Electrochemistry Redox Half-Reactions

Similar documents
2. Before we answer the question, here are four important terms relating to redox reactions and galvanic cells.

ALE 26. Equilibria for Cell Reactions. What happens to the cell potential as the reaction proceeds over time?

E o and the equilibrium constant, K

Solutions. Definitions pertaining to solutions

CHAPTER 19 ELECTROCHEMISTRY

In the half reaction I 2 2 I the iodine is (a) reduced (b) oxidized (c) neither of the above

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition)

Chemistry 132 NT. Electrochemistry. Review

Chapter 19. Electrochemistry. Dr. Al Saadi. Electrochemistry

Electrochemistry. Reduction: the gaining of electrons. Reducing agent (reductant): species that donates electrons to reduce another reagent.

University Chemistry Quiz /04/21 1. (10%) Consider the oxidation of ammonia:

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

CHAPTER 21 ELECTROCHEMISTRY: CHEMICAL CHANGE AND ELECTRICAL WORK

Chapter 3.1: Polynomial Functions

Electrochemistry. Half-Reactions 1. Balancing Oxidation Reduction Reactions in Acidic and Basic Solutions

Electrochemistry. Learning Objectives. Half-Reactions 1. Balancing Oxidation Reduction Reactions in Acidic and Basic Solutions

Quantum Mechanics for Scientists and Engineers. David Miller

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

CHEM 1032 FALL 2017 Practice Exam 4 1. Which of the following reactions is spontaneous under normal and standard conditions?

Unit -2 THEORY OF DILUTE SOLUTIONS

Electrochemical Reactions

Every gas consists of a large number of small particles called molecules moving with very high velocities in all possible directions.

MATH Midterm Examination Victor Matveev October 26, 2016

Physical Chemistry Laboratory I CHEM 445 Experiment 2 Partial Molar Volume (Revised, 01/13/03)

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY

Nernst Equation. Nernst Equation. Electric Work and Gibb's Free Energy. Skills to develop. Electric Work. Gibb's Free Energy

CHEM 2400/2480. Lecture 19

2-July-2016 Chemsheets A Page 1

Chapter 8 Reduction and oxidation

Difference of 2 kj per mole of propane! E = kj

Rates and Mechanisms of Chemical Reactions

Thermodynamic study of CdCl 2 in 2-propanol (5 mass %) + water mixture using potentiometry

CHEMISTRY 16 HOUR EXAM IV KEY April 23, 1998 Dr. Finklea. 1. The anti-cancer drug cis-platin is the complex: cis-[pt(nh ) (Cl) ]. In this complex, the

BIT Chapters = =

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS

[1 & α(t & T 1. ' ρ 1

Identical Particles. We would like to move from the quantum theory of hydrogen to that for the rest of the periodic table

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

CHM 152 Practice Final

Lecture 13: Electrochemical Equilibria

Thermodynamics and Equilibrium

Name ID# Section # CH 1020 EXAM 3 Spring Form A

A Chemical Reaction occurs when the of a substance changes.

Examination No. 3 - Tuesday, Nov. 15

are specified , are linearly independent Otherwise, they are linearly dependent, and one is expressed by a linear combination of the others

ALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change?

Electrostatics. . where,.(1.1) Maxwell Eqn. Total Charge. Two point charges r 12 distance apart in space

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25

MATHEMATICS 9740/01 Paper 1 14 Sep hours

Chapter 17 Free Energy and Thermodynamics

ENGI 4421 Central Limit Theorem Page Central Limit Theorem [Navidi, section 4.11; Devore sections ]

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes

Making and Experimenting with Voltaic Cells. I. Basic Concepts and Definitions (some ideas discussed in class are omitted here)

A.P. CHEMISTRY. SOLUTIONS AND ACID BASE CHEMISTRY. p 1

CHEM 116 Electrochemistry at Non-Standard Conditions, and Intro to Thermodynamics

Chem 112, Fall 05 (Weis/Garman) Exam 4A, December 14, 2005 (Print Clearly) +2 points

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review)

Entropy, Free Energy, and Equilibrium

What is the oxidation number of N in KNO3? Today. Review for our Quiz! K is +1, O is -2 molecule is no charge 1(+1) + 3(-2) = -5 N must be +5

A Hartree-Fock Calculation of the Water Molecule

BIO752: Advanced Methods in Biostatistics, II TERM 2, 2010 T. A. Louis. BIO 752: MIDTERM EXAMINATION: ANSWERS 30 November 2010

Department of Chemistry University of Texas at Austin

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Intermediate Division Solutions

Chapter 9 Chemical Reactions NOTES

Grade 3 Mathematics Course Syllabus Prince George s County Public Schools

Thermodynamics Partial Outline of Topics

Sound Absorption Characteristics of Membrane- Based Sound Absorbers

ELECTROCHEMISTRY OXIDATION-REDUCTION

Edexcel GCSE Physics

Chapter 17: Thermodynamics: Spontaneous and Nonspontaneous Reactions and Processes

Examples: 1. How much heat is given off by a 50.0 g sample of copper when it cools from 80.0 to 50.0 C?

Hº = -690 kj/mol for ionization of n-propylene Hº = -757 kj/mol for ionization of isopropylene

Pipe Networks - Hardy Cross Method Page 1. Pipe Networks

Downloaded from

Supporting information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

CHAPTER 6 / HARVEY A. CHEMICAL EQUILIBRIUM B. THERMODYNAMICS AND EQUILIBRIUM C. MANUPULATING EQUILIBRIUM CONSTANTS

Strategy Write the two half-cell reactions and identify the oxidation and reduction reactions. Pt H2 (g) H + (aq)

Lecture 16 Thermodynamics II

Thermochemistry. Thermochemistry

Electrochemistry Pulling the Plug on the Power Grid

General Chemistry 1 (CHEM1141) Shawnee State University Fall 2016

The Excel FFT Function v1.1 P. T. Debevec February 12, The discrete Fourier transform may be used to identify periodic structures in time ht.

ALL INDIA TEST SERIES

SCH4U: End of Year Review

5.80 Small-Molecule Spectroscopy and Dynamics

Unit 14 Thermochemistry Notes

Edexcel IGCSE Chemistry. Topic 1: Principles of chemistry. Chemical formulae, equations and calculations. Notes.

Study of Energy Eigenvalues of Three Dimensional. Quantum Wires with Variable Cross Section

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium

DEPARTMENT OF ELECTRICAL ENGINEERING DIT UNIVERSITY HIGH VOLTAGE ENGINEERING

Study in Cylindrical Coordinates of the Heat Transfer Through a Tow Material-Thermal Impedance

Multi-objective Programming Approach for. Fuzzy Linear Programming Problems

19 Applications of Standard Electrode Potentials

How can standard heats of formation be used to calculate the heat of a reaction?

Name: Period: Date: BONDING NOTES ADVANCED CHEMISTRY

Chapter 4. Problem Solutions

Transcription:

Electrchemistry Electrchemistry deals with the relatiship betwee chemical chage ad electricity Electrchemical s (tw types) Galvaic s use a sptaeus ( G < 0) reacti t prduce electricity (batteries) Electrlytic s use a surce f electricity t drive a -sptaeus ( G > 0) reacti (electrlysis) 21.1 Redx Half-Reactis Redx reactis ivlve e - trasfer Oxidati lss f e - (xidati state ) Reducti gai f e - (xidati state ) Half-reactis fcus xidati ad reducti separately Example: Ca(s) Cl 2 (g) CaCl 2 (s) CaCl 2 (s) csists f Ca 2 ad Cl - is Ca(s) Ca 2 (s) 2e - (lss f 2e -, xidati) Cl 2 (g) 2e - 2Cl - (s) (gai f 2e -, reducti) Ca(s) Cl 2 (g) 2e - Ca 2 (s) 2e - 2Cl - (s) Addig the half-reactis gives the verall reacti Ca is xidized (Ca is the reducig aget) Cl 2 is reduced (Cl 2 is the xidizig aget) Geeralized expressis fr half reactis: Red Ox e - r Ox e - Red Ox/Red frm a redx cuple (Ex: Ca 2 /Ca; Cl 2 /Cl - ) Balacig Redx Reactis Half-reacti methd divides the verall reacti it tw half-reactis Balacig i acidic slutis 1. Idetify the redx cuples ad write the halfreactis 2. Balace each half-reacti separately: 1 st, balace all elemets ther tha O ad H 2 d, balace O by addig H 2 O 3 rd, balace H by addig H 4 th, balace the charge by addig e - 3. Multiply the half-reactis by itegers t equal the # f e - i them 4. Add the half-reactis ad cacel the e - Example: Balace the fllwig skelet equati i acidic sluti: V 3 Ce 4 VO 2 Ce 3 1. Redx cuples: VO 2 /V 3 ad Ce 4 /Ce 3 Half-reactis: V 3 VO 2 ad Ce 4 Ce 3 2. V 3 VO 2 (V is balaced) V 3 2H 2 O VO 2 (balace O) V 3 2H 2 O VO 2 4H (balace H) V 3 2H 2 O VO 2 4H 2e - (balace charge) Ce 4 Ce 3 (Ce, O ad H are balaced) Ce 4 1e - Ce 3 (balace charge) 3. Multiply the 2 d half-reacti by 2 t get 2e - 2Ce 4 2e - 2Ce 3 4. Add the half-reactis V 3 2H 2 O VO 2 4H 2e - 2Ce 4 2e - 2Ce 3 V 3 2H 2 O 2Ce 4 2e - VO 2 4H 2e - 2Ce 3 V 3 2Ce 4 2H 2 O VO 2 2Ce 3 4H Nte: If H 3 O is required i the equati istead f H, add as may water mlecules bth sides as the # f H is V 3 2Ce 4 6H 2 O VO 2 2Ce 3 4H 3 O Balacig i basic slutis The same fur steps are used plus a fifth step: 5. Add OH - bth sides f the equati i rder t eutralize the H, ad cacel the water mlecules if ecessary Example: Balace the fllwig skelet equati i basic sluti: CrO BrO 4- CrO 4 BrO 3-1. Redx cuples: CrO 4 /CrO ad BrO 4- /BrO 3 - Half-reactis: CrO CrO 4 ad BrO 4- BrO 3-2. CrO CrO 4 (Cr is balaced) CrO 2H 2 O CrO 4 (balace O) CrO 2H 2 O CrO 4 4H (balace H) CrO 2H 2 O CrO 4 4H 3e - (balace charge) BrO 4- BrO - 3 (Br is balaced) BrO 4- BrO 3- H 2 O (balace O) BrO 4-2H BrO 3- H 2 O (balace H) BrO 4-2H 2e - BrO 3- H 2 O (balace charge)

3. Multiply the 1 st half-reacti by 2 ad the 2 d by 3 t get 6e - i bth half-reactis 2CrO 4H 2 O 2CrO 4 8H 6e - 3BrO 4-6H 6e - 3BrO 3-3H 2 O 4. Add the half-reactis 2CrO 4H 2 O 3BrO 4-6H 6e - 2CrO 4 8H 6e - 3BrO 3-3H 2 O 2CrO 3BrO 4- H 2 O 2CrO 4 3BrO 3-2H 5. Add 2OH - bth sides f the equati 2H 2CrO 3BrO 4- H 2 O 2OH - 2 O 2CrO 4 3BrO 3-2H 2OH - 2CrO 3BrO 4-2OH - 2CrO 4 3BrO 3- H 2 O 21.2 Galvaic (Vltaic) Cells Prduce electricity frm a sptaeus chemical reacti Example: Z metal reacts sptaeusly with Cu 2 slutis t yield metallic Cu ad Z 2 is Z(s) Cu 2 Z 2 Cu(s) (SO 4 cuter is) The tw half-reactis are: Z(s) Z 2 2e - (xidati) Cu 2 2e - Cu(s) (reducti) The tw half-reactis ca be physically separated by placig them i separate ctaiers (half-s) Half-s where the half-reactis ccur Ade half- where xidati ccurs Cathde half- where reducti ccurs Electrdes i ctact with the electrlyte slutis ad the exteral electrical circuit Ade (xidati) Cathde (reducti) I vltaic s, the ade is (-) ad the cathde is () The e - s flw frm the ade tward the cathde Salt bridge cmpletes the electrical circuit ad maitais electrical eutrality f the half-s (prus material saked i a ccetrated electrlyte sluti) Ais i the salt bridge flw tward the ade Catis i the salt bridge flw tward the cathde By cveti, the ade half- appears the left Galvaic Cell Ntati Half- tati Differet phases are separated by vertical lies Species i the same phase are separated by cmmas Types f electrdes Active electrdes ivlved i the electrde half-reacti (mst metal electrdes) Example: Z 2 /Z metal electrde Z(s) Z 2 2e - (as xidati) Ntati: Z(s) Z 2 Iactive (iert) electrdes t ivlved i the electrde half-reacti (iert slid cductrs; serve as a ctact betwee the sluti ad the exteral el. circuit) Example: Pt electrde i Fe 3 /Fe 2 sl. Fe 3 e - Fe 2 (as reducti) Ntati: Fe 3, Fe 2 Pt(s) Electrdes ivlvig metals ad their slightly sluble salts Example: Ag/AgCl electrde AgCl(s) e - Ag(s) Cl - (as reducti) Ntati: Cl - AgCl(s) Ag(s)

Electrdes ivlvig gases a gas is bubbled ver a iert electrde Example: H 2 gas ver Pt electrde H 2 (g) 2H 2e - (as xidati) Ntati: Pt(s) H 2 (g) H Example: A cmbiati f the Z(s) Z 2 ad Fe 3, Fe 2 Pt(s) half-s leads t: Cell tati The ade half- is writte the left f the cathde half- The electrdes appear the far left (ade) ad far right (cathde) f the tati Salt bridges are represeted by duble vertical lies Z(s) Z 2 2e - (ade, xidati) Fe 3 e - Fe 2 ( 2) (cathde, reducti) Z(s) 2Fe 3 Z 2 2Fe 2 Z(s) Z 2 Fe 3, Fe 2 Pt(s) Example: A cmbiati f the Pt(s) H 2 (g) H ad Cl - AgCl(s) Ag(s) half-s leads t: Nte: The reactats i the verall reacti are i differet phases ( physical ctact) eed f a salt bridge H 2 (g) 2H 2e - (ade, xidati) AgCl(s) e - Ag(s) Cl - ( 2) (cathde, reducti) 2AgCl(s) H 2 (g) 2Ag(s) 2H 2Cl - Pt(s) H 2 (g) H,Cl - AgCl(s) Ag(s) Example: Write the reacti ad the tati fr a csistig f a graphite cathde immersed i a acidic sluti f MO 4- ad M 2 ad a graphite ade immersed i a sluti f S 4 ad S 2. Write the half reactis (a list f the mst cmm half-reactis is give i Appedix D) S 2 S 4 2e - 5 (xidati) MO 4-8H 5e - M 2 4H 2 O(l) 2 (reducti) 5S 2 2MO 4-16H 10e - 5S 4 10e - 2M 2 8H 2 O(l) The graphite (C) electrdes are iactive C(s) S 2,S 4 H,MO 4-,M 2 C(s) Why D Galvaic Cells Wrk? Csider a made f tw active metal electrdes, M 1 ad M 2, ad their is. If the circuit is pe, the tw metals are i equilibrium with their is 1) M 1 M 1 e - 2) M 2 M 2 e - The prduced electrs accumulate i the metal electrdes ad prduce electrical ptetials If M 1 has a greater tedecy t give ut its electrs, the 1 st equilibrium is shifted further t the right ad the ptetial f M 1 is mre egative Whe the circuit is clsed, electrs flw frm the mre egative M 1 (ade) tward the less egative M 2 (cathde) 21.3 Cell Ptetials Electrmtive frce (emf) drives the electrs i the el. circuit emf is the differece betwee the electrical ptetials f the tw electrdes (vltage) Cell ptetial (E ) E = emf Uits vlts (V) (1 V = 1 J/C sice the electrical wrk is equal t the applied vltage times the charge mvig betwee the electrdes) Stadard ptetial (E ) the ptetial at stadard-state cditis (gases 1 atm, slutis 1 M, liquids & slids pure)

E is measured with a vltmeter If the () termial f the vltmeter is cected t the () electrde (cathde), the vltmeter shws a psitive readig E characterizes the verall reacti If E > 0, the reacti is sptaeus If E < 0, the reacti is -sptaeus If E = 0, the reacti is at equilibrium Example: Z(s) Z 2 (1M) Cu 2 (1M) Cu(s) 1.10 V Z(s) Cu 2 Z 2 Cu(s) E = 1.10 V > 0 sptaeus reacti Electrde ptetials (E) characterize the idividual electrdes (half-reactis) The ptetial is the differece betwee the electrde ptetials f the cathde ad ade E = E cathde E ade Stadard electrde ptetials (E ) electrde ptetials at the stadard-state E = E cathde E ade E values are reprted fr the half-reacti writte as reducti (stadard reducti ptetials) listed i Appedix D Abslute values fr E ad E ca t be measured A referece electrde (half-) is eeded The ptetials f all electrdes are measured relative t the referece electrde Stadard hydrge electrde used as a referece electrde E ref = 0 V (assumed) H (1M) H 2 (g, 1atm) Pt(s) 2H (1M) 2e - H 2 (g, 1atm) T fid the ptetial f ay electrde, a is cstructed betwee the ukw electrde ad the referece electrde The ptetial is directly related t the ukw electrde ptetial If the ukw electrde is the cathde f the E = E uk E ref E uk = E E ref = E 0= E > 0 If the ukw electrde is the ade f the E = E ref E uk E uk = E ref E = 0 E = E < 0 Example: Pt(s) H 2 (g, 1atm) H (1M),Cl - (1M) AgCl(s) Ag(s) H /H 2 ade Ag/AgCl cathde E = E Ag/AgCl E ref = E Ag/AgCl E Ag/AgCl = 0.22 V Determiati f Electrde Ptetials Electrde ptetials ca be determied by measuremets versus the stadard H-electrde r ther electrdes with kw ptetials Example: E = 0.46 V fr the reacti: Cu(s) 2Ag Cu 2 2Ag(s) If E = 0.34 V fr the Cu 2 /Cu redx cuple, what is E fr the Ag /Ag redx cuple? Split it half-reactis: Cu(s) Cu 2 2e - E Cu = 0.34 V (ade, x) Ag e - Ag(s) E Ag =??? V (cathde, red) E = E Ag E Cu = E Ag (0.34) = 0.46 E Ag = 0.46 (0.34) = 0.80 V Usig Cell Ptetials i Calculatis Cell ptetials are additive If tw reactis are added, their ptetials are added t Cell ptetials are itesive prperties remai idepedet f the system size If a reacti (r a half-reacti) is multiplied by a umber, its ptetial remais the same Example: Cu(s) 2Ag Cu 2 2Ag(s) ( 3) E = 0.46 V 3Ag(s) Au 3 3Ag Au(s) ( 2) E = 0.70 V 3Cu(s) 2Au 3 3Cu 2 2Au(s) E = 0.46 0.70 = 1.16 V

Stregths f Oxidizig ad Reducig Agets E values are always tabulated fr reducti Ox e - Red (E ) Ox is a xidizig aget; Red is a reducig aget E is a measure fr the tedecy f the half-reacti t uderg reducti Higher (mre psitive) E meas Greater tedecy fr reducti Lwer tedecy fr xidati Higher (mre psitive) E meas Strger xidizig aget (Ox) Ox is reduced Weaker reducig aget (Red) Red is xidized Electrchemical series a arragemet f the redx cuples i rder f decreasig reducti ptetials (E ) Appedix D The mst psitive E s are at the tp f the table The mst egative E s are at the bttm f the table The strgest xidizig agets (Ox) are at the tp f the table as reactats The strgest reducig agets (Red) are at the bttm f the table as prducts Every redx reacti is a sum f tw half-reactis, e ccurrig as xidati ad ather as reducti Red 1 Ox 1 e - Ox 2 e - Red 2 Red 1 Ox 2 Ox 1 Red 2 I a sptaeus redx reacti, the strger xidizig ad reducig agets react t prduce the weaker xidizig ad reducig agets Strger Red 1 Strger Ox 2 Weaker Ox 1 Weaker Red 2 Example: Give the fllwig half-reactis: Cl 2 (g) 2e - 2Cl - E = 1.36 V O 2 (g) 4H 4e - 2H 2 O(l) E = 1.23 V Fe 3 e - Fe 2 E = 0.77 V Fe 2 2e - Fe(s) E = 0.44 V a) Rak the xidizig ad reducig agets by stregth Ox agets the left; Red agets the right Oxidizig (Tp) Cl 2 > O 2 > Fe 3 > Fe 2 (Bttm) Reducig (Bttm) Fe > Fe 2 > H 2 O > Cl - (Tp) Appedix D b) Ca Cl 2 xidize H 2 O t O 2 i acidic sluti? Cl 2 /Cl - has higher E (Cl 2 /Cl - is abve O 2,H /H 2 O) Cl 2 is a strger xidizig aget tha O 2 Cl 2 ca xidize H 2 O t O 2 at stadard cditis c) Write the sptaeus reacti betwee the Cl 2 /Cl - ad Fe 3 /Fe 2 redx cuples ad calculate its E Cl 2 /Cl - has the higher reducti ptetial (E ) Cl 2 /Cl - uderges reducti Fe 3 /Fe 2 uderges xidati (reverse equati) Cl 2 (g) 2e - 2Cl - (reducti) E = 1.36 V Fe 2 Fe 3 e - 2 (xidati) E = 0.77 V Cl 2 (g) 2e - 2Fe 2 2Cl - 2Fe 3 2e - E = E cath E ad = 1.36 (0.77) = 0.59 V d) Is the reacti f disprprtiati (simultaeus xidati ad reducti) f Fe 2 t Fe 3 ad Fe(s) sptaeus at stadard cditis? Need the sig f E Fe 2 /Fe(s) uderges reducti Fe 3 /Fe 2 uderges xidati (reverse equati) Fe 2 2e - Fe(s) (reducti) E = 0.44 V Fe 2 Fe 3 e - 2 (xidati) E = 0.77 V 3Fe 2 2e - Fe(s) 2Fe 3 2e - E = E cath E ad = 0.44 (0.77) = 1.21 V E < 0 the reacti is -sptaeus at stadard cditis Relative Reactivity f Metals The activity series f metals raks metals based their ability t displace H 2 frm acids r water r displace each ther s is i sluti Metals that ca displace H 2 frm acids The reducti f H frm acids t H 2 is give by the stadard hydrge half-reacti 2H 2e - H 2 (g) E = 0 V I rder fr this half-reacti t prceed as writte, the metal must have lwer reducti ptetial (the metal must be belw H 2 /H i Appedix D) If E metal < 0, the metal ca displace H 2 frm acids If E metal > 0, the metal cat displace H 2

Example: Ca Fe ad Cu be disslved i HCl(aq)? Fe 2 /Fe is belw ad Cu 2 /Cu is abve H 2 /H 2H 2e - H 2 (g) (reducti) E = 0.00 V Fe(s) Fe 2 2e - (xidati) E = 0.44 V 2H 2e - Fe(s) H 2 (g) Fe 2 2e - E = E cath E ad = 0.00 ( 0.44) = 0.44 V E > 0 sptaeus (Fe disslves i HCl) 2H 2e - H 2 (g) (reducti) E = 0.00 V Cu(s) Cu 2 2e - (xidati) E = 0.34 V 2H 2e - Cu(s) H 2 (g) Cu 2 2e - E = E cath E ad = 0.00 (0.34) = 0.34 V E < 0 -sptaeus (Cu des t disslve) Metals that ca displace H 2 frm water The reducti f H 2 O t H 2 is give by: 2H 2 O(l) 2e - H 2 (g) 2OH - E = -0.42 V The value f E is fr ph = 7 (stadard state) Metals that are belw H 2 O/H 2,OH - i Appedix D ca displace H 2 frm water at stadard cditis Metals that have E metal < -0.42 ca displace H 2 frm water at ph = 7 Example: Ptassium, K, disslves readily i water 2H 2 O(l) 2e - H 2 (g) 2OH - (reducti) E = 0.42 V K(s) K e - 2 (xidati) E = 2.93 V 2H 2 O(l) 2e - 2K(s) H 2 (g) 2OH - 2K 2e - E = 0.42 ( 2.93) = 2.51 V > 0 (sptaeus) 21.4 Free Eergy ad Electrical Wrk Relatiship Betwee E ad G r Electrical wrk (w) w = (charge trasferred) (vltage) # ml e - trasferred F charge f 1 ml e - (charge trasferred) = F (vltage) = E w = FE (w < 0 sice the system des wrk) G is the maximum wrk the system ca d, s G= w max If the prcess is carried ut reversibly (w = w max ) G r = FE ad G r = FE F = 96485 C/ml Faraday cstat G r, G r, E, ad E are all depedet T (superscripts, T, are mitted fr simplicity) G r, G r are extesive prperties E, E, E, ad E are itesive prperties If a redx equati is multiplied by a umber, G is als multiplied, but E is t Example: Usig E values frm appedix D, calculate G r at 298 K fr the reacti: 2Cr 3 2Br - 2Cr 2 Br 2 (l) Fid the redx cuples i Appedix D (298 K): Cr 3 e - Cr 2 E = -0.41 V Br 2 (l) 2e - 2Br - E = 1.06 V Ivert the 2 d half-reacti t match the verall eq. Cr 3 e - Cr 2 2 (reducti) E = 0.41 V 2Br - Br 2 (l) 2e - (xidati) E = 1.06 V 2Cr 3 2e - 2Br - 2Cr 2 Br 2 (l) 2e - Calculate E E = E cath E ad = 0.41 (1.06) = 1.47 V Calculate G r ( = 2 # ml e - i verall eq.) G r = FE = (2 ml) (96485 C/ml) (-1.47 V) G r = 2.84 10 5 C V = 2.84 10 5 J = 284 kj G r > 0 ad E < 0 the reacti is sptaeus at stadard cditis The reverse reacti is sptaeus at stadard cditis Relatiship Betwee E ad K Frm G r = FE ad G r = RT l K FE = RT l K E = RT l K F At 298 K, RT/F = 0.0257 V E 0. 0257 = l K RT FE K = e E 0.0257 K = e l K = 2.303 lg K ad 0.0257 2.303 = 0.0592 0. 0592 E E = lg K 0 0592 K = 10.

Example: Usig E values frm appedix D, calculate K at 298 K fr the reacti: 2Cr 2 Br 2 (l) 2Cr 3 2Br - This is the reverse f the reacti i the previus example (E = -1.47 V frm previus example) E reverse = - E frward E = -(-1.47 V) = 1.47 V ad = 2 E 2 1. 47 K. 0257 = e 0. 0257 = e 0 = 4. 8 10 E > 0 the reacti is sptaeus at stadard cditis K >> 1 the prducts are favred at equilibrium 49 Iterrelatiship betwee G r, E, ad K Example: Calculate K sp f PbSO 4 at 298 K. PbSO 4 (s) Pb 2 SO 4 K sp =? Nt a redx reacti, but it ca be represeted as a sum f tw redx half-reactis PbSO 4 (s) 2e - Pb(s) SO 4 (reducti) E = -0.36 V Pb(s) Pb 2 2e - (xidati) E = -0.13 V PbSO 4 (s) 2e - Pb(s) Pb(s) SO 4 Pb 2 2e - E = E cath E ad = 0.36 ( 0.13) = -0.23 V K sp = e E 2 ( 0.23) 0.0257 = e 0.0257 8 = 1.7 10 E < 0 the dissluti f PbSO 4 is sptaeus at 298 K (K sp << 1 ) The Effect f Ccetrati E TheNerst equati gives the variati f the ptetial with cmpsiti G r = G r RT l Q G r = FE ad G r = FE FE = FE RT l Q E At 298 K E = E RT lq F 0. 0257 0. 0592 = E lq E = E lgq The Nerst equati applies als t half-reactis (E ad E are used istead f E ad E ) Example: Calculate the electrde ptetial f the Cu 2 /Cu redx cuple at 298 K, if the ccetrati f Cu 2 is 0.025 M. Cu 2 2e - Cu(s) E = 0.34 V Use the Nerst eq. t get E Q = 1/[Cu 2 ] = 1/0.025 ad = 2 0. 0257 0. 0257 1 E = E lq = 0. 34 l 2 0. 025 E = 0. 34 0. 047 = 0. 29 V E i Relati t Q ad K Frm E = E (RT/F)lQ: If Q < 1 (mre reactats), l Q < 0, ad E > E If Q > 1 (mre prducts), l Q > 0, ad E < E If Q = 1 (stadard state), l Q = 0, ad E = E Cmbiig E = E (RT/F)lQ with E = (RT/F)lK leads t: E = (RT/F)lK (RT/F)lQ If Q < K, E > 0 frward reacti is sptaeus If Q > K, E < 0 reverse reacti is sptaeus If Q = K, E = 0 reacti is at equilibrium

Ccetrati Cells Ccetrati ctais the same redx cuple i bth the ade ad cathde half-s The ade ad cathde are the same E = E cathde E ade = 0 The ccetratis f the cmpets are differet i the tw half-s E = 0 (RT/F)lQ 0 Example: Cu 2 /Cu ccetrati (E Cu= 0.34 V) Cu 2 (1.0 M) 2e - Cu(s) (cathde,reducti) Cu(s) Cu 2 (0.1 M) 2e - (ade,xidati) Cu 2 (1.0 M) 2e - Cu(s) Cu(s) Cu 2 (0.1 M) 2e - E = E Cu E Cu = 0.34 (0.34) = 0 V 0.0257 0.0592 0.1 E = E lgq = 0 lg 2 1.0 0.0592 E = 0 ( 1) = 0 0.0296 = 0.0296 V 2 The ctiues t wrk util [Cu 2 ] is equalized i the tw half-s ad E decreases t zer I-selective electrdes have ptetials that are directly related t the ccetrati f specific is such as H (ph), K, F -, Cl -, Br -, Example: Calculate the ph f a sluti i which the ptetial f the H H 2 (g,1atm) Pt electrde is E = -0.15 V. 2H 2e - H 2 (g,1atm) E = 0.00 V P Q = [H ] E = E H 2 2 1atm = 2 [H ] = 2 0.0592 0.0592 1 lgq = 0 lg 2 [H ] 2.0592 1 0.0592 E = lg = lg [H ] 2 2 [H ] 2 ( 2) 0.0592 E = lg [H ] = 0.0592 ph 2 E 0.15 ph = = = 2.5 0.0592 0.0592 0 2 The ptetial f a i-selective electrde is measured by cmbiig it i a with a referece electrde havig a well kw ad cstat electrde ptetial such as the calmel (Hg/Hg 2 Cl 2 /Cl - ) r the Ag/AgCl/Cl - electrdes Optially, the i-selective electrde ca be perated i a ccetrati with the same electrde immersed i a sluti with kw ccetrati as a referece 21.5 Galvaic Cells as Batteries Primary s ca t be recharged The battery dies whe the reactats are exhausted Example: The alkalie battery a dry Cathde (reducti): 2MO 2 (s) H 2 O 2e - 2M 2 O 3 (s) 2OH - Ade (xidati): Z(s) 2OH - ZO(s) H 2 O 2e - Overall: 2MO 2 (s) Z(s) 2M 2 O 3 (s) ZO(s) Sice all reactats ad prducts are slids (dry ) Q = 1 E = E RT l 1 = E 1. 5 V F Secdary s ca be recharged The is peridically cverted t a electrlytic i rder t cvert sme f the prducts back t reactats Example: The lead-acid battery E = 1.685 (-0.356) = 2.041 2 V 0.0257 1 E = E l 2 2 [H2 SO4] As H 2 SO 4 is csumed, E drps The eeds t be recharged

Fuel s use cmbusti reactis The must be ctiuusly prvided with fuel ad xyge (flw s) Example: The hydrge fuel E = E cath - E ad E = 1.23 (0.00) 1.2 V PH 2 Q = P P E H 2 = E O 1 / 2 O2 0. 0257 l Q 2 PH 2 ad PO 2 leads t E 21.6 Crrsi Uwated xidati f metals i the evirmet If the metal (M) is i ctact with water Cathde, reducti: 2H 2 O(l) 2e - H 2 (g) 2OH - E = -0.83 V (at ph = 7) Ade, xidati: E = -0.42 V M(s) M e - E < -0.42 V Ay metal with E < -0.42 V ca be xidized by H 2 O Cathde, reducti: O 2 (g) 4H 4e - 2H 2 O(l) E = 1.23 V (at ph = 7) Ade, xidati: E= 0.82 V M(s) M e - E < 0.82 V Ay metal with E < 0.82 V ca be xidized by H 2 O i the presece f O 2 At ph < 7 (acid rai, etc.), the reducti ptetials f H 2 O ad O 2 are eve higher Easier xidati f the metal Example: Rustig f ir (Fe E = -0.44 V) Cathde, reducti: O 2 (g) 4H 4e - 2H 2 O(l) E= 0.82 V (ph = 7) Ade, xidati: Fe(s) Fe 2 2e - ( 2) E = -0.44 V Overall: 2Fe(s) O 2 (g) 4H 2Fe 2 2H 2 O(l) E = E cath E ad = 0.82 (-0.44 ) = 1.26 V E > 0 sptaeus reacti Rust Further xidati: 2Fe 2 ½O 2 (g) (2)H 2 O(l) Fe 2 O 3 H 2 O(s) 4H Overall rustig prcess: 2Fe(s) O 2 (g) 4H 2Fe 2 2H 2 O(l) 2Fe 2 ½O 2 (g) (2)H 2 O(l) Fe 2 O 3 H 2 O(s) 4H 2Fe(s) 3/2O 2 (g) H 2 O(l) Fe 2 O 3 H 2 O(s) Crrsi is ehaced by acidic cditis ( [H ]) ad by salty slutis (imprved cductivity) Crrsi prtecti Adic prtecti prexidati f the metal by frmati f a thi layer f prtective metal xide Cathdic prtecti cectig the metal t a mre strgly reducig metal with lwer E value called sacrificial ade Example: Prtectig Fe cstructi elemets by cectig them t blcks f Mg r Al (sacrificial ades) E Mg = -2.36 V E Fe = -0.44 V Example: Galvaizati f Fe by catig it with Z E Z = -0.76 V 21.7 Electrlytic Cells ad Electrlysis Electrlytic s use exteral electrical surce t drive a -sptaeus reacti

Electrlytic s act i reverse (-sptaeus) directi cmpared t galvaic s E < 0 ad G > 0 (-sptaeus reacti) The ade is psitive ad the cathde is egative There are sme similarities betwee electrlytic ad galvaic s Oxidati is always the ade ad reducti is always the cathde Electrs always flw frm ade tward cathde Electrlysis the passage f electrical curret thrugh a electrlyte by applyig exteral vltage (the prcess i electrlytic s) Electrlysis causes a -sptaeus reacti (fte a splittig f a substace t its elemets) The applied vltage must be greater tha the ptetial f the reverse sptaeus reacti The electrlyte ca be a mlte salt r a aqueus electrlyte sluti Salt bridges are fte t ecessary Durig electrlysis the catis are attracted t the cathde (egative) ad the ais are attracted t the ade (psitive) Predictig the Prducts f Electrlysis The catis () are attracted t the cathde (-) ad the ais (-) are attracted t the ade () Electrlysis f mlte salts used fr idustrial islati f the mst active elemets (Na, Li, Mg, Al, ; F 2, Cl 2, Br 2, ) The cati is reduced at the cathde The ai is xidized at the ade Example: Islati f Na ad Cl 2 by electrlysis f mlte NaCl Na (l) e - Na(l) ( 2) cathde, reducti 2Cl - (l) Cl 2 (g) 2e - ade, xidati 2Na (l) 2Cl - (l) 2Na(l) Cl 2 (g) I the Dws fr prducti f Na, CaCl 2 is added t reduce the meltig pit f NaCl Electrlysis f mixed mlte salts The cati with higher E value (the strger xidizig aget) is reduced at the cathde The ai with lwer E value (the strger reducig aget) is xidized at the ade Nte: E values i appedix D are fr aqueus is ad ca be used ly as apprximate guidace. Istead, EN values ca be used t estimate the strger xidizig ad reducig agets. Example: Predict the prducts f the electrlysis f a mlte mixture f NaCl ad AlF 3 Pssible cathde half-reactis (reducti) 1) Reducti f Na ad 2) Reducti f Al 3 Al 3 is the strger xidizig aget because Al is mre EN tha Na, s Al 3 gais electrs easier Cathde half-reacti: Al 3 (l) 3e - Al(l) Pssible ade half-reactis (xidati) 1) Oxidati f F - ad 2) Oxidati f Cl - Cl - is the strger reducig aget because Cl is less EN tha F, s Cl - lses electrs easier Ade half-reacti: 2Cl - (l) Cl 2 (g) 2e - Al 3 (l) 3e - Al(l) ( 2) cathde, reducti 2Cl - (l) Cl 2 (g) 2e - ( 3) ade, xidati 2Al 3 (l) 6e - 6Cl - (l) 2Al(l) 2Cl 2 (g) 6e - The prducts are Al(l) ad Cl 2 (g)

Electrlysis f water Pure water is hard t electrlyze (lw cductivity), s a small amut f a -reactive salt (NaNO 3 ) is added (ca be eglected) H 2 O is reduced at the cathde: 2H 2 O(l) 2e - H 2 (g) 2OH - E = -0.83 V (at ph = 7) E = -0.42 V H 2 O is xidized at the ade: 2H 2 O(l) O 2 (g) 4H 4e - E = 1.23 V (at ph = 7) E= 0.82 V 4H 2 O(l) 4e - 2H 2 O(l) 2H 2 (g) 4OH - O 2 (g) 4H 4e - Overall: 2H 2 O(l) 2H 2 (g) O 2 (g) E = E cath E ad = -0.42 (0.82 ) = -1.24 V E < 0 -sptaeus reacti T drive the reacti, the exteral vltage must be greater tha 1.24 V Overvltage the extra vltage (i the case f water ver 1.24) eeded t drive the reacti Fr H 2 O mst iert electrdes, the vervltage is 0.4 t 0.6 V per electrde Cathde, reducti: E = -0.42 0.6-1.0 V Ade, xidati: E= 0.82 0.6 1.4 V Ttal: E = -1.0 (1.4 ) -2.4 V Electrlysis f aqueus slutis Pssible cathde half-reactis (reducti) 1. Reducti f H 2 O 2. Reducti f catis i the sluti Pssible ade half-reactis (xidati) 1. Oxidati f H 2 O 2. Oxidati f active metal electrdes 3. Oxidati f ais i the sluti The half-reacti with the higher E value (havig the strger xidizig aget) ccurs the cathde The half-reacti with the lwer E value (havig the strger reducig aget) ccurs the ade Example: Predict the prducts f the electrlysis f a mixture f 1M NaCl(aq) ad 1M KNO 3 (aq) with iert electrdes at ph = 7. Pssible cathde half-reactis (reducti) 1. Reducti f H 2 O 2H 2 O(l) 2e - H 2 (g) 2OH - E = -0.42 V with vervltage E -1.0 V 2. Reducti f catis i the sluti Na e - Na(s) E = -2.71 V K e - K(s) E = -2.93 V Half-reacti (1) has the highest (mst psitive) E value H 2 O is reduced t H 2 the cathde Pssible ade half-reactis (xidati) 1. Oxidati f H 2 O 2H 2 O(l) O 2 (g) 4H 4e - E= 0.82 V with vervltage E 1.4 V 2. Oxidati f active metal electrdes e 3. Oxidati f ais i the sluti 2Cl - Cl 2 (g) 2e - E = 1.36 V Nte: NO 3- ca t be further xidized (t a prduct i ay half-reacti i appedix D) Half-reacti (3) has the lwest E value Cl - is xidized t Cl 2 the ade Overall: 2H 2 O(l) 2Cl - H 2 (g) 2OH - Cl 2 (g) Nte: Withut the vervltage, H 2 O wuld be xidized t O 2 at the ade The Chlr-alkali fr prducti f Cl 2 ad NaOH

Electrlysis f aqueus slutis is fte used fr prducti r purificati f less active elemets Catis f less active metals (Cu, Ag, Au, Pt, ) are reduced the cathde Ais f less active metals (I 2, Br 2, ) are xidized the ade (icludig Cl 2 due t the vervltage f water) Catis f mre active metals (Na, K, Mg, Ca, ) are t reduced (H 2 O is reduced t H 2 istead) ca t be prduced by electrlysis f aqueus sl. Ais f mre active metals (F - ) ad xais f elemets i their highest xidati state (NO 3-, CO 3, SO 4, ) are t xidized The Stichimetry f Electrlysis Faraday s law the amut f substace prduced each electrde is directly prprtial t the amut f charge trasferred thrugh the I el. curret t time f electrlysis Q charge trasferred # ml e - trasferred I = Q/t Q = I t I t = Q = F = Q/F F is related t the amut f substace thrugh the stichimetry f the half-reacti Allws the determiati f the amut f substace prduced by measurig I ad t Example: Durig electrrefiig f Cu, hw much time is eeded t prduce 250 g Cu the cathde if the curret is kept at 11 A? I = 11 A = 11 C/s t? Half-reacti: Cu 2 2e - Cu(s) = 250 g 1ml Cu 63.55 g Cu - 2 ml e = 7.9 ml 1ml Cu I t F = t = F I 7.9 ml 96485 C/ml 4 t = = 6.9 10 s = 19 hr 11C/s Elctrrefiig f Cu