The four-dimensional rotation group SO(4)

Similar documents
arxiv:math/ v1 [math.gm] 26 Jan 2007

On Cayley s Factorization of 4D Rotations and Applications

Chapter XI Novanion rings

Linear Algebra. Workbook

Homework 2. Solutions T =

MODEL ANSWERS TO HWK #7. 1. Suppose that F is a field and that a and b are in F. Suppose that. Thus a = 0. It follows that F is an integral domain.

1 Fields and vector spaces

MODEL ANSWERS TO THE FIRST HOMEWORK

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2

LECTURE 25-26: CARTAN S THEOREM OF MAXIMAL TORI. 1. Maximal Tori

QUATERNIONS AND ROTATIONS

Math Linear Algebra II. 1. Inner Products and Norms

The groups SO(3) and SU(2) and their representations

Hyperbolic Geometry on Geometric Surfaces

Math Linear Algebra

The Symmetric Space for SL n (R)

CHAPTER XV. Exponential algebra

Linear Algebra. Preliminary Lecture Notes

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.

Hyperbolic Transformations

REVIEW OF LINEAR ALGEBRA

Symmetries, Groups, and Conservation Laws

Chapter 8 Vectors and Scalars

Conway s group and octonions

Elementary linear algebra

Introduction to Lie Groups

MATH Linear Algebra

4 Arithmetic of Segments Hilbert s Road from Geometry

LINEAR ALGEBRA SUMMARY SHEET.

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis.

4.3 Equations in 3-space

Clifford Algebras and Spin Groups

Lecture Notes 1: Vector spaces

LINEAR ALGEBRA REVIEW

6 Orthogonal groups. O 2m 1 q. q 2i 1 q 2i. 1 i 1. 1 q 2i 2. O 2m q. q m m 1. 1 q 2i 1 i 1. 1 q 2i. i 1. 2 q 1 q i 1 q i 1. m 1.

Chapter 8 Integral Operators

Math 215B: Solutions 1

INNER PRODUCT SPACE. Definition 1

Matrix Algebra: Vectors

4.2. ORTHOGONALITY 161

Linear Algebra. Preliminary Lecture Notes

THE TRANSLATION PLANES OF ORDER 49 AND THEIR AUTOMORPHISM GROUPS

1 Dirac Notation for Vector Spaces

Mobile Robotics 1. A Compact Course on Linear Algebra. Giorgio Grisetti

REGULAR TRIPLETS IN COMPACT SYMMETRIC SPACES

LECTURE NOTES AMRITANSHU PRASAD

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory.

Exercises for Unit I I (Vector algebra and Euclidean geometry)

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA

1 Hermitian symmetric spaces: examples and basic properties

Lecture 22 - F 4. April 19, The Weyl dimension formula gives the following dimensions of the fundamental representations:

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

COMMON COMPLEMENTS OF TWO SUBSPACES OF A HILBERT SPACE

BASIC ALGORITHMS IN LINEAR ALGEBRA. Matrices and Applications of Gaussian Elimination. A 2 x. A T m x. A 1 x A T 1. A m x

Representation Theory. Ricky Roy Math 434 University of Puget Sound

Special Lecture - The Octionions

Background on Chevalley Groups Constructed from a Root System

A Highly Symmetric Four-Dimensional Quasicrystal * Veit Elser and N. J. A. Sloane AT&T Bell Laboratories Murray Hill, New Jersey

,, rectilinear,, spherical,, cylindrical. (6.1)

Chapter 5. Modular arithmetic. 5.1 The modular ring

Chapter 5 Eigenvalues and Eigenvectors

The Real Grassmannian Gr(2, 4)

(x, y) = d(x, y) = x y.

Lecture 6 SPHERICAL GEOMETRY

The parallel postulate: a syntactic proof of independence

Mobius transformations and AdS 3 geometry

over a field F with char F 2: we define

Group Theory - QMII 2017

Problems in Linear Algebra and Representation Theory

Killing Vector Fields of Constant Length on Riemannian Normal Homogeneous Spaces

REPRESENTATIONS OF U(N) CLASSIFICATION BY HIGHEST WEIGHTS NOTES FOR MATH 261, FALL 2001

Chapter 2. Linear Algebra. rather simple and learning them will eventually allow us to explain the strange results of

LINEAR ALGEBRA - CHAPTER 1: VECTORS

Lie Algebra of Unit Tangent Bundle in Minkowski 3-Space

ANSWERS (5 points) Let A be a 2 2 matrix such that A =. Compute A. 2

Mostow Rigidity. W. Dison June 17, (a) semi-simple Lie groups with trivial centre and no compact factors and

AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda CHAPTER II: AFFINE AND EUCLIDEAN GEOMETRY

An LMI description for the cone of Lorentz-positive maps II

Linear and Bilinear Algebra (2WF04) Jan Draisma

Topics in Representation Theory: Fourier Analysis and the Peter Weyl Theorem

Lax Embeddings of Generalized Quadrangles in Finite Projective Spaces

TRANSLATION-INVARIANT FUNCTION ALGEBRAS ON COMPACT GROUPS

ELEMENTARY SUBALGEBRAS OF RESTRICTED LIE ALGEBRAS

1 Euclidean geometry. 1.1 The metric on R n

MAT 2037 LINEAR ALGEBRA I web:

ISOMETRIES OF R n KEITH CONRAD

Minimum-Parameter Representations of N-Dimensional Principal Rotations

Linear Algebra Practice Problems

Intermediate Jacobians and Abel-Jacobi Maps

Linear Algebra I. Ronald van Luijk, 2015

Manoj K. Keshari 1 and Satya Mandal 2.

sin(α + θ) = sin α cos θ + cos α sin θ cos(α + θ) = cos α cos θ sin α sin θ

CLASSICAL GROUPS DAVID VOGAN

Tutorial 5 Clifford Algebra and so(n)

Group theory applied to crystallography

Hodge Structures. October 8, A few examples of symmetric spaces

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

Functional Analysis Exercise Class

Dot product. The dot product is an inner product on a coordinate vector space (Definition 1, Theorem

Linear Algebra. Min Yan

Transcription:

The four-dimensional rotation group SO(4) Johan Ernest Mebius April 2008 Abstract Contribution to Wikipedia (http://en.wikipedia.org/) made in July 2005 as of April 24th 2008 URL http://en.wikipedia.org/wiki/so%284%29 1 Geometry of 4D rotations In mathematics SO(4) is the four-dimensional rotation group; that is, the group of rotations about a fixed point in four-dimensional Euclidean space. The name comes from the fact that it is (isomorphic to) the special orthogonal group of order 4. In this article rotation means rotational displacement. For the sake of uniqueness rotation angles are assumed to be in the segment [0, π] except where mentioned or clearly implied by the context otherwise. There are two kinds of 4D rotations: simple rotations and double rotations. 1.1 Simple rotations A simple rotation R about a rotation centre O leaves an entire plane A through O (axis-plane) pointwise invariant. Every plane B that is completely orthogonal (see Notes) to A intersects A in a certain point P. Each such point P is the centre of the 2D rotation induced by R in B. All these 2D rotations have the same rotation angle α. Half-lines from O in the axis-plane A are not displaced; half-lines from O orthogonal to A are displaced through α; all other half-lines are displaced through an angle < α. 1.2 Double rotations A double rotation R about a rotation centre O leaves only O invariant. Any double rotation has at least one pair of completely orthogonal planes A and B through O that are invariant as a whole, i.e. rotated in themselves. In general the rotation angles α in plane A and β in plane B are different. In that case A and B are the only pair of invariant planes, and half-lines from O in A, B are displaced through α, β, and half-lines from O not in A or B are displaced through angles strictly between α and β. 1.3 Isoclinic rotations If the rotation angles of a double rotation are equal then there are infinitely many invariant planes instead of just two, and all half-lines from O are displaced through the same angle. Such rotations are called isoclinic or equiangular rotations, or Clifford displacements. Beware: not all planes through O are invariant under isoclinic rotations; only planes that are spanned by a half-line and the corresponding displaced half-line are invariant. There are two kinds of isoclinic 4D rotations. To see this, consider an isoclinic rotation R, and take an ordered set OU, OX, OY, OZ of mutually perpendicular half-lines at O (denoted as OUXY Z) such that OU and OX span an invariant plane, and therefore OY and OZ also span an invariant plane. Now assume that only the rotation angle α is specified. Then there are in general four isoclinic rotations in planes OUX and OY Z with rotation angle α, depending on the rotation senses in OUX and OY Z. We make the convention that the rotation senses from OU to OX and from OY to OZ are reckoned positive. Then we have the four rotations R 1 (+α, +α), R 2 ( α, α), R 3 (+α, α) and R 4 ( α, +α). R 1 and R 2 are each other s inverses; so are R 3 and R 4. Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, P.O.Box 5031, NL 2600 GA Delft, The Netherlands, Phone +31.15.2783072, E-Mail jemebius at xs4all dot nl 1

Isoclinic rotations with like signs are denoted as left-isoclinic; those with opposite signs as right-isoclinic. The four rotations are pairwise different except if α 0 or α π. The case α 0 corresponds to the non-rotation; α π corresponds to the central inversion. These two elements of SO(4) are the only ones which are left- and right-isoclinic. Left- and right-isocliny defined as above seem to depend on which specific isoclinic rotation was selected. However, when another isoclinic rotation R with its own axes OU X Y Z is selected, then one can always choose the order of U, X, Y, Z such that OUXY Z can be transformed into OU X Y Z by a rotation rather than by a rotationreflection. Therefore, once one has selected a system OU XY Z of axes that is universally denoted as right-handed, one can determine the left or right character of a specific isoclinic rotation. 1.4 Group structure of SO(4) SO(4) is a noncommutative 6-parameter Lie group. Each plane through the rotation centre O is the axis-plane of a commutative subgroup isomorphic to SO(2). All these subgroups are mutually conjugate in SO(4). Each pair of completely orthogonal planes through O is the pair of invariant planes of a commutative subgroup of SO(4) isomorphic to SO(2) SO(2). These groups are maximal tori of SO(4), which are all mutually conjugate in SO(4). All left-isoclinic rotations form a noncommutative subgroup SL 3 of SO(4) which is isomorphic to the multiplicative group S 3 of unit quaternions. All right-isoclinic rotations likewise form a subgroup SR 3 of SO(4) isomorphic to S 3. Both SL 3 and S3 R are maximal subgroups of SO(4). Each left-isoclinic rotation commutes with each right-isoclinic rotation. This implies that there exists a direct product SL 3 S3 R with normal subgroups S3 L and S3 R ; both of the corresponding factor groups are isomorphic to the other factor of the direct product, i.e. isomorphic to S 3. Each 4D rotation R is in two ways the product of left- and right-isoclinic rotations R L and R R. R L and R R are together determined up to the central inversion, i.e. when both R L and R R are multiplied by the central inversion their product is R again. This implies that SL 3 S3 R is the double cover of SO(4) and that S3 L and S3 R are normal subgroups of SO(4). The non-rotation I and the central inversion I form a group C 2 of order 2, which is the centre of SO(4) and of both SL 3 and S3 R. The centre of a group is a normal subgroup of that group. The factor group of C 2 in SO(4) is isomorphic to SO(3) SO(3). The factor groups of C 2 in SL 3 and S3 R are isomorphic to SO(3). The factor groups of SL 3 and S3 R in SO(4) are isomorphic to SO(3). 1.5 Special property of SO(4) among rotation groups in general The odd-dimensional rotation groups do not contain the central inversion and are simple groups. The even-dimensional rotation groups do contain the central inversion I and have the group C 2 {I, I} as their centre. From SO(6) onwards they are almost-simple in the sense that the factor groups of their centres are simple groups. SO(4) is different: there is no conjugation by any element of SO(4) that transforms left- and right-isoclinic rotations into each other. Reflections transform a left-isoclinic rotation into a right-isoclinic one by conjugation, and vice versa. This implies that under the group O(4) of all isometries with fixed point O the subgroups SL 3 and SR 3 are mutually conjugate and so are not normal subgroups of O(4). The 5D rotation group SO(5) and all higher rotation groups contain subgroups isomorphic to O(4). Like SO(4), all even-dimensional rotation groups contain isoclinic rotations. But unlike SO(4), in SO(6) and all higher even-dimensional rotation groups any pair of isoclinic rotations through the same angle is conjugate. The sets of all isoclinic rotations are not even subgroups of SO(2N), let alone normal subgroups. 2 Algebra of 4D rotations SO(4) is commonly identified with the group of orientation-preserving isometric linear mappings of a 4D vector space with inner product over the reals onto itself. With respect to an orthonormal basis in such a space SO(4) is represented as the group of real 4th-order orthogonal matrices with determinant +1. 2

2.1 Isoclinic decomposition A 4D rotation given by its matrix is decomposed into a left-isoclinic and a right-isoclinic rotation as follows: Let a 00 a 01 a 02 a 03 a 10 a 11 a 12 a 13 A (1) a 20 a 21 a 22 a 23 a 30 a 31 a 32 a 33 be its matrix with respect to an arbitrary orthonormal basis. Calculate from this the so-called associate matrix M 1 4 a 00 + a 11 + a 22 + a 33 +a 10 a 01 a 32 + a 23 +a 20 + a 31 a 02 a 13 +a 30 a 21 + a 12 a 03 a 10 a 01 + a 32 a 23 a 00 a 11 + a 22 + a 33 +a 30 a 21 a 12 + a 03 a 20 a 31 a 02 a 13 a 20 a 31 a 02 + a 13 a 30 a 21 a 12 a 03 a 00 + a 11 a 22 + a 33 +a 10 + a 01 a 32 a 23 a 30 + a 21 a 12 a 03 +a 20 a 31 + a 02 a 13 a 10 a 01 a 32 a 23 a 00 + a 11 + a 22 a 33. (2) M has rank one and is of unit Euclidean norm as a 16D vector if and only if A is indeed a 4D rotation matrix ([MEBI 2005]). In this case there exist reals a, b, c, d; p, q, r, s such that [ ] ap aq ar as a p q r s bp bq br bs b M (3) cp cq cr cs c dp dq dr ds d and (ap) 2 +...+(ds) 2 (a 2 +b 2 +c 2 +d 2 )(p 2 +q 2 +r 2 +s 2 ) 1. There are exactly two sets of a, b, c, d; p, q, r, s such that a 2 + b 2 + c 2 + d 2 1 and p 2 + q 2 + r 2 + s 2 1. They are each other s opposites. The rotation matrix then equals ap bq cr ds aq bp + cs dr ar bs cp + dq as + br cq dp bp + aq dr + cs bq + ap + ds + cr br + as dp cq bs ar dq + cp A (4) cp + dq + ar bs cq + dp as br cr + ds + ap + bq cs dr + aq bp dp cq + br + as dq cp bs + ar dr cs + bp aq ds + cr + bq + ap a b c d p q r s b a d c q p s r. (5) c d a b r s p q d c b a s r q p This formula is due to Van Elfrinkhof ([ELFI 1897]). The first factor in this decomposition represents a left-isoclinic rotation, the second factor a right-isoclinic rotation. The factors are determined up to the negative 4th-order identity matrix, i.e. the central inversion. 2.2 Relation to quaternions A point in 4D space with Cartesian coordinates (u, x, y, z) may be represented by a quaternion u + xi + yj + zk. A left-isoclinic rotation is represented by left-multiplication by a unit quaternion Q L a + bi + cj + dk. In matrix-vector language this is 3

a b c d u b a d c x. (6) c d a b y d c b a z u x y z Likewise, a right-isoclinic rotation is represented by right-multiplication by a unit quaternion Q R p + qi + rj + sk, which is in matrix-vector form u p q r s u x q p s r x. (7) y r s p q y s r q p z z In the preceding section (Isoclinic decomposition) it is shown how a general 4D rotation is split into left- and right-isoclinic factors. In quaternion language Van Elfrinkhof s formula reads u + x i + y j + z k (a + bi + cj + dk)(u + xi + yj + zk)(p + qi + rj + sk), or in symbolic form P Q L P Q R. Quaternion multiplication is associative. Therefore P (Q L P )Q R Q L (P Q R ), which shows that left-isoclinic and right-isoclinic rotations commute. 2.3 The Euler-Rodrigues formula for 3D rotations Our ordinary 3D space is conveniently treated as the subspace with coordinate system OXY Z of the 4D space with coordinate system OU XY Z. Its rotation group is identified with the subgroup of SO(4) consisting of the matrices 1 0 0 0 0 a 11 a 12 a 13 (8) 0 a 21 a 22 a 23 0 a 31 a 32 a 33 In Van Elfrinkhof s formula in the preceding subsection this restriction to three dimensions leads to p a, q b, r c, s d, or in quaternion representation: Q R Q L Q 1 L ([MEBI 2007]). The 3D rotation matrix then becomes a 11 a 12 a 13 a 2 + b 2 c 2 d 2 2ad + 2bc 2ac + 2bd a 21 a 22 a 23 2ad + 2bc a 2 b 2 + c 2 d 2 2ab + 2cd (9) a 31 a 32 a 33 2ac + 2bd 2ab + 2cd a 2 b 2 c 2 + d 2 with the relation a 2 + b 2 + c 2 + d 2 1, which is the representation of the 3D rotation by its Euler-Rodrigues parameters. The corresponding quaternion formula P QP Q 1, where Q Q L and Q 1 Q R, or, in expanded form: x i + y j + z k (a + bi + cj + dk)(xi + yj + zk)(a bi cj dk) is known as the Hamilton-Cayley formula. 4

See also Wikipedia lemma orthogonal matrix orthogonal group rotation group Lorentz group Poincaré group Laplace-Runge-Lenz vector URL http://en.wikipedia.org/wiki/orthogonal%5fmatrix http://en.wikipedia.org/wiki/orthogonal%5fgroup http://en.wikipedia.org/wiki/rotation%5fgroup http://en.wikipedia.org/wiki/lorentz%5fgroup http://en.wikipedia.org/wiki/poincar%c3%a9%5fgroup http://en.wikipedia.org/wiki/laplace-runge-lenz%5fvector Notes Two flat subspaces S 1 and S 2 of dimensions M and N of a Euclidean space S of at least M + N dimensions are called completely orthogonal if every line in S 1 is orthogonal to every line in S 2. If dim(s) M + N then S 1 and S 2 intersect in a single point O. If dim(s) < M +N then S 1 and S 2 may or may not intersect. If dim(s) M +N then a line in S 1 and a line in S 2 may or may not intersect; if they intersect then they intersect in O. Literature: [SCHO 1902] References and background literature ELFR 1897 L. van Elfrinkhof: Eene eigenschap van de orthogonale substitutie van de vierde orde. Handelingen van het 6e Nederlandsch Natuurkundig en Geneeskundig Congres, Delft, 1897. http://www.xs4all.nl/%7ejemebius/elfrinkhof.htm (URL not mentioned in original Wikipedia lemma) KLEI 1932 Felix Klein: Elementary Mathematics from an Advanced Standpoint: Arithmetic, Algebra, Analysis. Translated by E.R. Hedrick and C.A. Noble. The Macmillan Company, New York, 1932. MANN 1914 Henry Parker Manning: Geometry of four dimensions. The Macmillan Company, 1914. Republished unaltered and unabridged by Dover Publications in 1954. ( ) ( ) MEBI 2005 Johan E. Mebius: A matrix-based proof of the quaternion representation theorem for four-dimensional rotations. http://arxiv.org/abs/math.gm/0501249 MEBI 2007 Johan E. Mebius: Derivation of the Euler-Rodrigues formula for three-dimensional rotations from the general formula for four-dimensional rotations. http://arxiv.org/abs/math.gm/0701759 SCHO 1902 P. H. Schoute: Mehrdimensionale Geometrie. Volume 1: Die linearen Räume. Leipzig: G. J. Göschensche Verlagshandlung (Sammlung Schubert XXXV), 1902 SCHO 1905 P. H. Schoute: Mehrdimensionale Geometrie. Volume 2: Die Polytope. Leipzig: G. J. Göschensche Verlagshandlung (Sammlung Schubert XXXVI), 1905 http://www-groups.dcs.st-and.ac.uk/%7ehistory/mathematicians/schoute.html ( ) In this monograph four-dimensional geometry is developed from first principles in a synthetic axiomatic way. Manning s work can be considered as a direct extension of the works of Euclid and Hilbert to four dimensions. ( ) http://www.brown.edu/administration/news%5fbureau/databases/encyclopedia/search.php?serialm0090 5

Categories http://en.wikipedia.org/wiki/category:lie%5fgroups http://en.wikipedia.org/wiki/category:quaternions http://en.wikipedia.org/wiki/category:4-dimensional%5fgeometry 6