I.I Stability Conditions

Similar documents
I.G Approach to Equilibrium and Thermodynamic Potentials

I.G Approach to Equilibrium and Thermodynamic Potentials

IV. Classical Statistical Mechanics

8.333 Statistical Mechanics I: Statistical Mechanics of Particles Fall 2007

14.6 Spring Force Energy Diagram

8.333: Statistical Mechanics I Problem Set # 1 Due: 9/18/13 Thermodynamics. J = ax bt + ctx,

Physics 408 Final Exam

V.E Mean Field Theory of Condensation

Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are

Statistical mechanics lecture 1

5.60 Thermodynamics & Kinetics Spring 2008

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables!

Entropy and the second law of thermodynamics

Potential Concept Questions

Basics of Thermodynamics: Easy learning by Dr. Anjana Sen

...Thermodynamics. Lecture 15 November 9, / 26

Chapter 19 Chemical Thermodynamics

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.)

S = S(f) S(i) dq rev /T. ds = dq rev /T

The Second Law of Thermodynamics (Chapter 4)

8.334: Statistical Mechanics II Spring 2014 Test 2 Review Problems

The first law of thermodynamics continued

VI. Series Expansions

Outline Review Example Problem 1. Thermodynamics. Review and Example Problems: Part-2. X Bai. SDSMT, Physics. Fall 2014

Outline Review Example Problem 1 Example Problem 2. Thermodynamics. Review and Example Problems. X Bai. SDSMT, Physics. Fall 2013

I.D The Second Law Q C

More Thermodynamics. Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes

Chapter 12. The Laws of Thermodynamics. First Law of Thermodynamics

5.60 Thermodynamics & Kinetics Spring 2008

Physics 119A Final Examination

Chapter 12. The Laws of Thermodynamics

12 The Laws of Thermodynamics

Multivariable Calculus

PHAS2228 : Statistical Thermodynamics

PROBLEMS In each of Problems 1 through 12:

CHAPTER 4 Physical Transformations of Pure Substances.

Introduction to thermodynamics

Hence. The second law describes the direction of energy transfer in spontaneous processes

Lecture 12 Reactions as Rare Events 3/02/2009 Notes by MIT Student (and MZB)

Chapter 3 The Importance of State Functions: Internal Energy and Enthalpy. Physical Chemistry 2 nd Edition Thomas Engel, Philip Reid

For more info visit

Chemical thermodynamics the area of chemistry that deals with energy relationships

FUNDAMENTALS OF THERMAL ANALYSIS AND DIFFERENTIAL SCANNING CALORIMETRY Application in Materials Science Investigations

Chapter 18 Heat and the First Law of Thermodynamics

Chapter 10: Thermal Physics

Statistical Mechanics in a Nutshell

1. Second Law of Thermodynamics

Chapter 8 Phase Diagram, Relative Stability of Solid, Liquid, and Gas

1. Second Law of Thermodynamics

Dynamic and Thermodynamic Stability of Black Holes and Black Branes

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University

Optimization Methods via Simulation

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013

PHY101: Major Concepts in Physics I

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition

First Law of Thermodynamics. Example of Spontaneous Rxns. Reversible and Irreversible 8/2/2016

Change in entropy. Institute of Lifelong Learning, University of Delhi 1

Optimization Methods: Optimization using Calculus - Equality constraints 1. Module 2 Lecture Notes 4

Physics Nov Phase Transitions

PHYSICS 715 COURSE NOTES WEEK 1

Physics 1501 Lecture 37

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble

Today s Lecture: Atmosphere finish primitive equations, mostly thermodynamics

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian

4.1 LAWS OF MECHANICS - Review

MAHALAKSHMI ENGINEERING COLLEGE

1. Thermodynamics 1.1. A macroscopic view of matter

Entropy and the Second Law of Thermodynamics

Thermochemical Properties

University Physics (Prof. David Flory) Chapt_21 Monday, November 26, 2007 Page 1

(i) T, p, N Gibbs free energy G (ii) T, p, µ no thermodynamic potential, since T, p, µ are not independent of each other (iii) S, p, N Enthalpy H

Chapter 3. The Second Law Fall Semester Physical Chemistry 1 (CHM2201)

CH 240 Chemical Engineering Thermodynamics Spring 2007

Thermal and Statistical Physics Department Exam Last updated November 4, L π

Heat Capacities, Absolute Zero, and the Third Law

10.2 PROCESSES 10.3 THE SECOND LAW OF THERMO/ENTROPY Student Notes

III.H Zeroth Order Hydrodynamics

So far changes in the state of systems that occur within the restrictions of the first law of thermodynamics were considered:

Problem Set 9 Solutions

Chap. 3. The Second Law. Law of Spontaneity, world gets more random

The Third Law. NC State University

THE SECOND LAW OF THERMODYNAMICS. Professor Benjamin G. Levine CEM 182H Lecture 5

MAXIMA & MINIMA The single-variable definitions and theorems relating to extermals can be extended to apply to multivariable calculus.

Table of Contents [ttc]

6.034f Neural Net Notes October 28, 2010

Learning Objectives and Fundamental Questions

Thermodynamics. Thermo : heat dynamics : motion Thermodynamics is the study of motion of heat. Time and Causality Engines Properties of matter

water Plays dominant role in radiation All three phases emit and absorb in longwave radiation

Lecture 5 (Sep. 20, 2017)

Thermodynamics of solids 5. Unary systems. Kwangheon Park Kyung Hee University Department of Nuclear Engineering

X α = E x α = E. Ω Y (E,x)

Heat What is heat? Work = 2. PdV 1

Class XI Chapter 6 Thermodynamics Chemistry

General Physics I. Lecture 23: Basic Concepts of Thermodynamics

I. Collective Behavior, From Particles to Fields

Thermodynamics of phase transitions

Classification following properties of the system in Intensive and Extensive

Reversible Processes. Furthermore, there must be no friction (i.e. mechanical energy loss) or turbulence i.e. it must be infinitely slow.

Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat. Thursday 24th April, a.m p.m.

The Story of Spontaneity and Energy Dispersal. You never get what you want: 100% return on investment

Transcription:

I.I Stability Conditions The conditions derived in section I.G are similar to the well known requirements for mechanical stability. A particle moving in an eternal potential U settles to a stable equilibrium at a minimum value of U. In addition to the vanishing of the force U, this is a consequence of the loss of energy to frictional processes. Stable equilibrium occurs at a minimum of the potential energy. For a thermodynamic system, equilibrium occurs at the etremum of the appropriate potential, for eample at the maimum value of entropy for an isolated system. The requirement that spontaneous changes should always lead to an increased entropy, places important constraints on equilibrium response functions, discussed in this section. Consider a homogeneous system at equilibrium, characterized by intensive state functions (T,J, µ), and etensive variables (E,,N). Now imagine that the system is arbitrarily divided into two equal parts, and that one part spontaneously transfers some energy to the other part in the form of work or heat. The two subsystems, A and B, initially have the same values for the intensive variables, while their etensive coordinates satisfy E A + E B = E, A + B =, and N A + N B = N. After the echange of energy between the two subsystems, the coordinates of A change to (E A + δe, A + δ, N A + δn), and (T A + δt A, J A + δj A, µ A + δµ A ), (I.60) and those of B to (E B δe, B δ, N B δn), and (T B + δt B, J B + δj B, µ B + δµ B ). (I.61) Note that the overall system is maintained at constant E,, and N. Since the intensive variables are themselves functions of the etensive coordinates, to first order in the variations of (E,,N), we have δt A = δt B δt, δj A = δj B δj, δµ A = δµ B δµ. (I.62) Using eq.(i.48), the entropy of the system can be written as ( ) ( ) E A J A µ A E B J B µ B S = S A + S B = A N A + B N B. (I.63) T A T A T A T B T B T B 19

Since by assumption we are epanding about the equilibrium point, the first order changes vanish, and to second order [ ( ) ( ) ( ) ] 1 J A µ A δs = δs A + δs B = 2 δ δe A δ δ A δ δn A. (I.64) T A T A T A (We have used eq.(i.62) to note that the second order contribution of B is the same as A.) Eq.(I.64) can be rearranged to [ ( ) ] 2 δe A J A δ A µ A δn A δs = δt A + δj A δ A + δµ A δn A T A T A (I.65) 2 = [δt A δs A + δj A δ A + δµ A δn A ]. T A The condition for stable equilibrium is that any change should lead to a decrease in entropy, and hence we must have δtδs + δj δ + δµ δn 0. (I.66) We have now removed the subscript A, as the above condition must apply to the whole system as well as to any part of it. The above condition was obtained assuming that the overall system was kept at constant E,, and N. In fact, since all coordinates appear symmetrically in this epression, the same result is obtained for any other set of constraints. For eample, variations in δt and δ with δn = 0, lead to S S δs = δt + δ i T i T. (I.67) J i J i δj i = δt + δ j T j T Substituting these variations into eq.(i.66) leads to S J i (δt) 2 + δ i δ j 0. (I.68) T j T Note that the cross terms proportional to δtδ i cancel due to the Mawell relation in eq.(i.56). Eq.(I.68) is a quadratic from, and must be positive for all choices of δt and δ. The resulting constraints on the coefficients are independent of how the system was initially partitioned into subsystems A and B, and represent the conditions for stable equilibrium. 20

If only δt is non-zero, eq.(i.66) requires S/ T 0, implying a positive heat capacity, since dq S C = = T 0. (I.69) dt T If only one of the δ i in eq.(i.66) is non-zero, the corresponding response function i / J i T,j =i must be positive. However, a more general requirement eists since all δ values may be chosen non-zero. The general requirement is that the matri of coefficients J i / j T must be positive definite. A matri is positive definite if all of its eigenvalues are positive. It is necessary, but not sufficient, that all the diagonal elements of such a matri (the inverse response functions) be positive, leading to further constraints between the response functions. Including chemical work for a gas, the appropriate matri is [ P P ] V T,N N T,V µ µ. (I.70) P µ P µ 0. (I.71) N V V N P 1 2 P 2 1 3 P 3 δp(t = T c ) = δv + δv + δv +, (I.72) V 2 V 2 6 V 3 the stability condition δpδv 0 implies that 2 P/ V 2 V T,N In addition to the positivity of the response functions κ T,N = V 1 V/ P T,N and N/ µ T,V, the determinant of the matri must be positive, requiring N T,V T,V T,N T,N T,V Another interesting consequence of eq.(i.66) relates to the critical point of a gas where P/ V Tc,N = 0. Assuming that the critical isotherm can be analytically epanded as T c,n T c,n T c,n T c,n must be zero, and the third derivative negative, if the first derivative vanishes. This condition is used to obtain the critical point of the gas from mean-field approimations to the isotherms (such as the van der Waals isotherms). In fact, it is usually not justified to make a Taylor epansion around the critical point as in eq.(i.72), although the constraint δpδv 0 remains applicable. 21

I.J The Third Law Differences in entropy between two states can be computed using the second law, from ΔS = /T. Low temperature eperiments indicate that ΔS(X, T) vanishes as dq rev T goes to zero for any set of coordinates X. This observation is independent of the other laws of thermodynamics, leading to the formulation of a third law by Nernst, which states The entropy of all systems at zero absolute temperature is a universal constant that can be taken to be zero. The above statement actually implies that lim S(X, T) = 0, T 0 (I.73) which is a stronger requirement than the vanishing of the differences ΔS(X, T). This etended condition has been tested for metastable phases of a substance. Certain materials such as sulphur or phosphine can eist in a number of rather similar crystalline structures (allotropes). Of course, at a given temperature only one of these structures is truly stable. Let us imagine that as the high temperature equilibrium phase A, is cooled slowly, it makes a transition at a temperature T to phase B, releasing latent heat L. Under more rapid cooling conditions the transition is avoided, and phase A persists in metastable equilibrium. The entropies in the two phases can be calculated by measuring the heat capacities C A (T) and C B (T). Starting from T = 0, the entropy at a temperature slightly above T can be computed along the two possible paths as T T S(T + ǫ) = S A (0) + C A (T ) C B (T ) L dt T = S B (0) + dt T + T. 0 0 (I.74) Such measurements have indeed verified that S A (0) = S B (0) 0. Consequences of the third law: (1) Since S(T = 0,X) = 0 for all coordinates X, S lim = 0. (I.75) T 0 X T (2) Heat capacities must vanish as T 0 since T C X (T ) S(T,X) S(0,X) = dt, (I.76) 22 0 T

and the integral diverges as T 0 unless lim C X (T) = 0. T 0 (I.77) (3) Thermal epansivities also vanish as T 0 since 1 1 S α J = =. (I.78) T J J The second equality follows from the Mawell relation in eq.(i.56). The vanishing of the latter is guaranteed by eq.(i.75). (4) It is impossible to cool any system to absolute zero temperature in a finite number of steps. For eample, we can cool a gas by an adiabatic reduction in pressure. Since the curves of S versus T for different pressures must join at T = 0, successive steps involve progressively smaller changes, in S and in T, on approaching zero temperature. Alternatively, the unattainability of zero temperatures implies that S(T = 0, P) is independent of P. This is a weaker statement of the third law which also implies the equality of zero temperature entropy for different substances. In the following sections, we shall attempt to justify the laws of thermodynamics from a microscopic point of view. The first law is clearly a reflection of the conservation of energy, which also operates at the microscopic level. The zeroth and second laws suggest an irreversible approach to equilibrium, a concept that has no analog at the particulate level. It is justified as reflecting the collective behavior of large numbers of degrees of freedom. In statistical mechanics the entropy is calculated as S = k B lng, where g is the degeneracy of the states (number of configurations with the same energy). The third law of thermodynamics thus requires that g = 1 at T = 0, i.e. that the ground state of any system is unique. This condition does not hold within the framework of classical statistical mechanics, as there are eamples of both non-interacting (such as an ideal gas), and interacting (the frustrated spins in a triangular antiferromagnet) systems with degenerate ground states, and a finite zero temperature entropy. However, classical mechanics is inapplicable at very low temperatures and energies where quantum effects become important. The third law is then equivalent to the statement that the ground state of a quantum mechanical system is unique. While this can be proved for a non-interacting system, there is no general proof of its validity with interactions. Unfortunately, the onset of quantum effects (and other possible origins of the breaking of classical degeneracy) are system specific. Hence it is not a priori clear how low the temperature must be, before the predictions 23 T

of the third law can be observed. Another deficiency of the law is its inapplicability to glassy phases. Glasses results from the freezing of supercooled liquids into configurations with etremely slow dynamics. While not truly equilibrium phases (and hence subject to all the laws of thermodynamics), they are effectively so due to the slowness of the dynamics. A possible test of the applicability of the third law to glasses, is discussed in test #1 review problems. 24

MIT OpenCourseWare http://ocw.mit.edu 8.333 Statistical Mechanics I: Statistical Mechanics of Particles Fall 2013 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.