ON SOME MODELS OF THE EXOTIC HADRON STATES. Siniša R. Ignjatović and Vesna Borka Jovanović

Similar documents
Exotic Diquark Spectroscopy

Kern- und Teilchenphysik II Lecture 1: QCD

Quark Model of Hadrons

The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry Breaking Gell-Mann Okubo Mass Formulae Quark-Mo

wave functions PhD seminar- FZ Juelich, Feb 2013

This means that n or p form a doublet under isospin transformation. Isospin invariance simply means that. [T i, H s ] = 0

Kern- und Teilchenphysik I Lecture 13:Quarks and QCD

Discovery of Pions and Kaons in Cosmic Rays in 1947

Quantum Field Theory. Ling-Fong Li. (Institute) Quark Model 1 / 14

The Strong Interaction and LHC phenomenology

Quark Model History and current status

January 31, PHY357 Lecture 8. Quark composition of hadrons. Hadron magnetic moments. Hadron masses

Dr Victoria Martin, Prof Steve Playfer Spring Semester 2013

SU(3) symmetry and Baryon wave functions

Quark Model. Ling-Fong Li. (Institute) Note 8 1 / 26

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.:

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

Particle Physics. Michaelmas Term 2009 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims

Lecture 9 Valence Quark Model of Hadrons

Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora

QCD Symmetries in eta and etaprime mesic nuclei

Introduction to Quantum Chromodynamics (QCD)

The Quark Parton Model

H-dibaryon in Holographic QCD. Kohei Matsumoto (M2, YITP) (in collaboration with Hideo Suganuma, Yuya Nakagawa)

PHYSICS PARTICLE. An Introductory Course of. Palash B. Pal. CRC Press. Saha Institute of Nuclear Physics. Kolkata, India. Taylor &.

Particle Physics. Lecture 11: Mesons and Baryons

Quantum Chromo Dynamics (QCD), as the fundamental theory of the strong interaction predicts the existence of exotic mesons made of gluons. Observation

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter:

Strange Charmed Baryons Spectroscopy

The hadronization into the octet of pseudoscalar mesons in terms of SU(N) gauge invariant Lagrangian

Baryon correlators containing different diquarks from lattice simulations

Clebsch-Gordan Coefficients

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Nature of the sigma meson as revealed by its softening process

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple

Stability of Multiquark Systems 1

The Standard Theory of Elementary Particle Physics and Beyond

arxiv: v1 [hep-ph] 13 Sep 2009

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron.

Confined chirally symmetric dense matter

Weak interactions and vector bosons

Quantum Chromo Dynamics

The Strong Interaction and LHC phenomenology

A.A. Godizov. Institute for High Energy Physics, Protvino, Russia

Critical lines and points. in the. QCD phase diagram

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira

Cold and dense QCD matter

NEW PERSPECTIVES FOR STUDY OF CHARMONIUM AND EXOTICS ABOVE DD THRESHOLD. Barabanov M.Yu., Vodopyanov A.S.

REVIEW. Quantum electrodynamics (QED) Quantum electrodynamics is a theory of photons interacting with the electrons and positrons of a Dirac field:

Rethinking Flavor Physics

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group

Quark Model. Mass and Charge Patterns in Hadrons. Spin-1/2 baryons: Nucleons: n: MeV; p: MeV

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872)

Hadron Spectroscopy Lecture 1 Introduction and Motivation

Probing of XYZ meson structure with near threshold pp and pa collisions

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

M.Yu. Barabanov, A.S. Vodopyanov, A.I. Zinchenko

Physics 4213/5213 Lecture 1

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract

Lecture 8. September 21, General plan for construction of Standard Model theory. Choice of gauge symmetries for the Standard Model

Author(s) Fujiwara, Y; Kohno, M; Nakamoto, C; Citation PHYSICAL REVIEW C (2001), 64(5)

The chiral anomaly and the eta-prime in vacuum and at low temperatures

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry

The symmetries of QCD (and consequences)

PROBING OF STRONG INTERACTIONS AND HADRONIC MATTER WITH CHARMONIUM-LIKE STUDIES

Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and Conservation Laws Goldstone Theorem The Potential Linear Sigma Model Wigner

arxiv: v2 [hep-ph] 5 Feb 2009

2 Meson Spectroscopy at LEAR with the Crystal Barrel. In collaboration with: Academy of Science (Budapest); Universities of Bochum, Bonn,

Flavour physics Lecture 1

arxiv:nucl-th/ v1 3 Jan 2006

How nucleon gets its mass

arxiv:hep-ph/ v1 12 Oct 1994

An Introduction to the Standard Model of Particle Physics

The scalar meson puzzle from a linear sigma model perspective

Particle physics today. Giulia Zanderighi (CERN & University of Oxford)

Proton Structure and Prediction of Elastic Scattering at LHC at Center-of-Mass Energy 7 TeV

Heavy mesons and tetraquarks from lattice QCD

Colour flux-tubes in static Pentaquark and Tetraquark systems

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

Open Problems in Hadron Spectroscopy

Functional determinants

Gian Gopal Particle Attributes Quantum Numbers 1

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark model. Jan 30, 2006 Lecture 8 1

Hadron Spectroscopy: Results and Ideas.

Part 7: Hadrons: quarks and color

Multiquark spectroscopy

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa

Prospects of the Hadron Physics at J-PARC

SU(3) systematization of baryons. Vadim Guzey. Theory Center, Jefferson Lab

arxiv: v1 [hep-ph] 13 Nov 2013

Baryon Spectroscopy: what do we learn, what do we need?

The Hadronic Decay Ratios of η 5π at NLO in χpt

Phenomenology of a pseudoscalar glueball and charmed mesons

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

Origin and Status of INSTANTONS

arxiv: v2 [hep-ph] 22 Nov 2011

Introduction to particle physics Lecture 4

arxiv:nucl-th/ v1 28 Aug 2001

Transcription:

FACTA UNIVERSITATIS (NIŠ) Physics, Chemistry and Technology Vol. 12, N o 2, Special Issue, 2014, pp. 151 158 DOI: 10.2298/FUPCT1402151I ON SOME MODELS OF THE EXOTIC HADRON STATES Siniša R. Ignjatović and Vesna Borka Jovanović Abstract. There are several kinds of exotic hadron states. In this paper, we are concerned with the flavor exotic meson states: the tetrauarks and meson molecules. Two distinct models of tetrauarks are studied: diuark-antidiuark bound states and uncorrelated uarks. Although diuark is not a color singlet, there is a strong theoretical evidence that such states do exist within hadrons. Both tetrauark models as well as methods used to study such states are reviewed. The meson-meson molecules are also mentioned. It is remarked that hadron spectroscopy per se may not always be sufficient to discern between physically distinct models. 1. Introduction Conventional mesons are made of one uark and one antiuark and conventional (anti)baryons of three (anti)uarks. From its inception in 1964, it is known that the Quark Model can accommodate unconventional hadrons. The first detailed analysis of exotic hadrons was done by R. L. Jaffe in 1977 [1]. The exotic hadrons have been studied theoretically ever since, but there had been no experimental evidence of unconventional states until ten years ago. The first hadron states that could plausibly be interpreted as exotic ones were discovered in 2003, but the supposed evidence for pentauarks turned out to be spurious [2]. However, some meson states especially certain scalar mesons like f(980) and a 0 (980) and heavy mesons like X(3872) are difficult to interpret as conventional mesons [3]. This is even more true for the newly discovered Z c (3900) state. Interpretation of some mesons that contain a c-uark primarily D + s (2317) and D + s (2632) as tetrauarks is not excluded either [4]. Received October, 2014. UDC 539.120.8, 539.126.3, 539.126.4 The authors were supported in part by the Ministry of Science and Technology of the Republic of Srpska under the project contract No. 19/6-020/961-210/12. V. B. J. also acknowledges support by the Ministry of Education, Science and Technological Development of the Republic of Serbia through the project 176003. 151

152 S. R. IGNJATOVIĆ and V. BORKA JOVANOVIĆ All the unconventional hadrons are often termed exotic hadrons. There are, however, several physically distinct types of states that can be considered exotic: multiuarks, glueballs, hybrids (states containing both uark and glueballs) and meson molecules. Multiuark is any meson that consists of more than two uarks/antiuarks or any baryon that consists of more than three uarks/antiuarks. Meson molecules are bound states of conventional hadrons and were postulated before the uark model itself. There is also an alternative classification proposed by R. L. Jaffe [5], based on theoretical considerations. Jaffe divides hadron states into two classes: ordinary and extraordinary. Theoretical behavior of the ordinary and extraordinary hadrons is opposite in the N c + limit: ordinary states decouple from the scattering channels and become infinitely narrow while extraordinary ones become infinitely broad and disappear into the continuum. Multiuark states and meson molecules belong to the extraordinary states. Perhaps unfortunately, Jaffe s classification has not been broadly accepted, although there is a broadly accepted term flavor-exotic states [3] that can be considered synonymous to some extent (provided we include the cryptoexotic states, e.g. those considered in Sec. 2). This review is concerned with the extraordinary mesons: the tetrauarks and, to much smaller extent, the meson molecules. The term exotic hadrons in a restricted sense is sometimes reserved to the extraordinary hadrons and this is the meaning of the term in the title of this paper. Basically, there are three distinct models of the extraordinary mesons: 1) meson molecule (also called meson-meson molecule, sometimes deuson state etc.), which is a bound state of two conventional mesons, i.e., state; 3) tetrauark as a bound state of a diuark and an antidiuark,, states. 2) tetrauark that consists of uncorrelated uarks, states; The models are schematically shown on fig. 1.1. Of course, there are also many possible mixings of these states with the conventional meson states. meson molecule diuark-antidiuark uncorrelated uarks Fig. 1.1: Schematic view of three models of exotic mesons Several theoretical methods have been used within each model. The phenomenological problem is how to connect the QCD-based calculations with the analysis of the experimental data. There is a growing evidence that some of the experimentally

Models of the Exotic Hadron States 153 observed states cannot be explained as purely conventional mesons. Hence it is of some interest to compare the results obtained by various theoretical methods to the available experimental data. One of the most important theoretical concepts in the study of tetrauarks is the diuark/antidiuark. Even though such state is not a color singlet, there is some theoretical evidence that such states can exist within hadrons. Diuarks have been analyzed using various approaches derived from, or inspired by, the QCD. Besides being relevant for the study of tetrauark states, they can be relevant for other particle physics problems, such as uark-gluon plasma. Along with their relevance for Standard model phenomenology, the heavy exotic states might allow search for certain signatures of new physics. In this survey we consider the physical models and theoretical methods used to study exotic meson states. In particular, we give some details about the diuarkantidiuark system and on schematic interactions used in hadron spectroscopy. 2. Tetrauark as a Diuark-Antidiuark System Diuark is a system that consists of two uarks and antidiuark a system of two antiuarks. Such systems were postulated almost from the beginning of the Quark Model. Shortly thereafter, models of baryons as bound states of uarks and diuarks appeared [6]. Back in 1967, Lichtenberg and Tassi mention hypothetical exotic mesons as diuark-antidiuark systems, but such states were not studied in detail before 1980 s since the exotic states in general were not given much attention. The significance of the concept of a diuark has long surpassed the structure of conventional baryons; it is used in some models of the dense uark matter, analysis of the hypothetical dibaryons (hexauarks) etc. Diuark can be considered as a particle of negligible size, but also of a size comparable to the hadron size [6]. Quantum Chromodynamics (QCD), as a non-abelian gauge theory, is uite different from the Quantum Electrodynamics. For example, bound state of two uarks is possible unlike bound state of two electrons. In the space of color as the QCD charge the symmetry group is SU(3) c. In color space, the diuarks belong to the multiplets of the direct product of two triplets: 3 3 = 3 6, the antitriplet states being antisymmetric and the sextet states symmetric. The antitriplet is much more tightly bound than the sextet. Clearly, these states are not color singlets so they can exist only within hadrons (or hadronic matter in general). For antisymmetric color wave functions, the spin-flavor wave functions need to be symmetric, which can be achieved if both components are either symmetric or antisymmetric. The second case gives more tightly bound states [3, 7]. For light flavors (u, d, s) the flavor symmetry group is SU(3) f so that 3 3 = 3 6 for diuarks, fig. 2.1, and 3 3 = 3 6 for antidiuarks, fig. 2.2. Flavor triplets correspond to spin singlets; these states are more favorable energetically (scalar or good diuarks). The flavor sextets, which correspond to spin triplets, are also admissible (vector or bad diuarks). The mass differences are on the order of 200 MeV [7].

154 S. R. IGNJATOVIĆ and V. BORKA JOVANOVIĆ [ud ] {dd} {ud} {uu} [ds] [su] {ds} {su} {ss} Fig. 2.1: Light flavor diuarks { ss} [ su] [ d s ] { su} { d s} [ ud ] { uu} { u d } { d d } Fig. 2.2: Light flavor antidiuarks (2.1) The possible tetrauark states are obtained by expanding the direct product: (3 6) (3 6) = 3 3 3 6 6 3 6 6, where the terms on the right hand side expand as follows: the first term into an octet and a singlet, the second and third ones into decouplets and octets and the fourth one into a 27-plet, an octet and a singlet. In the simplified Jaffe s model [7], out of all the multiplets in (2.1) only the states from the nonet 3 3 = 8 1 shown on fig. 2.3 are observable while the (much more massive) other ones would probably disappear into the meson-meson continuum. The nonet states are not (openly) exotic but cryptoexotic as they carry the same uantum numbers as the conventional scalar nonet states. They can be distinguished from the conventional states because they have considerably lower masses, which is consistent with some of the experimentally observed states.

Models of the Exotic Hadron States 155 [ ud ][ sd] [ ud][ ds] [ ds][ su] [ ud][ ud] [ su][ ds] [ ds ][ ds] [ su][ su] [ ds ][ ds] [ su][ su] [ ds ][ ud ] [ su][ ud] Fig. 2.3: The nonet of light flavor tetrauarks The isosinglet states shown on fig. 2.3 are given for the SU(3) f broken by the s-uark mass, so they should correspond to physical states. The state [ud][ud], often identified with the elusive σ-meson, would then be the lightest state. The other non-strange states are a 0 and f 0, supposedly identifiable with the observed a 0 (980) and f 0 (980) mesons. The strange states are the two doublets of the socalled κ-mesons. The predictions for masses are in a ualitative agreement with the experiment [5]. The interpretation of the a 0 (980) and f 0 (980) mesons and scalar mesons in general is still an open uestion; there are attempts to explain them as conventional mesons or meson molecules. One should also notice that not all the naturally occurring flavor multiplets need to be complete. While it is not difficult to build tetrauarks with the c-uark(s) it is obvious not only that the proliferation of states becomes enormous (256 states altogether!), but also that many results derived for the light flavors will be invalidated due to the strong breaking of the SU(4) f group. On the other hand, if we restrict ourselves to one and only one heavy uark the proliferation of states is moderate. 2.1. Non-Perturbative QCD Since Quantum Chromodynamics is non-perturbative at low energy, several alternative methods have been developed for the analysis of bound states. As nearly all the methods have been used to analyze the diuarks, they are enumerated here. The now well-known MIT bag model was used by Jaffe in his seminal papers [1]. Chiral perturbation theory is based on the chirally invariant massless QCD, which is then broken by pseudoscalar mesons as Goldstone bosons. The theory gives some results for light uarks in accordance with the experiment.

156 S. R. IGNJATOVIĆ and V. BORKA JOVANOVIĆ Lattice QCD starts from the QCD Lagrangian and the effects are computed numerically. The method is computationally extensive. Some results are very promising and they are also used to justify approximations in other especially purely phenomenological approaches. QCD sum rules are based on the subasymptotic QCD [8], which is derived from QCD Lagrangian using Operator Product Expansion (OPE) method. QCD sum rules give many results in uantitative agreement with the experiment, albeit often with fairly large uncertainties. There are many different sum rules, although some of them have been used only by very few researchers. Constituent uark model is, of course, older than the QCD itself, but it is still used today, although with various model interactions which improve the inaccurate predictions of the naive uark model. Heavy Quark Effective Theory (HQET), developed in the 1990 s, uses the large mass difference between light and heavy uarks. There are several other methods, e.g. those influenced by more recent theoretical concepts: uark interaction mediated by strings (inspired by the lattice QCD), the theory based on analogy between massless QCD and conformal field theory etc. 3. Uncorrelated Quarks Tetrauarks made of uncorrelated uarks where every pair of uarks/antiuarks is treated eually can be analyzed within the constituent uark model with hyperfine interactions. For example, we can use the following so-called Fermi-Breit Hamiltonian for the interaction of the uarks/antiuarks [9, 10, 11]: (3.1) H FB int = C i<j σ i σ j m i m j λ c iλ c j, where m i are constituent uark masses (usually, one takes m d = m u ), C a constant, σ i are Pauli spin matrices and λ c i Gell-Mann matrices that belong to SU(3) c group. It is remarkable that a formally very similar Hamiltonian, the so-called Glozman- Riska Hamiltonian, can be constructed with the Gell-Mann matrices belonging to SU(3) f group [9, 10]: (3.2) H GR int = C g ( 1) α σ ij i σ j λ f i m i m λf j. j i<j The only formal difference with respect to the Hamiltonian (3.1) is that signs differ for uark-antiuark interaction as opposed to uark-uark or antiuark-antiuark interaction [9, 10]: { 1 for ( 1) αij +1 for or, uark-antiuark interaction being energetically more favorable. These two interactions are physically completely different; the Hamiltonian (3.1) is a spin-color while the similar Hamiltonian (3.2) is a spin-flavor interaction.

Models of the Exotic Hadron States 157 Given the different nature of the spin-color and spin-flavor interactions, it was surprising that the two Hamiltonians lead to almost the same masses [10]. We have shown this to be the case for the conventional mesons as well [9]. Interactions of the type (3.1,3.2) are called schematic. There are also models that include an additional potential that depends on the distance between the uarks/antiuarks within a pair. It is possible to use the more realistic methods enumerated in the previous section, but in this case there are 6 pairs of interactions instead of the 3 in the case of the diuark-antidiuark model. 4. Meson Molecules Forces between mesons can, especially near the kinematic threshold in meson-meson scattering, be strong enough to form a bound state called a meson molecule, or more precisely meson-meson molecule. Meson-meson molecules were considered even before the uark model itself; within the QCD context they have been studied since 1976. Annihilation of such molecular state is not possible so that the interaction is dominated by the exchange of uarks/antiuarks that belong to different mesons within the molecule. Molecular states can mix with conventional mesons [3]. Moreover, there is no clear distinction between a tetrauark and a meson molecule [5]. The meson molecules are usually denoted by the constituent mesons. For example, the four states that contain s and s in the nonet shown in fig. 2.3 can also be interpreted as KK molecules, K being the kaon. Given how close the a 0 (980) and f 0 (980) mesons are to the KK threshold, this meson-meson molecule is, as noted above, considered a viable alternative interpretation of these scalar mesons. Various methods have been used to study the meson molecules as well: effective Lagrangians, potentials etc. 5. Conclusions Theoretical studies of flavor exotic hadron states within QCD date back to 1976, although the experimental evidence did not appear until 2003. We have considered the flavor exotic (or extraordinary ) mesons. There are three distinct physical models of the flavor exotic meson states: diuark-antidiuark tetrauarks, tetrauarks consisting of uncorrelated uarks and meson-meson molecules. Out of possible 81 light flavor diuark-antidiuark states, only the cryptoexotic nonet states are likely to be observable. Many theoretical methods have been used to study all the three models of the four-uark states. Our previous analysis of tetrauark states using the constituent uark model with hyperfine interactions hints that hadron spectroscopy alone may not be sufficient to discern among physically distinct model interactions.

158 S. R. IGNJATOVIĆ and V. BORKA JOVANOVIĆ R E F E R E N C E S 1. R. L. Jaffe: Multiuark hadrons. Phys. Rev. D, 15 (1977) 267 280; 281 289. 2. K. H. Hicks: On the conundrum of the pentauark. Eur. Phys. J. H, 37 (2012) 1 31. 3. E. Klempt and A. Zaitsev: Glueballs, hybrids, multiuarks. Experimental facts versus QCD inspired concepts. Phys. Rep. 454 (2007) 1 202. 4. V. Borka Jovanović: Masses and mixing of c tetrauarks using Glozman-Riska hyperfine interaction. Phys. Rev. D 76 (2007) 105011. 5. R. L. Jaffe: Ordinary and extraordinary hadrons. Progr. Theor. Phys. Suppl. 168 (2007) 127 142. 6. M. Anselmino et al.: Diuarks. Rev. Mod. Phys. 65 (1993) 1199 1233. 7. R. L. Jaffe: Exotica. Phys. Rep. 409 (2005) 1 45. 8. M. A. Shifman, A. I. Vainshtein, V. I. Zakharov: QCD and resonance physics. Nucl. Phys. B 147 (1979) 385-447, 448-518, 519-534. 9. V. Borka Jovanović, S. R. Ignjatović, D. Borka, P. Jovanović: Constituent uark masses obtained from hadron masses with contributions of Fermi-Breit and Glozman-Riska hyperfine interactions. Phys. Rev. D 82 (2010) 117501. 10. V. Borka Jovanović: Structure and mass of scalar tetrauarks that contain the c- uark based on Fermi-Breit and Glozman-Riska hyperfine interactions [in Serbian], PhD thesis, University of Banja Luka, Banja Luka, 2010. 11. V. Borka Jovanović, D. Borka: Mass formulas for single-charm tetrauarks with Fermi-Breit hyperfine interaction. Rom. J. Phys. 57 (2012) 803-815. Siniša R. Ignjatović University of Banja Luka Faculty of Science Department of Physics Mladena Stojanovića 2 78000 Banja Luka, Bosnia and Herzegovina sinisha@teol.net Vesna Borka Jovanović Vinča Institute of Nuclear Sciences Atomic Physics Laboratory (040) University of Belgrade P.O. Box 522 11001 Belgrade, Serbia vborka@vinca.rs