Keywords: Spiral plate heat exchanger, Heat transfer, Nusselt number

Similar documents
EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER

Analysis of Heat Transfer Enhancement in Spiral Plate Heat Exchanger

Heat Transfer Co-efficient and Effectiveness for Water Using Spiral Coil Heat Exchanger: A Comprehensive Study

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011

Heat Transfer Characteristics and Performance of a Spirally Coiled Heat Exchanger under Sensible Cooling Conditions

7LAMINAR CONVECTIVE HEAT TRANSFER FOR IN-PLANE SPIRAL COILS OF NON-CIRCULAR CROSS-SECTIONS DUCTS A Computational Fluid Dynamics Study

Fluid Flow and Heat Transfer Characteristics in Helical Tubes Cooperating with Spiral Corrugation

Numerical Analysis of Fe 3 O 4 Nanofluid Flow in a Double Pipe U-Bend Heat Exchanger

Numerical Analysis of Helical Coil Heat Exchanger in the Light of Waste Heat Recovery Applications

Department of Mechanical Engineering, VTU, Basveshwar Engineering college, Bagalkot, Karnataka, India

Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI

Heat Transfer Enhancement with Different Square Jagged Twisted Tapes and CuO Nano fluid

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco

CHAPTER 3 SHELL AND TUBE HEAT EXCHANGER

COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES OF DIFFERENT ASPECT RATIOS

Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 41, No. 7, p (July 2004)

NUMERICAL INVESTIGATION ON THE CONVECTIVE HEAT TRANSFER IN A SPIRAL COIL WITH RADIANT HEATING

PHYSICAL MECHANISM OF CONVECTION

Numerical Analysis of a Helical Coiled Heat Exchanger using CFD

EVALUATION OF THERMAL PERFORMANCE OF CONE SHAPED HELICAL COIL HEAT EXCHANGER BY USING CFD ANALYSIS

Analysis of Heat Transfer in Spiral Plate Heat Exchanger Using Experimental and CFD Prakash J. Sakariya 1 Priyanka M. Jhavar 2 Ravi D.

Numerical Investigation of The Convective Heat Transfer Enhancement in Coiled Tubes

In order to optimize the shell and coil heat exchanger design using the model presented in Chapter

CHAPTER 5 CONVECTIVE HEAT TRANSFER COEFFICIENT

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 06, 2014 ISSN (online):

Heat Exchangers for Condensation and Evaporation Applications Operating in a Low Pressure Atmosphere

PERFORMANCE ANALYSIS OF CORRUGATED PLATE HEAT EXCHANGER WITH WATER AS WORKING FLUID

Analysis of the Cooling Design in Electrical Transformer

NUMERICAL ANALYSIS TO OPTIMIZE THE HEAT TRANSFER RATE OF TUBE-IN-TUBE HELICAL COIL HEAT EXCHANGER

Heat Transfer Analysis of a Helical Coil Heat Exchanger by using CFD Analysis

Numerical analysis of fluid flow and heat transfer in 2D sinusoidal wavy channel

Countercurrent heat exchanger

Chapter 11: Heat Exchangers. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Vertical Mantle Heat Exchangers for Solar Water Heaters

Experimental Analysis for Natural Convection Heat Transfer through Vertical Cylinder

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel

CHME 302 CHEMICAL ENGINEERING LABOATORY-I EXPERIMENT 302-V FREE AND FORCED CONVECTION

Heat and Mass Transfer Unit-1 Conduction

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online):

Chapter 3 NATURAL CONVECTION

Experimental and Theoretical Investigation of Hydrodynamics Characteristics and Heat Transfer for Newtonian and Non-newtonian Fluids

Experimental Investigation of Heat Transfer Enhancement with Different Square Jagged Twisted Tapes and CuO/water Nano fluid

Axial profiles of heat transfer coefficients in a liquid film evaporator

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #2. April 3, 2014

Comparative Analysis of Heat Transfer and Friction Characteristics in a Corrugated Tube

Performance of Elliptical Pin Fin Heat Exchanger with Three Elliptical Perforations

Investigation of Jet Impingement on Flat Plate Using Triangular and Trapezoid Vortex Generators

Thermal Analysis Validation for Different Design Tubes in a Heat Exchanger

FLOW SIMULATION AND HEAT TRANSFER ANALYSIS USING COMPUTATIONAL FLUID DYNAMICS (CFD)

Experimental Study on Port to Channel Flow Distribution of Plate Heat Exchangers

PHYSICAL MECHANISM OF NATURAL CONVECTION

PLATE TYPE HEAT EXCHANGER. To determine the overall heat transfer coefficient in a plate type heat exchanger at different hot fluid flow rate

Heat Augmentation Using Non-metallic Flow Divider Type Inserts in Forced Convection

S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

HEAT TRANSFER. Mechanisms of Heat Transfer: (1) Conduction

Transient Three-dimensional Numerical Analysis of Forced Convection Flow and Heat Transfer in a Curved Pipe

Problem 4.3. Problem 4.4

Experimental Investigation of Heat Transfer from a Flat and Surface Indented Plate Impinged with Cold Air Jet- Using Circular Nozzle

Infrared measurements of heat transfer in jet impingement on concave wall applied to anti-icing

CFD Analysis for Thermal Behavior of Turbulent Channel Flow of Different Geometry of Bottom Plate

A study of Heat Transfer Enhancement on a Tilted Rectangular Stainless Steel Plate

Technological design and off-design behavior of heat exchangers 26

TABLE OF CONTENTS CHAPTER TITLE PAGE

NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB

TUBE BANKS TEST PROBLEMS

LAMINAR FORCED CONVECTION HEAT TRANSFER IN HELICAL COILED TUBE HEAT EXCHANGERS

Introduction to Heat and Mass Transfer

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

The Effect of Solid and Perforated Pin Fin on the Heat Transfer Performance of Finned Tube Heat Exchanger

FLOW AND HEAT TRANSFER ANALYSIS OF VARIOUS RIBS FOR FORCED CONVECTION HEAT TRANSFER

If there is convective heat transfer from outer surface to fluid maintained at T W.

Analysis of Heat Transfer in Pipe with Twisted Tape Inserts

COMPARISON OF MEASURED AND ANALYTICAL PERFORMANCE OF SHELL-AND-TUBE HEAT EXCHANGERS COOLING AND HEATING SUPERCRITICAL CARBON DIOXIDE

Overall Heat Transfer Coefficient

Experimental Study of Convective Heat Transfer and Thermal Performance in the Heat-Sink Channel with Various Geometrical Configurations Fins

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127

CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR

Analysis, Design and Fabrication of Forced Convection Apparatus

Numerical simulation of fluid flow in a monolithic exchanger related to high temperature and high pressure operating conditions

A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined Circular Ribs as Artificial Roughness

UNIT II CONVECTION HEAT TRANSFER

Estimation of Heat Transfer in Internally Micro Finned Tube

Computational Fluid Dynamics Based Analysis of Angled Rib Roughened Solar Air Heater Duct

Investigation of Heat Transfer on Smooth and Enhanced Tube in Heat Exchanger

Convection Workshop. Academic Resource Center

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May ISSN

Introduction to Heat and Mass Transfer. Week 12

FLOW MALDISTRIBUTION IN A SIMPLIFIED PLATE HEAT EXCHANGER MODEL - A Numerical Study

Ben Wolfe 11/3/14. Figure 1: Theoretical diagram showing the each step of heat loss.

Chapter 10 Flow in Conduits

International Journal of Advanced Engineering Technology E-ISSN

A concept for the integrated 3D flow, heat transfer and structural calculation of compact heat exchangers

Lecture 30 Review of Fluid Flow and Heat Transfer

Investigation of Flow Profile in Open Channels using CFD

HEAT TRANSFER ENHANCEMENT IN HEAT EXCHANGER USING TANGENTIAL INJECTOR TYPE SWIRL GENERATOR

THERMODYNAMIC PERFORMANCE EVALUATION FOR HELICAL PLATE HEAT EXCHANGER BASED ON SECOND LAW ANALYSIS

ME 331 Homework Assignment #6

Transcription:

EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER Dr.RAJAVEL RANGASAMY Professor and Head, Department of Mechanical Engineering Velammal Engineering College,Chennai -66,India Email:rajavelmech@gmail.com Mobile: +91 98656 68650 Abstract An experimental and numerical study of heat transfer and flow characteristics of spiral plate heat exchanger was carried out. The effects of geometrical aspects of the spiral plate heat exchanger and fluid properties on the heat transfer characteristics were also studied. Three spiral plate heat exchangers with different plate spacing (4mm, 5mm and 6 mm) were designed, fabricated and tested. Physical models have been experimented for different process fluids and flow conditions. Water is taken as test fluid. The effect of mass flow rate and Reynolds number on heat transfer coefficient has been studied. Correlation has been developed to predict Nusselt numbers. Numerical models have been simulated using CFD software package FLUENT 6.3.26. The numerical Nusselt number have been calculated and compared with that of experimental Nusselt number. Keywords: Spiral plate heat exchanger, Heat transfer, Nusselt number 1.0 Introduction Heat exchanger is a device in which energy is transferred from one fluid to another across a solid surface. Compact heat exchangers are characterized with its large amount of surface area in a given volume compared to traditional heat exchangers, in particular the shell-and-tube type. The development and investigation of compact heat exchangers, has become an important requirement during the last few years. Compact heat exchangers are of two types, spiral and plate type heat exchangers. Spiral heat exchanger is self cleaning equipment with low fouling tendencies, easily accessible for Inspection or mechanical cleaning and with minimum space requirements.egner and Burmeister [2005] numerically studied spiral ducts of rectangular section using computational fluid dynamics techniques and determined the Nusselt number as a function of the Dean number, showing the strong dependence of the heat transfer coefficient upon the spiral radii. Burmeister [2006] found more approximate solution to determine the thermal effectiveness.martin (1992) numerically studied

the heat transfer and pressure drop characteristics of spiral plate heat exchanger. The apparatus used in the investigations had a cross section of 5 300 mm 2, number of turns n=8.5, core diameter of 250 mm, outer diameter of 495 mm and 5 5 cylindrical bolds in a rectangular in line arrangement of 61 50 mm. For data in the range of 400<Re<30000. Nusselt number correlation for their particular set up with water as a medium has presented. An average in-tube heat transfer coefficient in a spirally coiled tube was proposed by Naphon and Wongwises (2002). The test section was a spirally coiled heat exchanger consisting of six layers of concentric spirally coiled tubes. The experiments were performed under cooling and dehumidifying conditions and considered the effects of inlet conditions of both working fluids on the in-tube heat transfer coefficient. The results obtained from experiments were compared with those calculated from other correlations. A new correlation for the in-tube heat transfer coefficient for spirally coiled tube was proposed.in their second and third papers, Naphon and Wongwises (2003a, 2003b) developed a mathematical model to determine the performance and heat transfer characteristics of spirally coiled finned tube heat exchangers under wet-surface conditions. In addition, the heat transfer characteristics and performance of a spirally coiled heat exchanger under dry surface conditions were studied theoretically and experimentally. The calculated and measured results were in reasonable agreement. Naphon and Wongwises (2005) experimentally investigated the average tube-side and airside heat transfer coefficients in a spirally coiled finned tube heat exchanger under dry- and wetsurface conditions.. The test section was a spiral-coil heat exchanger, which consists of six layers of concentric spirally coiled tube. The chilled water and the hot air were used as working fluids. The effects of the inlet conditions of both working fluids flowing through the heat exchanger on the heat transfer coefficients were discussed. New correlations based on the data gathered during their work for predicting the tube-side and air-side heat transfer coefficients for the spirally coiled finned tube heat exchanger were proposed.yang and Chiang (2002) studied the effects of the Dean number, Prandtl number, Reynolds number and the curvature ratio on the heat transfer for periodically varying curvature curved-pipe inside a larger diameter straight pipe to form a double-pipe heat exchanger. The results showed that the heat transfer rate increased by up to 100% as compared with a straight pipe. All of the experimental data were regressed to obtain the correlation of the Nussult number. The turbulence and heat transfer in two types of square sectioned U-bend duct flows with mild and strong curvature, using recent second moment closures, were predicted by Suga (2003). A two-component limit turbulence model and the wall reflection free model were presented. The results showed that the two-component limit turbulence model was reliable in the case of strong curvature.huttl and Friedrich (2001) used direct numerical simulation for turbulent flow in straight, curved and helically coiled pipes in order to determine the effects of curvature and torsion on the flow

patterns. They showed that turbulent fluctuations are reduced in curved pipes compared to the straight pipes. They also demonstrated that the effect of torsion on the axial velocity is much lower than the curvature effect. Egner and Burmeister (2005) conducted a numerical study of spiral ducts of rectangular section using computational fluid dynamics techniques and determined the Nusselt number as a function of the Dean number, showing the strong dependence of the heat transfer coefficient upon the spiral radii. They demonstrated that except for the entry regions, the heat transfer coefficient is nearly constant, however, at entry regions, heat transfer coefficients may be even as 50% larger than the fully developed values. An important contribution of their work is the general conclusion for estimating the thermal entry length for laminar Reynolds numbers between 100 and 500. 2.0 EXPERIMENTAL SET-UP The experimental set-up is shown in Fig 2.2. The heat exchanger was constructed using 316 stainless steel plates. The spiral plate heat exchanger had a width of 304 mm and a plate thickness of 1 mm. The total heat transfer area is 2.24 m 2. The end connections are shown in Fig 2.1. Plate had a radius of curvature of 172.9 mm; the gap between the plate is 4 mm, 5 mm and 6 mm. A pump was used to provide flow to the cold fluid side. The flow rate was measured by a calibrated flow meter, which is regulated by a control valve.the flow rate was maintained between 0.2 and 1.0 kg/s. The cold fluid inlet pipe is connected to the periphery of the spiral plate heat exchanger and the outlet is taken from the centre of the heat exchanger. The hot fluid is heated between 60 and 80 C using a steam boiler. The hot fluid is stored in a reservoir, which is pumped to the heat exchanger with the help of a pump. The hot fluid inlet pipe is connected at the center core of the spiral plate heat exchanger and the outlet pipe is taken from periphery of the heat exchanger. The flow rate of hot fluid was maintained by an identical flow meter. Temperature data was recorded using a data acquisition unit connected to a personal computer. To ensure the repeatability of data, all the instruments are calibrated periodically. Water was used as the hot fluid. The inlet hot fluid flow rate was kept constant and the inlet cold fluid flow rate was varied using a control valve. The flow of cold and hot fluid was varied using control valves, C1 and C2 respectively. Hot and cold fluid flow paths of heat exchanger are shown in Fig 2.1. Thermocouples T1 and T2 were used to measure outlet temperature of hot and cold fluids respectively; T3 and T4 were used to measure the inlet temperature of hot and cold fluids respectively. For different cold fluid flow rate the temperatures at the inlet and outlet of hot and cold fluids were recorded. The same procedure was repeated for different hot fluid flow rates. The data

related to cold fluid temperatures and mass flow rates were recorded. Temperature data was recorded in the span of ten seconds. Figure 2.1 Spiral Flow Heat Exchanger (Courtesy - Alfa Laval Thermal Division) C1 and C2 Control valves, T1, T2, T3 and T4 Thermocouples Figure 2.2 Photographic View of Experimental Set-Up

Heat Transfer Coefficient (W/m 2 K) 3.0 RESULTS AND DISCUSSION The effect of Reynolds number on heat transfer coefficient is shown in Fig 3.1. Hot fluid flow rate (0.5 kg/s) was kept constant for different plate spacing. From the Fig 3.1 it can be seen that the heat transfer coefficient increases as Reynolds number increases. Reynolds number is a dimensionless number that gives a measure of the ratio of inertial forces to viscous forces. It can also be seen that the heat transfer coefficient increases with decrease in plate spacing. The plate spacing of 4 mm shows the maximum heat transfer coefficient than that of 6 mm. This may be due to higher turbulence for smaller gap size, which results in higher heat transfer coefficient for smaller gap size than the plate with larger gap. High turbulence in the medium this gives a higher convection, which results in efficient heat transfer between the media. When the plate has a narrow pattern, the pressure drop is greater and the heat transfer coefficient is accordingly somewhat greater. Heat transfer coefficient is a quantitative characteristic of convective heat transfer between a fluid medium and the surface flowed over by the fluid. 6500 5500 4500 3500 2500 1500 500 1500 3500 5500 7500 9500 11500 Reynolds Number 4 mm gap 5 mm gap 6 mm gap Figure 3.1 Effect of Plate Spacing on Heat Transfer Coefficient -Water

Nusselt number(predicted) Empirical correlation has been developed based on the experimental data. It was found that correlation of the type as in Equation (3.1) b c H d Nu=a*Re *Pr *( ) b (3.1) The above correlation was tested for all Reynolds number and Prandtl number. For water- water system the constant a, b, c and d is shown below in Equation (3.2) 0.828 0.336 H -0.0871 Nu=0.02846Re Pr ( ) b (3.2) Regression analysis shows that for 189 data with an error of ± 4% was obtained. The above Equation (3.2) is valid for the range 2560<Re<11770 2.82<Pr<4.39 50.6<H/b<76 Fig 3.3 compares the results from the present correlation with the experimental data. The Nusselt number (Nu) is the ratio of convective to conductive heat transfer across the boundary. The majority of the data falls within ±4 % of the proposed correlation in Equation (3.2) The discrepancy between the experimental data and the predicted results is due to the difference in the configurations of test sections, the difference in the wall boundary conditions and uncertainty of the correlations. 100 90 80 70 60 50 40 30 20 10-4% -4% 10 20 30 40 50 60 70 80 90 100 Nusselt number(experimental)

Figure 3.3 Comparison of Nusselt Number with Present Correlation-Water All calculations were performed in a double precision segregated steady state solver. In the simulations of flows two different models were employed for turbulence modeling, namely the RNG k-e model and the Reynolds stress transport model (RES). In the case of the Finite Volume method, two levels of approximation are needed for surface integrals: the integral is approximated in terms of the variables values at one location on the cell face, the midpoint point rule was used in this task; the cell face values are approximated in terms of the nodal values (control volume (CV) centers), the linear interpolation was used in this task. The volume integrals were approximated by a second-order approximation replacing the volume integral by the product of the mean value and the CV volume. Simulations were performed using water as hot and cold fluid. Flow rates in the cold fluid and in the hot fluid were varied. The following nine levels were used: 0.2-1.0 kg/s. Different combinations of these flow rates in both the cold fluid and the hot fluid were simulated. These were done for gaps of 4 mm, 5 mm and 6 mm configurations between the plates. A predicted contours of static temperature plot of spiral plate heat exchanger for hot fluid mass flow rate of 0.5 kg/s and cold fluid mass flow rate of 0.4 kg/s is shown in Figs 3.4 to 3.6 for plate spacing of 4 mm, 5 mm and 6 mm respectively. Fig 3.4 to 3.6 shows the cross sectional view of heat exchanger. It can be seen that the temperature difference is more when the gap between the plates are less. Figure 3.4 Contours of Static Temperature @ b=4 mm-water

Figure 3.5 Contours of Static Temperature @ b=5 mm-water Figure 3.6 Contours of Static Temperature @ b=6 mm-water Comparisons between the Nusselt numbers obtained from the experiments with those calculated from the simulations are shown in Fig 3.7. It can be seen that the majority of the data falls within ±17.8 % of the experimental data. The discrepancy between the experimental data and the simulated results is due to the difference in the configurations of test sections, the difference in the wall boundary conditions and uncertainty of the correlations.

Nusselt Number (Simulated) 100 90 80 70 +17.8% 60 50 40-17.8% 30 20 20 30 40 50 60 70 80 90 100 Nusselt Number (Experimental) Figure 3.7 Comparison of Experimental and Simulated Nusselt Number-Water 4.0 CONCLUSION Heat transfer and flow characteristics of a spiral plate heat exchanger were studied. Three spiral plate heat exchangers were designed, fabricated and tested. Heat transfer coefficient for water was studied for different mass flow rate and physical models. Experimental Nusselt number was compared to that of literature data for three different configurations. Empirical correlation was obtained to predict Nusselt numbers for water.heat transfer coefficient was studied for water. The space between the plates was varied from 4 mm to 6 mm. Among these, the plate having space 4 mm shows more heat transfer coefficient. The numerical Nusselt number was compared with the experimental data which shows a reasonable fit. 4.0 REFERENCES [1] Egner M.W. and Burmeister L.C. Heat transfer for laminar flow in spiral ducts of rectangular cross section, Journal of Heat Transfer, 127(2005), pp. 352-356. [2] Burmeister L.C. Effectiveness of a spiral plate heat exchanger with equal capacitance rates, Journal of Heat Transfer, 128( 2006), pp. 295-301.

[3] Martin H., Heat Exchangers, Hemisphere Publishing Corporation, London,1992. [4] Naphon P. and Wongwises S., An experimental study on the in-tube convective heat transfer coefficients in a spiral-coil heat exchanger, International Communications in Heat and Mass Transfer, 29(2002), No. 6, pp. 797-809. [5] Naphon P. and Wongwises S. Experimental and theoretical investigation of the heat transfer characteristics and performance of a spiral-coil heat exchanger under dry-surface conditions, 2 nd International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, 24 26 June (2003a), Victoria Falls, Zambia. [6] Naphon P. and Wongwises S., Investigation of the performance of a spiral-coil finned tube heat exchanger under dehumidifying conditions, Journal of Engineering Physics and Thermophysics, 76(2003b), No.1, pp. 71-79. [7] Naphon P. and Wongwises S. Heat transfer coefficients under dry- and wet-surface conditions for a spirally coiled finned tube heat exchanger, International Communications in Heat and Mass Transfer, 32(2005), pp. 371-385. [8] Yang R. and Chiang F.P. An experimental heat transfer study for periodically varyingcurvature curved-pipe, International Journal of Heat and Mass Transfer, 45(2002), 15, pp. 3199-32204. [9] Suga K., Predicting turbulence and heat transfer in 3-D curved ducts by near-wall second moment closers, International Journal of Heat and Mass Transfer, 46(2003),1, pp. 161-173. [10] Huttl T.J. and Friedrich R. Influence of curvature and torsion on turbulent flow in helically coiled pipes, International Journal of Heat and Fluid Flow, 21(2000), 3, pp. 345-353. [11] Huttl T.J. and Friedrich R., Direct numerical simulation of turbulent flows in curved and helically coiled pipes, Computers and Fluids, 30(2001), 5, pp. 591-605.