PHGN590. Introduction to Nuclear Reactor Physics. Two Group Flux Profile

Similar documents
as nonrigid Carnot groups

Lesson 9: Multiplying Media (Reactors)

8: Source-Sink Problems in 1 Energy Group

Legendre s Equation. PHYS Southern Illinois University. October 13, 2016

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f


Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6

Chair Susan Pilkington called the meeting to order.

MARYLAND. Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects. Conduction Thermal system components

Mid Term Exam 3. Apr 24, /40 2 /40 3 /30. Total /110

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

Spherical trigonometry

Frobenius Series. Use Frobenius series to solve the D. E. x 2 y + xy + Ix 2-1)y[x]=0. Determine the nature of the singularity at x 0

Nuclear Reactor Physics I Final Exam Solutions

" W I T H M C A L I C E T O " W ^ V H, 3 D N O N E ^ N D O H A - R I T Y F O R A. L L. NOBODY'S 6LAIM, deaths off Wm. itafftkon and Mrs. Kennodyb..

CCNY 203 Fall 2011 Final Solutions

UNIVERSITY OF TORONTO

,. *â â > V>V. â ND * 828.

n

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

Solutions to PS 2 Physics 201

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

Algebra 1B. Unit 9. Algebraic Roots and Radicals. Student Reading Guide. and. Practice Problems

Non-Linear Problems. Almost Linear Systems Consider the system of equations: (1) Y ' = AY + ghyl

F q. Gas at radius R (cylindrical) and height z above the disk midplane. F z. central mass M

PHYSICS 301/MATH 355 HOMEWORK #8


i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s

Make sure you show all your work and justify your answers in order to get full credit.

MCR3U - Practice Mastery Test #9 & #10

FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 2017

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

T h e C S E T I P r o j e c t

Nuclear Fission. ~200 MeV. Nuclear Reactor Theory, BAU, Second Semester, (Saed Dababneh).

Trigonometry (Addition,Double Angle & R Formulae) - Edexcel Past Exam Questions. cos 2A º 1 2 sin 2 A. (2)

The wave equation. The basic equation and it's fundamental solutions on bounded domains. u t t = c 2 u x x. An amalgam of sections 1.5 and 2.2.

ME201/MTH281/ME400/CHE400 Newton's Law of Cooling

Second-generation holographic grating technology

Colby College Catalogue

Optimal Flux Distribution in Slab Reactors with Uniform External Source

F O R SOCI AL WORK RESE ARCH

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

Received May 20, 2009; accepted October 21, 2009

Trig Identities, Solving Trig Equations Answer Section

X. Neutron and Power Distribution

Magnetostatic Fields. Dr. Talal Skaik Islamic University of Gaza Palestine

PHYSICS 7B, Section 1 Fall 2013 Midterm 2, C. Bordel Monday, November 4, pm-9pm. Make sure you show your work!

Physics 7B, Speliotopoulos Final Exam, Fall 2014 Berkeley, CA

Chemical Engineering 693R

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

A L A BA M A L A W R E V IE W

An Analytic Basis for Heat Conduction in a Fuel Rods

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian...

Formulas to remember

Exercises involving elementary functions

Physics 504, Spring 2010 Electricity and Magnetism

Ma 530. Partial Differential Equations - Separation of Variables in Multi-Dimensions

Project: Vibration of Diatomic Molecules

Alpha decay, ssion, and nuclear reactions

Colby College Catalogue

Torsional waves in piezoelectric (622) crystal plate

QUANTUM MECHANICS AND ATOMIC STRUCTURE

Practice Problems For Test 3

Method of Solution by Separation

8œ! This theorem is justified by repeating the process developed for a Taylor polynomial an infinite number of times.

trawhmmry ffimmf,f;wnt

-$! " #$%&! ' () * +,,,)* -./ ( 01! 6 %&! +,,.: - 1?* 'F! %&! '3*4 -$ ):7 +,,

Executive Committee and Officers ( )

Make sure you show all your work and justify your answers in order to get full credit.

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

8. Relax and do well.

A Boundary Condition for Porous Electrodes

PHYS-E0562 Ydinenergiatekniikan jatkokurssi Lecture 4 Diffusion theory

(This type of questions may be asked in the examination )

Parts Manual. EPIC II Critical Care Bed REF 2031

Summation of series: Sommerfeld-Watson transformation

ME201/MTH281/ME400/CHE400 Zeros of Bessel Function Derivatives

Mass dilation and reciprocal forces relate the components of stress, leading to the Kruskal-Szekeres metric.

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t

A A + B. ra + A + 1. We now want to solve the Einstein equations in the following cases:

Chapter 2: Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering, Hashemite University

CHAPTER 6 : LITERATURE REVIEW

P E R E N C O - C H R I S T M A S P A R T Y

PHGN 422: Nuclear Physics Lecture 5: The Liquid Drop Model of the Nucleus

principles of f ta f a rt.

Relativistic Motion of a Charged Particle and Pauli Algebra Jan Vrbik

FOURIER SERIES ON ANY INTERVAL

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m.

The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. sin

Flow toward Pumping Well, next to river = line source = constant head boundary

Part r A A A 1 Mark Part r B B B 2 Marks Mark P t ar t t C C 5 Mar M ks Part r E 4 Marks Mark Tot To a t l

:,,.. ;,..,.,. 90 :.. :, , «-»,, -. : -,,, -, -., ,, -, -. - «-»:,,, ,.,.

Gavilan JCCD Trustee Areas Plan Adopted October 13, 2015

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science. CASA-Report March2008

MATH 241 Practice Second Midterm Exam - Fall 2012

Transcription:

PHGN590 Introduction to Nuclear Reactor Physics Two Group Flux Profile J. A. McNeil Physics Department Colorado School of Mines 4/2009

2 Flux_Profile_2group.nb Two velocity groups ü Parameters based on USGS Triga (group 1-> fast, group 2 -> thermal) H* Geometry is given in inches and converted to cm *L geom = 8RC Ø 2.54 H10 + 5 ê 16L, HC Ø 2.54 µ 15, RRef Ø 2.54 H21 + 5 ê 8L, HRef Ø 2.54 H15 + 2 µ 3.47L<; Print@" Reactor geometry: Core Radius = ", RC ê. geom, " cm Core Height = ", HC ê. geom, " cm"d Print@" Reflector radius = ", RRef ê. geom, " cm Reflector Height = ", HRef ê. geom, " cm"d params1 = 8n Ø 2.07, Sf Ø.00258, SCa Ø H0.0894 + 0.00258L, SRefa Ø 0.0002728, SCs Ø 3.29, SRefs Ø.3811, mc Ø.025, mref Ø 1 ê 18.<; params2 = 8n Ø 2.07, Sf Ø.0712, SCa Ø H0.0894 + 0.0712L, SRefa Ø 0.0002728, SCs Ø 3.29, SRefs Ø.3811, mc Ø.025, mref Ø 1 ê 18.<; H* Diffusion constants for core *L StrC = SCa + Sf + H1 - mcl SCs; D C = 1 ê H3 StrCL; L C = D C SCa ;

Flux_Profile_2group.nb 3 Print@" Core parameters "D Print@" Fast group: Str1 = ", StrC ê. params1, " cm^-1 D C1 = ", D C ê. params1, " cm L C1 = ", L C ê. params1, " cm"d Print@" Thermal group: Str2 = ", StrC ê. params2, " cm^-1 D C2 = ", D C ê. params2, " cm L C1 = ", L C ê. params2, " cm"d H* Diffusion constants for reflector *L StrRef = SRefa + H1 - mrefl SRefs; lex = 1 ê H3 StrRefL; D R = 1 ê H3 StrRefL; L R = D R SRefa ; Print@" Reflector parameters "D Print@" Fast group: Str1 = ", StrRef ê. params1, " cm^-1 D R1 = ", D R ê. params1, " cm L R1 = ", L R ê. params1, " cm"d Print@" Thermal group: Str2 = ", StrRef ê. params2, " cm^-1 D R2 = ", D R ê. params2, " cm L R1 = ", L R ê. params2, " cm"d Reactor geometry: Core Radius = 26.1938 cm Core Height = 38.1 cm Reflector radius = 54.9275 cm Reflector Height = 55.7276 cm Core parameters Fast group: Str1 = 3.30231 cm^-1 D C1 = 0.100939 cm L C1 = 1.04757 cm Thermal group: Str2 = 3.43955 cm^-1 D C2 = 0.0969119 cm L C1 = 0.776812 cm Reflector parameters Fast group: Str1 = 0.360201 cm^-1 D R1 = 0.92541 cm L R1 = 58.2432 cm Thermal group: Str2 = 0.360201 cm^-1 D R2 = 0.92541 cm L R1 = 58.2432 cm

4 Flux_Profile_2group.nb Rex = HRRef + lexl ê. params1 ê. geom; Hex = HHRef + 2 lexl ê. params1 ê. geom; Print@" Extrapolation distance: lex = ", lex ê. params1, " cm"d Extrapolation distance: lex = 0.92541 cm ü Bare Cylindrical Reactor The diffusion equations for the two velocity group fluxes are: D 1 2 F 1 == H-Sa 1 - Ss 1->2 L F 1 + n Sf 2 F k 2 D 2 2 F 2 == -Sa 2 F 2 + Ss 1->2 F 1 For cylindrical geometry these factor into r and z components: F = R[r] Z[z]. Reqn = 1 r D@Hr R'@rDL, rd == -Br2 R@rD; Zeqn = Z''@zD ã -Bz 2 Z@zD; For both groups the boundary conditions are R'[0]=Z'[0]==0 and R[Rex]=Z[- Hex/2]==0 which gives: Z1soln@z_D = Az1 Cos@Bz zd R1soln@r_D = Ar1 BesselJ@0, Br rd Z2soln@z_D = Az2 Cos@Bz zd R2soln@r_D = Ar2 BesselJ@0, Br rd Az1 Cos@Bz zd Ar1 BesselJ@0, Br rd Az2 Cos@Bz zd Ar2 BesselJ@0, Br rd where Bz = p / Hex and Br = z0 / Rex, where z0 is the first zero of J0:

Flux_Profile_2group.nb 5 z0soln = z0 ê. FindRoot@BesselJ@0, z0d ã 0, 8z0, 2.5<D; Bconstants = 8Br -> z0soln ê Rex, Bz -> p ê Hex<; Bnet = Br 2 + Bz 2 ê. Bconstants ê. geom; PNL = 1 ê H1 + Bnet^2 L C ^2L ê. params1 ê. geom; r21 = SCs ê HSCa + D C Bnet^2L ê. params2 ê. Bconstants; kmax = HHHn SfL ê. params1l + r21 HHn SfL ê. params2ll ê HBnet ^ 2 + HHSCa + SCsL ê. params2ll ê. Bconstants; Print@" Buckling constants Hcm^-1L: Br = ", Br ê. Bconstants, " Bz = ", Bz ê. Bconstants, " BHtotalL = ", BnetD Print@" Nonleakage probability = ", PNLD Print@" Ratio of thermal to fast flux = ", r21d Print@ " Maximum neutron multiplication: k = ", kmaxd Buckling constants Hcm^-1L: Br = 0.0430564 Bz = 0.054562 BHtotalL = 0.0695044 Nonleakage probability = 0.994727 Ratio of thermal to fast flux = 20.4261 Maximum neutron multiplication: k = 0.872779 soln = 8Br -> z0soln ê Rex, Bz -> p ê Hex, Ar1 Ø 1, Az1 Ø 1, Ar2 Ø r21, Az2 Ø r21<; Plot@8 R1soln@rD ê. soln, R2soln@rD ê. soln<, 8r, 0, Rex<D Plot@8 Z1soln@zD ê. soln, Z2soln@zD ê. soln<, 8z, 0, Hex ê 2<D

6 Flux_Profile_2group.nb 20 15 10 5 10 20 30 40

Flux_Profile_2group.nb 7 20 15 10 5 5 10 15 20

8 Flux_Profile_2group.nb ü Reflected Slab Reactor Consider a slsb reactor having a core of width, a, which is surrounded by an infinite reflector. There are two velocity groups and two regions (core and reflector) giving the following four diffusion equations for the neutron flux: [1a] D C1 2 F C1 ã HS ac1 + S 12 C L F C1-1 k Hn 1 S f1 F C1 + n 2 S f2 F C2 L [1b] D R1 2 F R1 == HS ar1 + S 12 R L F R1 [1c] D C2 2 F C2 == S ac2 F C2 - S sc1 F C1 D R2 2 F R2 == S ar2 F R2 - S sr1 F R1 [1d] In the following we will solve for the conditions that give k= 1. For slab symmetry 2 F -> d2 F. The (8) boundary conditions are: dx 2 F C1 '[0] = F C2 '[0] = 0 F C1 A a 2 E = F R1A a 2 E J C1 A a 2 E = J R1A a 2 E F C2 A a 2 E = F R2A a 2 E J C2 A a 2 E = J R2A a 2 E F R1 @ D = F R2 @ D = 0 [2a,b] [2c] [2d] [2e] [2f] [2g,h] The general solutions, satisfying [2a,b] and [2g,h] and normalized by the first sineterm, are: F C1 @x_d = Cos@m xd + r C Cosh@n xd; F C2 @x_d = S 1 Cos@m xd + S 2 r C Cosh@n xd; F R1 @x_d = r F Exp@-k 1 xd; F R2 @x_d = r G Exp@-k 2 xd + S 3 r F Exp@-k 1 xd;

Flux_Profile_2group.nb 9 We will work only in the positive x region and use reflection symmetry to obtain the solution in the negative x region. There remain 10 parameters, {m, n, k 1, k 2, r C, r F, r G, S 1, S 2, S 3 <, to be determined. Substitution in to Eq.[1c,d] gives: k 1 soln = S ar1 + S 12 R D R1 ; k 2 soln = S ar2 D R2 ; Substitution into [1a,b] and equating sine and sinh-terms gives: S 1 soln = S 2 soln = S 3 soln = S 12 C S ac2 + D C2 m 2 ; S 12 C S ac2 - D C2 n ; 2 D R1 S 12 R ; D R1 S ar2 - D R2 S ar1 - D R2 S 12 R The joining conditions for the currents at r = R gives the flux ratios, { r C, r F, r G <:

10 Flux_Profile_2group.nb eq1 = F C1 B a 2 F ã F R1B a 2 F; eq2 = D C1 D@F C1 @xd, xd == D R1 D@F R1 @xd, xd ê. x Ø a 2 ; rcfsoln = Flatten@Solve@8eq1, eq2<, 8r C, r F <DD; r Csoln = r C ê. rcfsoln; r Fsoln = r F ê. rcfsoln; eq3 = F C2 B a 2 F ã F R2B a 2 F; eq4 = D C2 D@F C2 @xd, xd == D R2 D@F R2 @xd, xd ê. x Ø a 2 ; rfgsoln = Flatten@Solve@8eq3, eq4<, 8r G, r F <DD; r Gsoln = Simplify@r G ê. rfgsoln ê. r C -> r Csoln D; r Fsoln2 = Simplify@r F ê. rfgsoln ê. r C -> r Csoln D; Print@" r C Print@" r F Print@" r G = ", r Csoln D = ", r Fsoln D = ", r Gsoln D r C = - -m SinA a m 2 E D C1 + CosA a m 2 E D R1 k 1 n SinhA a n 2 E D C1 + CoshA a n 2 E D R1 k 1 r F = r G = a k 1 2 Im CoshA a n 2 E SinA a m 2 E + n CosA a m 2 E SinhA a n 2 EM D C1 n SinhA a n 2 E D C1 + CoshA a n 2 E D R1 k 1 1 D R2 Hk 1 - k 2 L a k2 2 -m SinB a m 2 F D C2 S 1 + CosB a m 2 F D R2 S 1 k 1 + n SinhA a n 2 E D C2 S 2 Im SinA a m 2 E D C1 - CosA a m 2 E D R1 k 1 M n SinhA a n 2 E D C1 + CoshA a n 2 E D R1 k 1 - CoshA a n 2 E D R2 S 2 k 1 I-m SinA a m 2 E D C1 + CosA a m 2 E D R1 k 1 M n SinhA a n 2 E D C1 + CoshA a n 2 E D R1 k 1 The second solution for r F will be used to obtain the reactor width, a, self-consistently. We start with the value for a bare reactor based on the reactor parameters are taken from Meem, Two Group Reactor Theory,

Flux_Profile_2group.nb 11 H* Meems parameters *L params1 = 8n 1 Ø 2.47, S f1 Ø.002524, S ac1 Ø 0.003959, S ar1 Ø 0.0, S sc1 Ø 0.4930, S sr1 Ø.6871, z C Ø 0.7751, z R Ø.8203, E 0 Ø 1.62 µ 10^6, E th Ø 0.1, mc Ø.5078, mref Ø.5391<; params2 = 8n 2 Ø 2.47, S f2 Ø.06147, S ac2 Ø 0.09089, S ar2 Ø 0.01966, S sc2 Ø 4.715, S sr2 Ø 6.529, mc Ø.650086, mref Ø.6533<; Calculate the various parameters appropriate to this reactor: S 12 Cvalue = z C S sc1 ê Log@E 0 ê E th D ê. params1; S 12 Rvalue = z R S sr1 ê Log@E 0 ê E th D ê. params1; PrintA" S 12 C = ", S 12 Cvalue, " cm -1 S 12 R = ", S 12 Rvalue, " cm -1 "E StrC1 = H1 - mcl S sc1 ê. params1; StrC2 = H1 - mcl S sc2 ê. params2; StrR1 = H1 - mrefl S sr1 ê. params1; StrR2 = H1 - mrefl S sr2 ê. params2; D C1value = 1 ê H3 HS ac1 + StrC1LL ê. params1; D C2value = 1 ê H3 HS ac2 + StrC2LL ê. params2; D R1value = 1 ê H3 HS ar1 + StrR1LL ê. params1; D R2value = 1 ê H3 HS ar2 + StrR2LL ê. params2; Print@" D C1 = ", D C1value, " cm D C2 = ", D C2value, " cm D R1 = ", D R1value, " cm D R2 = ", D R2value, " cm"d Dparams = 8D C1 -> D C1value, D C2 -> D C2value, D R1 -> D R1value, D R2 -> D R2value, S 12 C -> S 12 Cvalue, S 12 R -> S 12 Rvalue <; k 1 value = k 1 soln ê. Dparams ê. params1; k 2 value = k 2 soln ê. Dparams ê. params2;

12 Flux_Profile_2group.nb PrintA" k 1 = ", k 1 value, " cm -1 k 2 = ", k 2 value, " cm -1 "E L nsol = D C1 S 12 C + S ac1 - n 1 S f1 ; L nvalue = L nsol ê. Dparams ê. params1; Print@" L n = ", L nvalue, " cm"d slabparams = 8D C1 -> D C1value, D C2 -> D C2value, D R1 -> D R1value, D R2 -> D R2value, S 12 C -> S 12 Cvalue, S 12 R -> S 12 Rvalue, L n -> L nvalue, R Ø R value <; S 12 C = 0.0230188 cm -1 S 12 R = 0.0339524 cm -1 D C1 = 1.35164 cm D C2 = 0.19149 cm D R1 = 1.05257 cm D R2 = 0.14599 cm k 1 = 0.179601 cm -1 k 2 = 0.36697 cm -1 L n = 8.07216 cm The initial guess for the slab width is estimated from the buckling constant using the geometric mean of the fast and thermal buckling:

Flux_Profile_2group.nb 13 a new = 0; k = n 1 S f1 ê S ac1 ê. params1; L1 = D C1value S ac1 ê. params1; B1 = Hk - 1L ë IL1 2 M ; k = n 2 S f2 ê S ac2 ê. params2; L2 = D C2value S ac2 ê. params2; B2 = Hk - 1L ë L2 2 ; a 0 = p í B1 B2 ; Print@" a HguessL = ", a 0, " cm"d a HguessL = 20.6498 cm The parameters list needs to be re-run once the self consistent radius is determined. Initially, however, set it to a 0. RUN SOLUTION HERE --> a value = If@a new < 1, a 0, a new D; slabparams = 8D C1 -> D C1value, D C2 -> D C2value, D R1 -> D R1value, D R2 -> D R2value, S 12 C -> S 12 Cvalue, S 12 R -> S 12 Rvalue, L n -> L nvalue, a Ø a value < 8D C1 Ø 1.35164, D C2 Ø 0.19149, D R1 Ø 1.05257, D R2 Ø 0.14599, S 12 C Ø 0.0230188, S 12 R Ø 0.0339524, L n Ø 8.07216, a Ø 12.1113< Find the remaining parameters needed to specify the solutions. b m = b n = 1 L + S ac2 2 n D C2 ê. slabparams ê. params1 ê. params2;

14 Flux_Profile_2group.nb - 1 L n 2 + S ac2 D C2 ê. slabparams ê. params1 ê. params2; c = - n 2 S f2 S 12 C D C1 D C2 + S ac2 L n 2 D C2 ê. slabparams ê. params1 ê. params2; m value = I-b m + SqrtAb m 2-4 cem ë 2 ; n value = I-b n + SqrtAb n 2-4 cem ë 2 ; S 1 value = S 1 soln ê. 8m -> m value < ê. slabparams ê. params2; S 2 value = S 2 soln ê. 8n Ø n value < ê. slabparams ê. params2; S 3 value = S 3 soln ê. slabparams ê. params2 ê. params1; musparams = 8m -> m value, n -> n value, S 1 -> S 1 value, S 2 -> S 2 value, S 3 -> S 3 value, k 1 -> k 1 value, k 2 -> k 2 value <; r Cvalue = r Csoln ê. slabparams ê. params2 ê. params1 ê. musparams; r Fvalue = r Fsoln ê. slabparams ê. params2 ê. params1 ê. musparams; r Gvalue = r Gsoln ê. slabparams ê. params2 ê. params1 ê. musparams; solnparams = 8m -> m value, n -> n value, S 1 -> S 1 value, S 2 -> S 2 value, S 3 -> S 3 value, k 1 -> k 1 value, k 2 -> k 2 value <; rparams = 8r C -> r Cvalue, r F -> r Fvalue, r G -> r Gvalue < ê. solnparams; PrintA" m = ", m value, " cm -1 n = ", n value, " cm -1 "E Print@" S 1 = ", S 1 value, " S 2 = ", S 2 value, " S 3 = ", S 3 value D

Flux_Profile_2group.nb 15 PrintA" k 1 = ", k 1 value, " cm -1 k 2 = ", k 2 value, " cm -1 "E Print@" r C = ", r Cvalue, " r F = ", r Fvalue, " r G = ", r Gvalue D m = 0.11126 cm -1 n = 0.708782 cm -1 S 1 = 0.246823 S 2 = -4.33564 S 3 = 2.27093 k 1 = 0.179601 cm -1 k 2 = 0.36697 cm -1 r C = -0.00128555 r F = 2.1793 r G = -11.731 Test the solution by examining the matching conditions at the reactor boundary, a/2: FC1 = F C1 B a F ê. params1 ê. slabparams ê. Dparams ê. 2 solnparams ê. rparams; FR1 = F R1 B a F ê. params1 ê. slabparams ê. Dparams ê. 2 solnparams ê. rparams; PrintB" F C1 @ a D = ", FC1, " 2 F R1@ a D = ", FR1F 2 FC2 = F C2 B a F ê. params1 ê. params2 ê. slabparams ê. 2 Dparams ê. solnparams ê. rparams; FR2 = F R2 B a F ê. params1 ê. params2 ê. slabparams ê. 2 Dparams ê. solnparams ê. rparams; PrintB" F C2 @ a D = ", FC2, " 2 F R2@ a D = ", FR2F 2

16 Flux_Profile_2group.nb jc1 = D C1 D@F C1 @xd, xd ê. x Ø a 2 ê. params1 ê. slabparams ê. Dparams ê. solnparams ê. rparams; jr1 = D R1 D@F R1 @xd, xd ê. x Ø a 2 ê. params1 ê. slabparams ê. Dparams ê. solnparams ê. rparams; PrintB" J C1 @ a D = ", jc1, " 2 J R1@ a D = ", jr1f 2 jc2 = D C2 D@F C2 @xd, xd ê. x Ø a 2 ê. params1 ê. params2 ê. slabparams ê. Dparams ê. solnparams ê. rparams; jr2 = D R2 D@F R2 @xd, xd ê. x Ø a 2 ê. params1 ê. params2 ê. slabparams ê. Dparams ê. solnparams ê. rparams; PrintB" J C2 @ a D = ", jc2, " 2 J R2@ a D = ", jr2f 2 F C1 @ a 2 D = 0.734476 F R1@ a 2 D = 0.734476 F C2 @ a 2 D = 0.396706 F R2@ a 2 D = 0.396706 J C1 @ a 2 D = -0.138848 J R1@ a 2 D = -0.138848 J C2 @ a 2 D = 0.0243718 J R2@ a 2 D = 0.0243718 The first attempt using the initial guess for a does not quite satisfy the matching conditions. To find the correcd slab width, find the value of a which gives the same flux ratio, r F, for the two cases:

Flux_Profile_2group.nb 17 a new = a ê. FindRoot@Hr Fsoln - r Fsoln2 L ê. params1 ê. params2 ê. Dparams ê. solnparams, 8a, a value <D; Print@" Self-consistent a = ", a new, " cm"d Self-consistent a = 12.1113 cm --> Now re-run the solutions to show that the matching conditions are now exactly satisfied (go to "RUN SOLUTION HERE" and re-run parameter list ). F1plot@x_D = If@x < a value ê 2, HF C1 @xdl ê. solnparams ê. rparams, HF R1 @xdl ê. solnparams ê. rparamsd; F2plot@x_D = If@x < a value ê 2, HF C2 @xdl ê. solnparams ê. rparams, HF R2 @xdl ê. solnparams ê. rparamsd; Plot@8F1plot@xD, F2plot@xD<, 8x,.01, 2 a value <, PlotRange Ø AllD 1.0 0.8 0.6 0.4 5 10 15 20 0.0

18 Flux_Profile_2group.nb Reflected Spherical Reactor Consider a spherical reactor having a core of radius, R, which is surrounded by an infinite reflector. There are two velocity groups and two regions (core and reflector) giving the following four diffusion equations for the neutron flux: [1a] D C1 2 F C1 ã HS ac1 + S 12 C L F C1-1 k Hn 1 S f1 F C1 + n 2 S f2 F C2 L [1b] D R1 2 F R1 == HS ar1 + S 12 R L F R1 [1c] D C2 2 F C2 == S ac2 F C2 - S sc1 F C1 [1d] D R2 2 F R2 == S ar2 F R2 - S sr1 F R1 For spherical symmetry we define F = u/r and, 2 F -> 1 d2 r dr 2 u. The (8) boundary conditions are: u C1 [0] = u C2 [0] = 0 [2a,b] u C1 @RD = u R1 @RD [2c] J C1 @RD = J R1 @RD [2d] u C2 @RD = u R2 @RD [2e] J C2 @RD = J R2 @RD [2f] u R1 @ D = u R2 @ D = 0 [2g,h] The general solutions, satisfying [2a,b] and [2g,h] and normalized by the first sineterm, are: u C1 @r_d = Sin@m rd + r C Sinh@n rd; u C2 @r_d = S 1 Sin@m rd + S 2 r C Sinh@n rd; u R1 @r_d = r F Exp@-k 1 rd; u R2 @r_d = r G Exp@-k 2 rd + S 3 r F Exp@-k 1 rd; There remain 10 parameters, {m, n, k 1, k 2, r C, r F, r G, S 1, S 2, S 3 <, to be deter-

Flux_Profile_2group.nb 19 1 2 C F G 1 2 3< mined. Substitution in to Eq.[1c,d] gives: k 1 soln = S ar1 + S 12 R D R1 ; k 2 soln = S ar2 D R2 ; Substitution into [1a,b] and equating sine and sinh-terms gives: S 1 soln = S 2 soln = S 3 soln = S 12 C S ac2 + D C2 m 2 ; S 12 C S ac2 - D C2 n ; 2 D R1 S 12 R ; D R1 S ar2 - D R2 S ar1 - D R2 S 12 R The joining conditions for the currents at r = R gives the flux ratios, { r C, r F, r G <:

20 Flux_Profile_2group.nb eq1 = u C1 @RD == u R1 @RD; eq2 = D C1 D@u C1 @rd ê r, rd == D R1 D@u R1 @rd ê r, rd ê. r Ø R; rcfsoln = Flatten@Solve@8eq1, eq2<, 8r C, r F <DD; r Csoln = r C ê. rcfsoln; r Fsoln = r F ê. rcfsoln; eq3 = u C2 @RD == u R2 @RD; eq4 = D C2 D@u C2 @rd ê r, rd == D R2 D@u R2 @rd ê r, rd ê. r Ø R; rfgsoln = Flatten@Solve@8eq3, eq4<, 8r G, r F <DD; r Gsoln = Simplify@r G ê. rfgsoln ê. r C -> r Csoln D; r Fsoln2 = Simplify@r F ê. rfgsoln ê. r C -> r Csoln D; Print@" r C Print@" r F Print@" r G = ", r Csoln D = ", r Fsoln D = ", r Gsoln D R m Cos@R md D C1 - Sin@R md D C1 + Sin@R md D R1 + R Sin@R md D R1 k 1 r C = - R n Cosh@R nd D C1 - Sinh@R nd D C1 + Sinh@R nd D R1 + R Sinh@R nd D R1 k 1 r F = r G = R k 1 R Hn Cosh@R nd Sin@R md - m Cos@R md Sinh@R ndl DC1 R n Cosh@R nd D C1 - Sinh@R nd D C1 + Sinh@R nd D R1 + R Sinh@R nd D R1 k 1 -I R k 2 HD R1 H1 + R k 1 L HD C2 HHR m Cos@R md - Sin@R mdl Sinh@R nd S 1 + Sin@R md H-R n Cosh@R nd + Sinh@R ndl S 2 L + Sin@R md Sinh@R nd D R2 HS 1 - S 2 L H1 + R k 1 LL + D C1 HHR m Cos@R md - Sin@R mdl HR n Cosh@R nd - Sinh@R ndl D C2 HS 1 - S 2 L + D R2 HSin@R md HR n Cosh@R nd - Sinh@R ndl S 1 + H-R m Cos@R md + Sin@R mdl Sinh@R nd S 2 L H1 + R k 1 LLLM ë HR D R2 HHR n Cosh@R nd - Sinh@R ndl D C1 + Sinh@R nd D R1 H1 + R k 1 LL H-k 1 + k 2 LL The second solution for r F will be used to obtain the reactor radius, R, self-consistently. We start with the value for a bare reactor based on the reactor parameters are taken from Meem, Two Group Reactor Theory,

Flux_Profile_2group.nb 21 H* Meems parameters *L params1 = 8n 1 Ø 2.47, S f1 Ø.002524, S ac1 Ø 0.003959, S ar1 Ø 0.0, S sc1 Ø 0.4930, S sr1 Ø.6871, z C Ø 0.7751, z R Ø.8203, E 0 Ø 1.62 µ 10^6, E th Ø 0.1, mc Ø.5078, mref Ø.5391<; params2 = 8n 2 Ø 2.47, S f2 Ø.06147, S ac2 Ø 0.09089, S ar2 Ø 0.01966, S sc2 Ø 4.715, S sr2 Ø 6.529, mc Ø.650086, mref Ø.6533<; Calculate the various parameters appropriate to this reactor: S 12 Cvalue = z C S sc1 ê Log@E 0 ê E th D ê. params1; S 12 Rvalue = z R S sr1 ê Log@E 0 ê E th D ê. params1; PrintA" S 12 C = ", S 12 Cvalue, " cm -1 S 12 R = ", S 12 Rvalue, " cm -1 "E StrC1 = H1 - mcl S sc1 ê. params1; StrC2 = H1 - mcl S sc2 ê. params2; StrR1 = H1 - mrefl S sr1 ê. params1; StrR2 = H1 - mrefl S sr2 ê. params2; D C1value = 1 ê H3 HS ac1 + StrC1LL ê. params1; D C2value = 1 ê H3 HS ac2 + StrC2LL ê. params2; D R1value = 1 ê H3 HS ar1 + StrR1LL ê. params1; D R2value = 1 ê H3 HS ar2 + StrR2LL ê. params2; Print@" D C1 = ", D C1value, " cm D C2 = ", D C2value, " cm D R1 = ", D R1value, " cm D R2 = ", D R2value, " cm"d Dparams = 8D C1 -> D C1value, D C2 -> D C2value, D R1 -> D R1value, D R2 -> D R2value, S 12 C -> S 12 Cvalue, S 12 R -> S 12 Rvalue <; k 1 value = k 1 soln ê. Dparams ê. params1; k 2 value = k 2 soln ê. Dparams ê. params2;

22 Flux_Profile_2group.nb PrintA" k 1 = ", k 1 value, " cm -1 k 2 = ", k 2 value, " cm -1 "E L nsol = D C1 S 12 C + S ac1 - n 1 S f1 ; L nvalue = L nsol ê. Dparams ê. params1; Print@" L n = ", L nvalue, " cm"d sphereparams = 8D C1 -> D C1value, D C2 -> D C2value, D R1 -> D R1value, D R2 -> D R2value, S 12 C -> S 12 Cvalue, S 12 R -> S 12 Rvalue, L n -> L nvalue, R Ø R value <; S 12 C = 0.0230188 cm -1 S 12 R = 0.0339524 cm -1 D C1 = 1.35164 cm D C2 = 0.19149 cm D R1 = 1.05257 cm D R2 = 0.14599 cm k 1 = 0.179601 cm -1 k 2 = 0.36697 cm -1 L n = 8.07216 cm The initial guess for the radius is estimated from the buckling constant using the geometric mean of the fast and thermal buckling:

Flux_Profile_2group.nb 23 R new = 0; k = n 1 S f1 ê S ac1 ê. params1; L1 = D C1value S ac1 ê. params1; B1 = Hk - 1L ë IL1 2 M ; k = n 2 S f2 ê S ac2 ê. params2; L2 = D C2value S ac2 ê. params2; B2 = Hk - 1L ë L2 2 ; R 0 = p í B1 B2 ; Print@" R HguessL = ", R 0, " cm"d R HguessL = 20.6498 cm The parameters list needs to be re-run once the self consistent radius is determined. Initially, however, set it to R 0. RUN SOLUTION HERE --> R value = If@R new < 1, R 0, R new D; sphereparams = 8D C1 -> D C1value, D C2 -> D C2value, D R1 -> D R1value, D R2 -> D R2value, S 12 C -> S 12 Cvalue, S 12 R -> S 12 Rvalue, L n -> L nvalue, R Ø R value < 8D C1 Ø 1.35164, D C2 Ø 0.19149, D R1 Ø 1.05257, D R2 Ø 0.14599, S 12 C Ø 0.0230188, S 12 R Ø 0.0339524, L n Ø 8.07216, R Ø 19.5914< Find the remaining parameters needed to specify the solutions. b m = 1 L + S ac2 2 n D C2 ê. sphereparams ê. params1 ê. params2;

24 Flux_Profile_2group.nb b n = - 1 L n 2 + S ac2 D C2 ê. sphereparams ê. params1 ê. params2; c = - n 2 S f2 S 12 C D C1 D C2 + S ac2 L n 2 D C2 ê. sphereparams ê. params1 ê. params2; m value = I-b m + SqrtAb m 2-4 cem ë 2 ; n value = I-b n + SqrtAb n 2-4 cem ë 2 ; S 1 value = S 1 soln ê. 8m -> m value < ê. sphereparams ê. params2; S 2 value = S 2 soln ê. 8n Ø n value < ê. sphereparams ê. params2; S 3 value = S 3 soln ê. sphereparams ê. params2 ê. params1; musparams = 8m -> m value, n -> n value, S 1 -> S 1 value, S 2 -> S 2 value, S 3 -> S 3 value, k 1 -> k 1 value, k 2 -> k 2 value <; r Cvalue = r Csoln ê. sphereparams ê. params2 ê. params1 ê. musparams; r Fvalue = r Fsoln ê. sphereparams ê. params2 ê. params1 ê. musparams; r Gvalue = r Gsoln ê. sphereparams ê. params2 ê. params1 ê. musparams; solnparams = 8m -> m value, n -> n value, S 1 -> S 1 value, S 2 -> S 2 value, S 3 -> S 3 value, k 1 -> k 1 value, k 2 -> k 2 value <; rparams = 8r C -> r Cvalue, r F -> r Fvalue, r G -> r Gvalue < ê. solnparams; Print@" m = ", m value, " n = ", n value D Print@" S 1 = ", S 1 value, " S 2 = ", S 2 value, " S 3 = ", S 3 value D

Flux_Profile_2group.nb 25 PrintA" k 1 = ", k 1 value, " cm -1 k 2 = ", k 2 value, " cm -1 "E Print@" r C = ", r Cvalue, " r F = ", r Fvalue, " r G = ", r Gvalue D m = 0.11126 n = 0.708782 S 1 = 0.246823 S 2 = -4.33564 S 3 = 2.27093 k 1 = 0.179601 cm -1 k 2 = 0.36697 cm -1 r C = -9.30729 µ 10-8 r F = 25.9892 r G = -1763.24 Test the solution by examining the matching conditions at the reactor radius, R:

26 Flux_Profile_2group.nb uc1 = u C1 @RD ê. params1 ê. sphereparams ê. Dparams ê. solnparams ê. rparams; ur1 = u R1 @RD ê. params1 ê. sphereparams ê. Dparams ê. solnparams ê. rparams; Print@" u C1 @RD = ", uc1, " u R1 @RD = ", ur1d uc2 = u C2 @RD ê. params1 ê. params2 ê. sphereparams ê. Dparams ê. solnparams ê. rparams; ur2 = u R2 @RD ê. params1 ê. params2 ê. sphereparams ê. Dparams ê. solnparams ê. rparams; Print@" u C2 @RD = ", uc2, " u R2 @RD = ", ur2d jc1 = D C1 D@u C1 @rd ê r, rd ê. r Ø R ê. params1 ê. sphereparams ê. Dparams ê. solnparams ê. rparams; jr1 = D R1 D@u R1 @rd ê r, rd ê. r Ø R ê. params1 ê. sphereparams ê. Dparams ê. solnparams ê. rparams; Print@" J C1 @RD = ", jc1, " J R1 @RD = ", jr1d jc2 = D C2 D@u C2 @rd ê r, rd ê. r Ø R ê. params1 ê. params2 ê. sphereparams ê. Dparams ê. solnparams ê. rparams; jr2 = D R2 D@u R2 @rd ê r, rd ê. r Ø R ê. params1 ê. params2 ê. sphereparams ê. Dparams ê. solnparams ê. rparams; Print@" J C2 @RD = ", jc2, " J R2 @RD = ", jr2d u C1 @RD = 0.770309 u R1 @RD = 0.770309 u C2 @RD = 0.418968 u R2 @RD = 0.418968 J C1 @RD = -0.00954537 J R1 @RD = -0.00954537 J C2 @RD = 0.00113739 J R2 @RD = 0.00113739

Flux_Profile_2group.nb 27 The first attempt using the initial guess for R does not quite satisfy the matching conditions. To find the correcd radius, find the value of R which gives the same flux ratio, r F, for the two cases: R new = R ê. FindRoot@Hr Fsoln - r Fsoln2 L ê. params1 ê. params2 ê. Dparams ê. solnparams, 8R, R value <D; Print@" Self-consistent R = ", R new, " cm"d Self-consistent R = 19.5914 cm Now re-run the solutions to show that the matching conditions are now exactly satisfied (go to "RUN SOLUTION HERE").

28 Flux_Profile_2group.nb F1plot@r_D = If@r < R value, Hu C1 @rd ê rl ê. solnparams ê. rparams, Hu R1 @rd ê rl ê. solnparams ê. rparamsd; F2plot@r_D = If@r < R value, Hu C2 @rd ê rl ê. solnparams ê. rparams, Hu R2 @rd ê rl ê. solnparams ê. rparamsd; Plot@8F1plot@rD, F2plot@rD<, 8r,.01, 1.5 R value <D 0.10 0.08 0.06 0.04 0.02 5 10 15 20 25 30