Mining. Slope stability analysis at highway BR-153 using numerical models. Mineração. Abstract. 1. Introduction

Similar documents
Pillar strength estimates for foliated and inclined pillars in schistose material

Introduction and Background

Landslide FE Stability Analysis

Analysis of Blocky Rock Slopes with Finite Element Shear Strength Reduction Analysis

Numerical Simulation of Unsaturated Infilled Joints in Shear

The effect of stope inclination and wall rock roughness on backfill free face stability

Methods of Interpreting Ground Stress Based on Underground Stress Measurements and Numerical Modelling

ON THE FACE STABILITY OF TUNNELS IN WEAK ROCKS

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

The Frictional Regime

Stability Assessment of a Heavily Jointed Rock Slope using Limit Equilibrium and Finite Element Methods

SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS

Modelling Progressive Failure with MPM

Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading

Application of a transversely isotropic brittle rock mass model in roof support design

Analysis of Controlling Parameters for Shear behavior of Rock Joints with FLAC3D

Numerical Approach to Predict the Strength of St. Peter Sandstone Pillars acted upon by Vertical Loads A case study at Clayton, IA, USA.

Ch 4a Stress, Strain and Shearing

NUMERICAL ANALYSIS OF PASSIVE EARTH PRESSURES WITH INTERFACES

Study of Pile Interval of Landslide Restraint Piles by Centrifuge Test and FEM Analysis

Numerical Study of Relationship Between Landslide Geometry and Run-out Distance of Landslide Mass

Rock slope rock wedge stability

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room

MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY SUBJECT CODE: COMRMC MODERATOR: H YILMAZ EXAMINATION DATE: OCTOBER 2017 TIME:

A circular tunnel in a Mohr-Coulomb medium with an overlying fault

FLAC3D analysis on soil moving through piles

AN IMPORTANT PITFALL OF PSEUDO-STATIC FINITE ELEMENT ANALYSIS

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression

SLOPE STABILITY EVALUATION AND ACCEPTANCE STANDARDS

Influences of material dilatancy and pore water pressure on stability factor of shallow tunnels

Evaluation of Fault Foundation Interaction, Using Numerical Studies

Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation

Recent Research on EPS Geofoam Seismic Buffers. Richard J. Bathurst and Saman Zarnani GeoEngineering Centre at Queen s-rmc Canada

Verification Manual GT

Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II

Stability Analysis of A Railway Trench By Using Stereographical Projection

Finite difference modelling in underground coal mine roadway

Flin Flon Mining Belt

THE INFLUENCE OF ROOF BOLTS LOCATION ON ITS INTERACTION WITH THE ROCK MASS.

TWO DIMENSIONAL MODELING AND STABILITY ANALYSIS OF SLOPES OVERLAYING TO SHAHID RAGAEE POWER PLANT

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

10 Slope Stability Analysis of a Rock Slope


Tectonics. Lecture 12 Earthquake Faulting GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD

Finite Element Method in Geotechnical Engineering

Further Research into Methods of Analysing the October 2000 Stability of Deep Open Pit Mines EXECUTIVE SUMMARY

SLOPE STABILITY EVALUATION AND ACCEPTANCE STANDARDS

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

In situ fracturing mechanics stress measurements to improve underground quarry stability analyses

FINITE ELEMNT ANALYSIS FOR EVALUATION OF SLOPE STABILITY INDUCED BY CUTTING

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials

DEFORMATION OF SANDY DEPOSITS BY FAULT MOVEMENT

Deformation And Stability Analysis Of A Cut Slope

Minimization Solutions for Vibrations Induced by Underground Train Circulation

Landslide stability analysis using the sliding block method

4. Stability analyses

Three-dimensional settlement analysis of a primary crusher station at a copper mine in Chile

COMPUTATIONAL MODELING APPLIED TO THE STUDY OF THERMAL BUCKLING OF COLUMNS

CONTROLLING FACTORS BASIC ISSUES SAFETY IN OPENCAST MINING WITH SPECIAL REFERENCE TO SLOPE STABILITY

CE 4780 Hurricane Engineering II. Section on Flooding Protection: Earth Retaining Structures and Slope Stability. Table of Content

Effect of buttress on reduction of rock slope sliding along geological boundary

Session 3: Geology and Rock Mechanics Fundamentals

Behaviour of Blast-Induced Damaged Zone Around Underground Excavations in Hard Rock Mass Problem statement Objectives

Dynamic modelling in slopes using finite difference program

Rock slope failure along non persistent joints insights from fracture mechanics approach

The Role of Slope Geometry on Flowslide Occurrence

Seismic analysis of horseshoe tunnels under dynamic loads due to earthquakes

Soil strength. the strength depends on the applied stress. water pressures are required

Evaluation of Structural Geology of Jabal Omar

Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f

Analysis in Geotechnical Engineering

Analysis stability of rock slope at left bank of South portal of North tunnel Da Nang Quang Ngai expressway

Numerical Modeling of Direct Shear Tests on Sandy Clay

Large scale three-dimensional pit slope stability analysis of the structurally controlled mechanism in Mae Moh coal mine

When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress?

City, University of London Institutional Repository

SHORT COMMUNICATIONS

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium

Finite Element Solutions for Geotechnical Engineering

Stability Analysis of Earth Retaining Walls

Shear strength. Common cases of shearing In practice, the state of stress in the ground will be complex. Common cases of shearing Strength

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION

Verification of the Hyperbolic Soil Model by Triaxial Test Simulations

Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling

APPENDIX I. Deformation Analysis of the Left Abutment

J. Paul Guyer, P.E., R.A.

Simulation of the cutting action of a single PDC cutter using DEM

Enabling Technologies

The influence of various factors on the results of stability analysis of rock slopes and on the evaluation of risk

Rock slope stability planar shear failure


Particle flow simulation of sand under biaxial test

Influence of Shear Surface Geometry on Deformation Processes in Massive Landslides

Quarry-Induced Slope Instability at a Broadcasting Transmission Plant near Valcava, Lombardia, Italy

Rock Mechanics and Rock Engineering

Determinação da incerteza de medição para o ensaio de integral J através do método de Monte Carlo

CHAPTER 8 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Finite Element analysis of Laterally Loaded Piles on Sloping Ground

Table of Contents Development of rock engineering 2 When is a rock engineering design acceptable 3 Rock mass classification

PROGRESSIVE FAILURE MECHANISMS IN JOINTED ROCK: INSIGHT FROM 3D DEM MODELLING

Transcription:

Mining Mineração http://dx.doi.org/10.1590/0370-44672015690040 Ricardo Hundelshaussen Rubio Engenheiro Industrial / Doutorando Universidade Federal do Rio Grande do Sul - UFRS Departamento de Engenharia de Minas Porto Alegre, Rio Grande do Sul, Brasil rhundelshaussen@gmail.com Jorge Hernan Florez Engenheiro Civil / Doutorando Universidade Federal do Rio Grande do Sul - UFRS Departamento de Engenharia Civil Porto Alegre, Rio Grande do Sul, Brasil jhflorezg@gmail.com André Cezar Zingano Professor / Coordenador de mineração / Doutorando Universidade Federal do Rio Grande do Sul - UFRS Departamento de Engenharia de Minas Porto Alegre, Rio Grande do Sul, Brasil andrezin@ufrgs.br Slope stability analysis at highway BR-153 using numerical models Abstract An existing cut slope on Highway RS-471/BR-153 is studied. The slope is composed of the Serra Geral Formation's material: a highly altered volcanic breccia and above it a slightly altered and very fractured rhyolite. A numerical analysis of the slope is carried out in two dimensions. Fracturing of the rhyolite necessitates the use of a constitutive model for materials with families of discontinuities (Ubiquitous-joint). To simplify the analysis of the problem and to examine some of the most sensitive variables, two more analyses are made, replacing the initial model by a Mohr s constitutive model, which considers the material as continuous. The results obtained from the Ubiquitous-joint model provide an acceptable representation of the field conditions, showing a failure mechanism type of rockfall from the face of the slope in the rhyolite, and the rupture surface of the breccia, without propagation of surface failure. In the analysis, when considering both materials as continuous, it is not possible to take account the fault conditions simultaneously, and this analysis also requires values of the mechanical parameters different from those recommended in literature. Keywords: Volcanic breccia; Serra Geral Formation; Ubiquitous-joint; numerical models. 1. Introduction In general, numerical studies of slope stability, besides requiring good characterization of the materials involved, need prior knowledge about the possible mechanisms and situations that could lead the system to rupture. Analysis of slope stability using the limit equilibrium method, even though it allows consideration of different layers in each case, does not take account of the effect of excessive mass deformations or of the structural control by the discontinuities that occur mainly in rocky layers. The level of fracture of a rocky mass is closely related to the failure system that it may develop, as discussed by Norrish and Wyllie (1996). In the same paper, these authors describe cases where the level of fracture of the rocky mass is very high, in which structural control by the discontinuities may be less important than the overall conditions of resistance, which are capable of causing a rotational rupture, as is well known in homogeneous slopes formed by cohesive soil. The present paper describes a study of a slope located in the state of Rio Grande do Sul, Southern Brazil, in a section of Highway RS-471/BR-153 between the cities of Barros Cassal and Vera Cruz (see Figure 1), inaugurated at the end of 2010. The slope analyzed has not generated global conditions for rupture since its opening during the course of this investigation. This work aims to obtain a single representative numerical model for the field conditions and those assumed in the study, through variations in the mechanical properties of the slope, as in the case of a continuous model. 2. Characterization of the area of study The area of study is located in the acid sequence of the Serra Geral Formation (IBGE 1986), which is composed of rhyolites over a modified volcanic breccia layer. This breccia is not related to acid spill, and so it can be inferred that the arrangement is a result of contact between the basic sequence (with the volcanic breccia on the top) and the acid sequence (with the rhyolite as its base). The studied slope is at k55+340 of the construction project, between altitudes of 505 and 480 m, corresponding to a half-hillside and a homogeneous cut section. No regional faulting is found at this point (see Figure 2). The rhyolite layer has a low degree of weathering, but a high level of fracturing (5 50 fractures/m). This situation is currently causing constant rock falls (Varnes 1978; Cruden and Varnes 1996). No global rupture has been observed, at least in this slope. 185

Slope stability analysis at highway BR-153 using numerical models Figure 1 Location of the area of study in the state of Rio Grande do Sul (modified from DAER, 2002). (a) (b) Figure 2 (a) Overview of the studied slope. (b) Fracture condition on the rhyolite layer. 2.1 Geotechnical Parameters The determination of physical characteristics and the resistance parameters for the volcanic breccia was done by the Laboratory of Soil Mechanics of the Federal University of Rio Grande do Sul, at the request of the design company for the project (ECOPLAN Engineering). The values of the angles of friction and the cohesion were estimated from the results of CIU triaxial tests, made in undisturbed test bodies (see Figure 3). Figure 3 Deviatoric stress versus axial strain for k55+340 (LMS-UFRGS 2004). Table 1 summarizes the values obtained in the laboratory for the volcanic breccia. The modulus of 186 elasticity was calculated from linear elastic sections obtained from each of the triaxial compression tests. The value for the Poisson coefficient corresponds to a lower limit for this type of materials.

Parameter Value Liquid limit LL 51.4 % Plastic limit LP 38.1 % Plasticity index I p 13.3% Density d 28.84 kn/m 3 Angle of friction (at peak) φ p 15.25 Cohesion c 138.77 kpa Table 1 Summary of the parameters of the volcanic breccia (LMS-UFRGS 2004). Modulus of elasticity E 146.63 MPa Poisson coefficient µ 0.35* *Parameter obtained from the current literature Owing to a lack of test results for the rhyolite, the mechanical properties of the particles were taken as estimated by Hoek and Brown (1997) for very good quality hard rock masses, listed in Table 2. Parameter Value Density d 26 kn/m 3 Angle of friction (at peak) φ p 46 Cohesion c p 13 MPa Table 2 Summary of the parameters of the broken rhyolite (Hoek and Brown 1997). Modulus of elasticity E 42000 MPa Poisson coefficient µ 0.2 Table 3 summarizes the parameters for the discontinuities of the rhyolite. These discontinuities were considered to be plain and with no infillings, and therefore the values of cohesion, dilatability, and tension resistance were taken as zero. The results for the discontinuities were obtained through field and laboratory studies for a section located between sections 55+840 and 56+200; however, in geologic and geotechnical terms, they are considered parts of the same project unit. An interface was established between the two layers, which allowed neither relative slipping between the two layers nor their separation, but only elastic displacements. The tangential and normal rigidities were considered to be equal. Thus, the value taken for this interface was K N = K S = 253.33 MPa/m. Parameter Value Dip 78 Cohesion 0.0 Dilatancy 0.0 Table 3 Summary of the parameters for the discontinuities of the rhyolite (DAER 2010). Angle of friction 36 Tension resistance 0.0 2.2 Structural model and element mesh for numerical analysis Figure 4 presents the model to section remains constant, with some be evaluated, including the system of the material properties being modified in an attempt to reproduce the of discontinuities of the rhyolite. For the analyses ignoring the presence of rupture mechanism from the first case. discontinuities, the geometry of the The material parameters for the mass without discontinuities are obtained as part of the results of the simulation process. Figure 5 presents the element mesh for this analysis, as well as the boundary conditions imposed on the 187

Slope stability analysis at highway BR-153 using numerical models model. The thick black line indicates the interface defined by the material change. The analysis of the model for each condition was performed using FLAC version 5.00 software developed by ITASCA. Figure 4 Model of the evaluated section. 3. Results 3.1 Discontinuous rocky mass To obtain a model that represents the current degree of fracture in the rocky mass, the Ubiquitous-joint model available in FLAC was applied. Since the simulation was carried out in two dimensions, only the discontinuities perpendicular to the model were taken into account. This type of constitutive model, besides allowing Results are presented for the three types of simulation conditions: a discontinuous rocky mass, a continuous mass with a flat rupture, and a continuous mass rupture surfaces for continuum materials according to the Mohr Coulomb criterion, allows visualization of the effects of ruptures associated with sliding along different discontinuities. Figure 6 presents different states for the elements of which the model is composed, enabling visualization of the elements under instability, either for the Figure 5 Mesh of elements with fixed areas. with a deep rupture. curved surfaces of rupture (see the volcanic breccia) or for the sliding of the elements along the discontinuities. In the center of the rhyolite mass, it is also possible to observe the presence of consistent slide surfaces with the formation of alleviating tensions caused by the lateral expansion (in the lower part of the rhyolite layer). Figure 6 States of the model (with Ubiquitous-joint). 188 The distribution of displacement vectors presented in Figure 7 confirms the main source of rock particle falls, which are deposited on the lower part of the slope as well as on the highway (see Figure 2b). There exist a few points of origin of rock falls in the upper part of the layer, mainly caused by the slope declivity angle. The distribution of shear stress presented in Figure 8 is consistent with the condition imposed on the interface between the two layers, namely, continuity of stresses above and below it. The highest levels of tension arise at the foot of the slope, reaching yielding levels in the breccia and causing local rupture of the material (see Figure 2a).

Figure 7 Displacement vectors (with Ubiquitous-joint). Figure 8 Shear stress S xy (with Ubiquitous-joint). 3.2 Continuous mass with flat rupture In this case, a flat rupture similar to Because of the geometry of the slope, it is not those obtained using the Ubiquitous-joint possible to consider this mass as confined, model was made, but for a rocky mass with and also the value for the angle of declivity no fractures or systems of discontinuities. of the slope has a strong effect on the volume As such, some variations were necessary: of the material in rupture. The geotechnical considering the rhyolite layer as a continuum parameters applied in this analysis were constant for the breccia; for the rhyolite, after and modifying its properties of resistance to a flat rupture in the rock layer, rather than multiple iterations with small increases, the to a deep rupture controlled by the volcanic following final values were adopted: breccia. Hoek and Brown (1997) suggest a cohesion = 0.0, reduction in the properties of the rock if it angle of friction = 69. is fractured, and when the mass is confined. Figure 9 shows the results of this simulation. The properties of the breccia were not decreased, since the existence of a rupture surface in the breccia influences its propagation along the rhyolite layer. For the given angle of declivity of the slope, the angle of friction for the rhyolite given by the simulation is not consistent with any values in literature: however, it does predict shallow failures (see Figure 10). These flat ruptures retain the form predicted by a Mohr Coulomb model, exhibiting a rupture surface curve. Figure 9 States of the model (continuous, flat rupture). Figure 10 Displacement vectors (continuous, flat rupture). 189

Slope stability analysis at highway BR-153 using numerical models The distribution of shear stress presented in Figure 11 suggests a reduction in the levels of shear stress in the areas next to the slope face, but the condition of maximum tension at the foot of the slope is maintained. Figure 11 Shear stress S xy (continuous, flat rupture). 3.3 Continuous mass with deep rupture In an attempt to simulate ruptures located at the foot of the slope, several iterations, starting with the cause rupture in this material. After while retaining the properties of the initial values for both materials, a interface, the rupture surface was qualitatively good representation was propagated discontinuously along the obtained with the following values: rhyolite layer, this being the worst-case For the breccia, cohesion = 96.4 kpa, representation of conditions in the angle of friction = 18 ; and for the field. In this situation, the parameters rhyolite, cohesion = 13.0 kpa, angle of the rhyolite and the breccia were of friction = 60. very different. The variations in the Figure 12 presents different breccia were imposed by the necessity states of the model. No surface rupture was observed in the slope. The to generate the rupture surface in it, since the parameter values obtained value for the angle of friction of the from the triaxial tests could not rhyolite was adopted because of the sensitivity of this material to a rupture surface from the breccia. With this value of the angle of friction, the susceptibility of the rhyolite remained low, although it should be pointed out that it is a theoretical value, not necessarily representative of realistic situations. It can be seen from Figure 13 that it was not possible to obtain significant horizontal displacements along the slope face, confirming the absence of boulders in unstable condition, and therefore, denying the possibility of rockfalls. Figure 12 States of the model (continuous, deep rupture). Figure 13 Displacement vectors (continuous, deep rupture). 190 The distribution of shear stress presented in Figure 14 is similar to those obtained in the previous cases, but with a reduction in the stress concentration at the foot of the slope. Although the concentration of shear stress at the foot is reduced, there is a concentration of the mechanical response in the volcanic breccia layer, representing a minor mechanical contribution for the rhyolite, with an absence of ruptures in the slope face. The plastification zones inside the rhyolite mass are associated with a Mohr Coulomb failure surface along the slope, initiated by the rupture in the breccia.

Figure 14 Shear stress S xy (continuous, deep rupture). 4. Conclusions 5. References Using the Ubiquitous-joint model, it has been possible to obtain a representation very close to the real conditions for the slope studied, defined by the following processes: superficial rupture of the rhyolite layer and falls of blocks, mainly on the first slope bed and on the shoulder of the road; superficial rupture of the volcanic breccia at the foot of the slope, without affecting elements away from the slope. When the rhyolite layer was considered as continuous, it was not possible to simulate both processes simultaneously. It was therefore necessary to model each rupture separately and apply the resistance parameters through a mathematical model. It can thus be inferred that it is not possible to represent a discontinuous mass satisfactorily by using a continuous model, because of the high degree of uncertainty in the parameters involved in the rupture, in the geometry of the surface, and in the rupture surfaces. The effect of the slope angle was important when determining the areas subject to loss of material by sliding. Thus, the losses were small in the upper part of the slope, where the declivities are less than the dip of the discontinuities, but high in the lower part of the rhyolite layer, in which the declivity is greater than the dip. In all the modeling cases, the need to reach a rupture state makes convergence of the system impossible, precluding the existence of a unique answer for each case. Therefore, further analysis and assessment of the results are necessary. Although the Ubiquitous-joint model allows analysis of a discontinuous mass, the analysis is limited by a number of important variables, including variations in ambient temperature, volumetric and temperature gradients along the fractured mass, and vibrations imposed during the construction of the highway, among others. AUTONOMOUS DEPARTMENT OF HIGHWAYS DAER. Stabilization of rock slopes Project: topographic saddle km 55+840 to km 56+200 Cut 21. RS/471 Highway, section Barros Cassal Santa Cruz do Sul (in portuguese). Porto Alegre (Brazil), 2010. 58p. AUTONOMOUS DEPARTMENT OF HIGHWAYS DAER. Engineering final Project: RS/471 Highway, section Barros Cassal Santa Cruz do Sul (in portuguese). v. 1. Porto Alegre (Brazil), 2002. 246p. BRAZILIAN INSTITUTE OF GEOGRAPHY AND STATISTICS IBGE. SH.22 Sheet: Porto Alegre and part of SH.21 Uruguaiana and SI.22 Mirim Lagoon sheets. Natural Resources Survey (in portuguese). Rio de Janeiro (Brazil). v. 33, 1986. 794p. CRUDEN, D. M. & VARNES, D. J. Landslide types and processes. In: TURNER, A. K., SCHUSTER, R. L. (Eds.). Landslides: investigation and mitigation. Special Report 247. Washington, D. C.: Transportation Research Board, National Research Council. v. 247, p. 36-75, 1996. HOEK, E., BROWN, E. T. Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences. v. 34, n. 8, p 1165-1186. 1997. ITASCA Consulting Group FLAC Fast Lagrangian Analysis of Continua, Ver. 5.0 User s Guide. Minneapolis: Itasca. 2005. NORRISH, N. I., WYLLIE, D. C. Rock slope stability analysis. In: TURNER, A. K., SCHUSTER, R. L. (Eds.). Landslides: investigation and mitigation. Special Report 247. Washington, D. C.: Transportation Research Board, National Research Council. p. 391 425, 1996. SOIL MECHANICS LABORATORY (LMS) UFRGS. RS 471 (Vera Cruz/RS) Test report (in portuguese). Porto Alegre (Brazil), 2004. 25p. VARNES, D. J. Slope movement types and processes. In: SCHUSTER, R. L., KRIZEK, R. J. (Ed.).Landslides: analysis and control. Special Report 176. Washington, D. C.: Transportation Research Board, National Research Council. p. 11 33. 1978. Received: 21 July 2015 - Accepted: 28 January 2016. 191