenarios to hide new physics from LHC searches If the EW scale is somewhat tuned, what is the next scale? Minisplit, high scale SUSY..

SUSY after the LHC first run RPV slepton EWK gauginos sbottom stop squark gluino production 0 g qq χ 0 g bb χ 0 g tt χ 0 g t( t t χ ) ± 0 g qq( χ Wχ ) ± 0 g b( b t( χ Wχ )) 0 q q χ 0 t t χ + 0 t b( χ Wχ ) 0 0 t t b χ ( χ H G) 0 t ( t t χ ) Z 2 1 01 t ( t t χ ) H 2 1 1 b 0 b χ 0 χ 0 χ b tw b bz 0 ± 0 0 χ χ lll ν χ χ + 2 0 - + - 0 χ χ l l ν ν χ χ 0 0 0 0 χ χ Z Z χ χ 2 02 ± 0 0 χ χ W Z χ χ 2 0 0 0 0 χ χ H Z χ χ 2 2 ± 0 0 0 χ χ H W χ χ 0 2 ± 0 0 χ χ llτ ν χ χ 2 0 ± 0 0 χ χ τττ ν χ χ 2 0 l l χ g qllν λ 122 g qllν λ g qllν λ 123 233 g qbtµ λ ' 231 g qbtµ λ ' g qqb λ '' 233 113/223 g qqq λ '' g tbs λ '' 112 323 g qqqq λ '' q qllν λ 112 122 q qllν λ 123 q qllν λ 233 q qbtµ λ ' 231 q qbtµ λ ' 233 q qqqq λ '' R 112 t µ e ν t λ R 122 t µ τν t λ R 123 t µ τν t λ R 233 t tbtµ λ ' R 233 Summary of CMS SUSY Results* in SMS framework m(mother)-m(lsp)=200 GeV SUS 13-019 L=19.5 /fb SUS-14-011 SUS-13-019 L=19.3 19.5 /fb SUS-13-007 SUS-13-013 L=19.4 19.5 /fb SUS-13-008 SUS-13-013 L=19.5 /fb SUS-13-013 L=19.5 /fb SUS-13-008 SUS-13-013 L=19.5 /fb SUS-13-019 L=19.5 /fb SUS-14-011 L=19.5 /fb SUS-13-011 L=19.5 /fb SUS-13-014 L=19.5 /fb SUS-13-024 SUS-13-004 L=19.5 /fb SUS-13-024 SUS-13-004 L=19.5 /fb SUS-13-018 L=19.4 /fb SUS-13-008 SUS-13-013 L=19.5 /fb SUS-13-008 L=19.5 /fb SUS-13-006 L=19.5 /fb SUS-13-006 L=19.5 /fb SUS-14-002 L=19.5 /fb SUS-13-006 L=19.5 /fb SUS-14-002 L=19.5 /fb SUS-14-002 L=19.5 /fb SUS-13-006 L=19.5 /fb SUS-13-006 L=19.5 /fb SUS-13-006 L=19.5 /fb SUS-12-027 L=9.2 /fb SUS-12-027 L=9.2 /fb SUS-12-027 L=9.2 /fb SUS-12-027 L=9.2 /fb SUS-12-027 L=9.2 /fb EXO-12-049 L=19.5 /fb EXO-12-049 L=19.5 /fb SUS-13-013 L=19.5 /fb SUS-12-027 L=9.2 /fb SUS-12-027 L=9.2 /fb SUS-12-027 L=9.2 /fb SUS-12-027 L=9.2 /fb SUS-12-027 L=9.2 /fb SUS-12-027 L=9.2 /fb SUS-12-027 L=9.2 /fb SUS-13-003 L=19.5 9.2 /fb SUS-12-027 L=9.2 /fb SUS-13-003 L=19.5 9.2 /fb SUS-13-003 L=19.5 /fb x = 0.25 x = 0.50 x = 0.75 x = 0.95 x = 0.05 x = 0.50 x = 0.95 x = 0.05 x = 0.50 x = 0.20 x = 0.50 ICHEP 2014 m(lsp)=0 GeV CMS Preliminary For decays with intermediate mass, = x m +(1-x) m m intermediate 0 200 400 600 800 1000 1200 1400 1600 1800 Mass scales [GeV] *Observed limits, theory uncertainties not included Only a selection of available mass limits Probe *up to* the quoted mass limit mother lsp

SUSY after the LHC first run RPV slepton EWK gauginos sbottom stop squark gluino production 0 g qq χ 0 g bb χ 0 g tt χ 0 g t( t t χ ) ± 0 g qq( χ Wχ ) ± 0 g b( b t( χ Wχ )) 0 q q χ 0 t t χ + 0 t b( χ Wχ ) 0 0 t t b χ ( χ H G) 0 t ( t t χ ) Z 2 1 01 t ( t t χ ) H 2 1 1 b 0 b χ 0 χ 0 χ b tw b bz 0 ± 0 0 χ χ lll ν χ χ + 2 0 - + - 0 χ χ l l ν ν χ χ 0 0 0 0 χ χ Z Z χ χ 2 02 ± 0 0 χ χ W Z χ χ 2 0 0 0 0 χ χ H Z χ χ 2 2 ± 0 0 0 χ χ H W χ χ 0 2 ± 0 0 χ χ llτ ν χ χ 2 0 ± 0 0 χ χ τττ ν χ χ 2 0 l l χ g qllν λ 122 g qllν λ g qllν λ 123 233 g qbtµ λ ' 231 g qbtµ λ ' g qqb λ '' 233 113/223 g qqq λ '' g tbs λ '' 112 323 g qqqq λ '' q qllν λ 112 122 q qllν λ 123 q qllν λ 233 q qbtµ λ ' 231 q qbtµ λ ' 233 q qqqq λ '' R 112 t µ e ν t λ R 122 t µ τν t λ R 123 t µ τν t λ R 233 t tbtµ λ ' R 233 Summary of CMS SUSY Results* in SMS framework m(mother)-m(lsp)=200 GeV SUS 13-019 L=19.5 /fb SUS-14-011 SUS-13-019 L=19.3 19.5 /fb SUS-13-007 SUS-13-013 L=19.4 19.5 /fb SUS-13-008 SUS-13-013 L=19.5 /fb SUS-13-013 L=19.5 /fb SUS-13-008 SUS-13-013 L=19.5 /fb SUS-13-019 L=19.5 /fb SUS-14-011 L=19.5 /fb SUS-13-011 L=19.5 /fb SUS-13-014 L=19.5 /fb SUS-13-024 SUS-13-004 L=19.5 /fb SUS-13-024 SUS-13-004 L=19.5 /fb SUS-13-018 L=19.4 /fb SUS-13-008 SUS-13-013 L=19.5 /fb SUS-13-008 L=19.5 /fb SUS-13-006 L=19.5 /fb SUS-13-006 L=19.5 /fb SUS-14-002 L=19.5 /fb SUS-13-006 L=19.5 /fb SUS-14-002 L=19.5 /fb SUS-14-002 L=19.5 /fb SUS-13-006 L=19.5 /fb SUS-13-006 L=19.5 /fb SUS-13-006 L=19.5 /fb x = 0.25 x = 0.50 x = 0.75 x = 0.95 x = 0.05 x = 0.50 x = 0.95 x = 0.05 x = 0.50 SUS-12-027 L=9.2 /fb SUS-12-027 L=9.2 /fb SUS-12-027 L=9.2 /fb SUS-12-027 L=9.2 /fb SUS-12-027 L=9.2 /fb EXO-12-049 L=19.5 /fb EXO-12-049 L=19.5 /fb SUS-13-013 L=19.5 /fb SUS-12-027 L=9.2 /fb SUS-12-027 L=9.2 /fb SUS-12-027 L=9.2 /fb SUS-12-027 L=9.2 /fb SUS-12-027 L=9.2 /fb Is there still room for natural SUSY? SUS-12-027 L=9.2 /fb SUS-12-027 L=9.2 /fb SUS-13-003 L=19.5 9.2 /fb SUS-12-027 L=9.2 /fb SUS-13-003 L=19.5 9.2 /fb SUS-13-003 L=19.5 /fb x = 0.20 x = 0.50 ICHEP 2014 m(lsp)=0 GeV CMS Preliminary For decays with intermediate mass, = x m +(1-x) m m intermediate 0 200 400 600 800 1000 1200 1400 1600 1800 Mass scales [GeV] *Observed limits, theory uncertainties not included Only a selection of available mass limits Probe *up to* the quoted mass limit mother lsp

Essential for naturalness SubTeV gluinos, stops, (left) sbottom and Higgsino required stronger bounds on first and second generation

Stop bounds LSP mass [GeV] 700 600 500 t-t production, CMS Preliminary s = 8 TeV ICHEP 2014-1 SUS-13-011 1-lep (MVA) 19.5 fb t t χ 0 1 / c Observed Expected -1 SUS-14-011 0-lep + 1-lep + 2-lep (Razor) 19.3 fb χ 0 1 q q m t < 600 3 log 5 GeV 400 SUS-14-011 0-lep (Razor) + 1-lep (MVA) 19.3 fb -1 0 SUS-13-009 (monojet stop) 19.7 fb ( t c χ ) -1 SUS-13-015 (hadronic stop) 19.4 fb 1-1 300 200 m t - m χ 0 m t = m W 1 1 - m χ = m 0 t 750 GeV bound! 100 0 100 200 300 400 500 600 700 800 stop mass [GeV] few loopholes, but we are getting there!

Gluino bounds

Gluino bounds M g < 900 sin log TeV ( 1 20 ) 1/2 SubTeV gluinos almost ruled out!

...however there is a bias in these ex: t! t 0 1 searches t! b ± 1 these are RPC conserving final states! Can we hide SUSY with R-parity violating?

Proton stability Leptonic RPV ijkl i L j e c k + 0 ijk L iq j d c k leptons /or neutrinos, ex: t! lj clean signatures! baryonic RPV 00 ijk uc i dc j dc k or no MET or leptons t! jj baryonic RPV can hide the stop well!

Still strong bounds on gluinos! g 6q) [pb] σ(pp g 4 10 3 10 2 10 10 1 Obs 95% CL Limit Exp Limit ±1 σ Exp Limit ±2 σ Exp Limit g g Cross-Section (NLO+NLL) BR(t)=0%, BR(b)=0%, BR(c)=0% -1 L dt 20.3 fb, s = 8 TeV -1 10-2 10-3 10 ATLAS Preliminary 600 800 1000 1200 m g [GeV]

Still strong bounds on gluinos! g 6q) [pb] σ(pp g 4 10 3 10 2 10 10 1 Obs 95% CL Limit Exp Limit ±1 σ Exp Limit ±2 σ Exp Limit g g Cross-Section (NLO+NLL) BR(t)=0%, BR(b)=0%, BR(c)=0% -1 L dt 20.3 fb, s = 8 TeV We can not significantly relax LHC bounds on gluinos, can we -1 10 relax the naturalness bound? -2 10-3 10 ATLAS Preliminary 600 800 1000 1200 m g [GeV]

Dirac gauginos New Adjoints superfields for each SM gauge group B W g Supersoft SUSY Breaking R d 2 M W 0 W i i W 0 D Fox,Nelson,Weiner, 2002 D term spurion

Supersofteness No log divergent contributions to the scalar masses scalar adjoint Few TeV Dirac gluinos are natural!

Smaller squarks cross section Majorana mass insertion no q q 0 production of same chirality squarks

Relaxed bounds on squarks kribs&martin 12 1st & 2nd generation bounds lowered, 800 GeV updated bounds kribs&raj 13

R symmetry: another reason to care about Dirac gauginos

U(1)R symmetry U(1) acts on superspace coordinates it acts differently on the bosonic and on the fermionic component of a superfield scalar component R chiral superfield R fermionic component R-1 vector superfield R=0 gauge boson R=0 gaugino R=1

The R symmetry forbids: Majorana gaugino masses Trilinear scalar interaction (no left right mixing) Standard mu term Larger flavor and CP violation compatible with experimental bounds Kribs, Poppitz,Weiner 07 It alleviates also the bounds on RPV CF, Grègoire, 2011 Biggio,Pomarol,Riva, 2012 CF, Grègoire, 2011

R symmetry & the SUSY flavor problem

F =2 gluino Majorana mass insertion F =1 mu term

EDM bounds EW Baryogenesis Fok,Kribs, Martin,Tsai (2012) µ! e no chirality flip from Majorana mass insertion or mu term suppressed by the Yukawa coupling

EDM bounds EW Baryogenesis Fok,Kribs, Martin,Tsai (2012) µ! e no chirality flip from Majorana mass insertion or mu term Does this have any consequences for LHC pheno? suppressed by the Yukawa coupling

Large flavor and CP violation at the LHC Squark flavor violation at the LHC Kribs, Martin, Roy, 2009 / Agrawal,CF 2013 Larger CP violation- same sign dilepton asymmetry (Ipek,McKeen,Nelson,2014)

Phenomenological consequences of a large flavor mixing R symmetry allows M 2 ij M 2 q 1 t! jlsp Relax bounds on stop mass Blanke, Giudice,Paradise, Perez,Zupan 2013 m t <m LSP + m t P.Agrawall&CF 2013 Open up a new region of the parameter space

Tevatron dedicated searches covered just the parameter space relevant for the MSSM CDF t! clsp is this a way to hide a light stop? region significant for us, but not for the MSSM

Recasting CMS razor CMS razor analysis sensitive to signatures from compressed spectra Delgado,Giudice,Isidori,Pierini, Strumia 2012

ATLAS search 20 fb 1

ATLAS search 20 fb 1 still the only region covered is the one allowed in the MSSM

Non standard R symmetries

Non standard R symmetries We can identify the R symmetry either with the lepton or the baryon number Gherghetta, Pomarol, 2002 CF,Grègoire, 2011 Sundrum et al 2011

Non standard R symmetries We can identify the R symmetry either with the lepton or the baryon number Gherghetta, Pomarol, 2002 CF,Grègoire, 2011 Sundrum et al 2011 RPV couplings in the superpotential ijkl i L j e c k + 0 ijk L iq j d c k if the R symmetry is the lepton number 00 ijk uc i dc j dc k if the R symmetry is the baryon number

Non standard R symmetries We can identify the R symmetry either with the lepton or the baryon number Gherghetta, Pomarol, 2002 CF,Grègoire, 2011 Sundrum et al 2011 RPV couplings in the superpotential ijkl i L j e c k + 0 ijk L iq j d c k if the R symmetry is the lepton number 00 ijk uc i dc j dc k proton if the R stability symmetry is the baryon number guaranteed

Lepton number as R symmetry Gherghetta, Pomarol, 2002 CF,Grègoire, 2011 Biggio,Pomarol,Riva,2012 SM particles: just the electron and its neutrino carry R charge SuperField U(1) R Q i 1 u c i 1 d c i 1 e c 2 L e 0 L e Ex: Qi R charge 1, fermion R charge 1-1=0 has R charge 0, fermion component 0-1=-1 SUSY partners carry R charge besides the electron scalar partners Squarks are then leptoquarks!

The electronic sneutrino does not carry R charge/lepton number a sneutrino VeV does not break lepton number No Majorana mass for the neutrino induced

The electronic sneutrino does not carry R charge/lepton number a sneutrino VeV does not break lepton number No Majorana mass for the neutrino induced Gaugino Majorana insertion required.

The electronic sneutrino does not carry R charge/lepton number a sneutrino VeV does not break lepton number No Majorana mass for the neutrino induced Gaugino Majorana insertion required. The sneutrino can be the down type Higgs (CF,Grègoire 2011) or even the only Higgs (Biggio,Pomarol, Riva2012)

Trilinear LRPV couplings are Yukawa couplings ijkl i L j e c k + 0 ijk L iq j d c k bl x br trilinear LRPV coupling a b x b c left right mixing a forbidden by the R symmetry In the R symmetric limit the neutrino remain massless no neutrino bounds on the trilinear couplings

0 Mixed topologies j CF, Grégoire,Pontòn,Kumar can compete with gauge or large Yukawa couplings indirect hint of g s R e L Dirac nature of gauginos g s R X 0+ 1 Z same topology for 3rd gen j ν e Different pheno than the MSSM with RPV

0 Mixed topologies j CF, Grégoire,Pontòn,Kumar can compete with gauge or large Yukawa couplings indirect hint of g s R e L Dirac nature of gauginos g s R X 0+ 1 Z same topology for 3rd gen j ν e Similar story for baryonic RPV Different pheno than the MSSM with RPV

R symmetry as baryon number relaxed bound from neutron neutron oscillation

Summarising.. the advantages Models with Dirac gauginos ameliorate the tension between naturalness and the LHC bounds on superpartners. Interesting new possibilities for model building and non standard phenomenology still to answer: how do we get 125 GeV Higgs in this scenario? Partial answer by Benakli, Goodsell &Staub, but for a non R symmetric Higgs sector

At first the situation does not look promising g 0 M BS(H 2 u H 2 d ) gm W T (H 2 u H 2 d ) Extra D terms Mixing with the triplet and singlet push down the Higgs mass Tree level mass is lower than the MSSM

Radiative corrections from the stops are also suppressed since the R symmetry forbids A terms

Radiative corrections from the stops are also suppressed since the R symmetry forbids A terms more tuned than the MSSM?

Radiative corrections from the stops are also suppressed since the R symmetry forbids A terms Is this with the the only stop this way scenario we is more have tuned to than the MSSM! raise the Higgs mass?

Higgs sector R symmetry violating Higgs sector: two Higgs doublet model. Tree level mass is lower than the MSSM. R preserving Higgs sector: 4 Higgs doublets model or sneutrino is one/ the Higgs b µ H u H d standard Higgs fields µ u H u R d + µ d H d R u two extra inert doublets to give mass to the Higgsino

Higgs sector R symmetry violating Higgs sector: two Higgs doublet model. Tree level mass is lower than the MSSM. R Enlarged preserving Higgs Higgs sector: sector: two 4 extra Higgs (inert) doublets doublets+ model singlet or sneutrino & triplet is adjoints. one/ the Can Higgs we raise the Higgs mass via this extra matter? b µ H u H d standard Higgs fields µ u H u R d + µ d H d R u two extra inert doublets to give mass to the Higgsino

Couplings with the adjoints If we break the R symmetry SH u H d S or T H u H d T extra quartic (H u H d ) 2 NMSSM-like enhancement Benakli,Goodsell,Staub 2012 in the R symmetric limit SH u R d S or T H u R d T R d is an inert doublet!

Couplings with the adjoints If we break the R symmetry SH u H d S or T H u H d T extra quartic (H u H d ) 2 NMSSM-like enhancement Benakli,Goodsell,Staub 2012 in the R symmetric limit SH u R d S or T H u R d T R d is an inert doublet! no extra quartic useful to raise the Higgs

Tree level mass in the R symmetric limit extra couplings allow to reach the MSSM tree level mass m 2 h u,t = v( p 2gM W +2 T ( S v s + T v T + µ)) large tanbeta natural limit to consider (m 2 h ) tree ' m 2 Z (m 2 hu,t )2 m 2 T R + 2 T v2 (m 2 hu,s )2 m 2 S R + 2 S v2 125 GeV via radiative corrections

Radiative corrections from extra matter V CW Higgs 1 4 apple 5 4 T 32 2 log m2 T M 2 W + 4 S 32 2 log m2 S M 2 B 2 T ( 2 T +2 2 S) 16 2 h 4 u, for large couplings comparable to the stop contribution V CW Higgs 1 4 h 3 16 2 y 2 t yt 2 m 2 Z 2v 2 + 3y4 t (16 2 ) 2 3 2 y2 t 32 3 (m t ) log 2 M 2 m 2 t log M 2 m 2 + i t h 4 u, These extra particle are colour singlets no large 2 loops negative contributions!

Fine tuning = max ai @ log m 2 h @a i m T. m S. m Q,ũ. 600 GeV m Rd. 600 GeV T 1000 GeV S 1000 GeV p 6 2 T +2 2 S q m h 3 125GeV log /1TeV q q m h 3 125GeV log /1TeV 5 q q m h 3 125GeV log /1TeV 5 q q m h 3 125GeV log /1TeV q 5 5 The inert doublet is the one which drives the fine tuning

Fine tuning = max ai @ log m 2 h @a i m T. m S. m Q,ũ. 600 GeV m Rd. 600 GeV T 1000 GeV S 1000 GeV p 6 2 T +2 2 S q m h 3 125GeV log /1TeV q q m h 3 125GeV log /1TeV 5 q q m h 3 125GeV log /1TeV 5 q q m h 3 125GeV log /1TeV q 5 5 Light scalars and large couplings necessary to The raise inert the Higgs doublet and minimise is the one the FT! which drives the fine tuning

Tension with EWPM Tree level contributions to T from the triplet vev 1400 1200 T 1 mt HGeVL 1000 800 600 v T < 3 GeV 400 200 200 400 600 800 1000 1200 1400 M D2 HGeVL adjoints and gauginos cannot be too light

Tension with EWPM Loop contribution from 4 T H u D µh u 2 2 fermions large coupling good for Higgs mass, dangerous for EWPM!

= 20TeV 125 GeV Higgs 2 - M 2 D M B T =B S = 1 2 I-m adj 2000 1800 50 m t = 300 GeV 1600 madj HGeVL 1400 1200 20 1000 m t = m Region allowed adj by EWPM m T = m S = m Rd = m adj 30 800 600 400 600 800 1000 1200 1400 M D HGeVL fine tuning at few % level

125 GeV Higgs 2 - M 2 D M B T =B S = 1 2 I-m adj 2000 1800 50 m t = 300 GeV Lighter stop more tuned scenario. More 1600 natural scenario: stops might be out madj HGeVL 1400 1200 20 of the LHC reach! 1000 m t = m Region allowed adj by EWPM m T = m S = m Rd = m adj 30 800 600 400 600 800 1000 1200 1400 M D HGeVL fine tuning at few % level

Summary Improvement with respect to the tension between natural SUSY and the LHC direct bounds on sparticles We can raise the Higgs mass to 125 GeV in R symmetric models with a fine tuning of few percent This framework offers many interesting directions to explore

BACKUP

Possible problems from the Adjoint scalar sector m 2 A A A not holomorphic masses for the adjoints tm 2 t 32 2 3 (4 ) 2 m 2 A 3 can run the squarks mass tachyonic Arvanitaki et al, 2013 B A A 2 holomorphic masses are supersoft Pure supersoft has problems with tachyonic adjoint masses 4m 2 D + B A > 0 & -B A > 0 m 2 A B A M 2 D for a viable phenomenological spectrum

Possible problems from the Adjoint scalar sector m 2 A A A not holomorphic masses for the adjoints tm 2 t 32 2 3 (4 ) 2 m 2 A 3 can run the squarks mass tachyonic B A A 2 Villadoro et al.,2013 However most of the UV completion have holomorphic masses are supersoft m 2 A B A 16 2 M 2 D Pure supersoft has problems with tachyonic adjoint masses Similar to mu/bmu problem in gauge mediation 4m 2 D + B A > 0 & -B A > 0 Csaki,Shirman et al,2013 m 2 A B A M 2 D for a viable phenomenological spectrum