Influence of Stator Yoke Thickness and Stator Teeth Shape upon Ripple and Average Torque of Switched Reluctance Motors

Similar documents
Comparison of Measurement Methods to Determine the Electromagnetic Characteristics of Switched Reluctance Motors

EXPERIMENTAL COMPARISON OF LAMINATION MATERIAL CASE OF SWITCHING FLUX SYNCHRONOUS MACHINE WITH HYBRID EXCITATION

Guangjin Li, Javier Ojeda, Emmanuel Hoang, Mohamed Gabsi, Cederic Balpe. To cite this version:

Thomas Lugand. To cite this version: HAL Id: tel

A NEW STRUCTURE OF A SWITCHING FLUX SYNCHRONOUS POLYPHASED MACHINE WITH HYBRID EXCITATION

Comparison between Analytic Calculation and Finite Element Modeling in the Study of Winding Geometry Effect on Copper Losses

Electromagnetic characterization of magnetic steel alloys with respect to the temperature

Comparison Between Finite-Element Analysis and Winding Function Theory for Inductances and Torque Calculation of a Synchronous Reluctance Machine

A New Approach on the Design and Optimization of Brushless Doubly-Fed Reluctance Machines

Computation of Wound Rotor Induction Machines Based on Coupled Finite Elements and Circuit Equation under a First Space Harmonic Approximation

The magnetic field diffusion equation including dynamic, hysteresis: A linear formulation of the problem

AC Transport Losses Calculation in a Bi-2223 Current Lead Using Thermal Coupling With an Analytical Formula

Computation and Experimental Measurements of the Magnetic Fields between Filamentary Circular Coils

Interactions of an eddy current sensor and a multilayered structure

Case report on the article Water nanoelectrolysis: A simple model, Journal of Applied Physics (2017) 122,

Characterization of the local Electrical Properties of Electrical Machine Parts with non-trivial Geometry

Numerical Modeling of Eddy Current Nondestructive Evaluation of Ferromagnetic Tubes via an Integral. Equation Approach

Improvement of YBCO Superconductor Magnetic Shielding by Using Multiple Bulks

Stator/Rotor Interface Analysis for Piezoelectric Motors

Modeling of Electromagmetic Processes in Wire Electric Discharge Machining

Evaluation of the Magnetic Fields and Mutual Inductance between Circular Coils Arbitrarily Positioned in Space

Eddy-Current Effects in Circuit Breakers During Arc Displacement Phase

Analytical modeling and optimization of a radial permanent magnets synchronous machine

Ironless Permanent Magnet Motors: Three-Dimensional Analytical Calculation

Performance analysis of variable speed multiphase induction motor with pole phase modulation

A new simple recursive algorithm for finding prime numbers using Rosser s theorem

Static Characteristics of Switched Reluctance Motor 6/4 By Finite Element Analysis

Influence of Rotor Structure and Number of Phases on Torque and Flux Weakening Characteristics of V-Shape Interior PM Electrical Machine

The FLRW cosmological model revisited: relation of the local time with th e local curvature and consequences on the Heisenberg uncertainty principle

IMPROVEMENTS OF THE VARIABLE THERMAL RESISTANCE

Easter bracelets for years

Optimal design of a wound rotor synchronous generator using genetic algorithm

Determination of synchronous motor vibrations due to electromagnetic force harmonics

Comparison between Analytic Calculation and Finite Element Modeling in the Study of Winding Geometry Effect on Copper Losses

Vibro-acoustic simulation of a car window

Towards an active anechoic room

Magnetic Flux Density Measurement in Permanent Magnet Synchronous Machines

Smart Bolometer: Toward Monolithic Bolometer with Smart Functions

About the implementation of the finite element method for computer aided education in electrical engineering

Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions

Prediction of Electromagnetic Forces and Vibrations in SRMs Operating at Steady State and Transient Speeds

Investigation of a New Topology of Hybrid-Excited Flux-Switching Machine with Static Global Winding: Experiments and Modeling

PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION

Evolution of the cooperation and consequences of a decrease in plant diversity on the root symbiont diversity

Regular paper. Determination of axial flux motor electric parameters by the analyticfinite elements method

Lorentz force velocimetry using small-size permanent magnet systems and a multi-degree-of-freedom force/torque sensor

Preliminary Sizing Design of a 1 MW Low Duty Cycle Switched Reluctance Generator for Aerospace Applications

Nodal and divergence-conforming boundary-element methods applied to electromagnetic scattering problems

Dispersion relation results for VCS at JLab

Methylation-associated PHOX2B gene silencing is a rare event in human neuroblastoma.

A NON - CONVENTIONAL TYPE OF PERMANENT MAGNET BEARING

Passerelle entre les arts : la sculpture sonore

Predicting the risk of non-compliance to EMC requirements during the life-cycle

Theoretical calculation of the power of wind turbine or tidal turbine

Self Field Effect Compensation in an HTS Tube

Ultra low frequency pressure transducer calibration

Simulation and measurement of loudspeaker nonlinearity with a broad-band noise excitation

Full-order observers for linear systems with unknown inputs

A Simple Compensation Method for the Accurate Measurement of Magnetic Losses With a Single Strip Tester

Lecture 7: Synchronous Motor Drives

Flow behaviors driven by a rotating spiral permanent magnetic field

Unbiased minimum variance estimation for systems with unknown exogenous inputs

Natural convection of magnetic fluid inside a cubical enclosure under magnetic gravity compensation

Analytical Calculation of Air Gap Magnetic Field Distribution in Vernier Motor

Comparison of Harmonic, Geometric and Arithmetic means for change detection in SAR time series

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008]

Ion energy balance during fast wave heating in TORE SUPRA

Control of an offshore wind turbine modeled as discrete system

Exogenous input estimation in Electronic Power Steering (EPS) systems

Third harmonic current injection into highly saturated multi-phase machines

Accurate Joule Loss Estimation for Rotating Machines: An Engineering Approach

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Generators for wind power conversion

THE INFLUENCE OF THE ROTOR POLE SHAPE ON THE STATIC EFICIENCY OF THE SWITCHED RELUCTANCE MOTOR

Multiple sensor fault detection in heat exchanger system

STAR-CCM+ and SPEED for electric machine cooling analysis

Sub-domain finite element method for efficiently considering strong skin and proximity effects

Force and Stiffness of Passive Magnetic Bearings Using Permanent Magnets. Part 2: Radial Magnetization

Analytical and numerical computation of the no-load magnetic field in induction motors

Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas

A New Integral Formulation for Eddy Current Computation in Thin Conductive Shells

Inductive thermography nondestructive testing applied to carbon composite materials: multiphysics and multiscale modeling

On size, radius and minimum degree

Simultaneous Induction Heating and Electromagnetic Stirring of a Molten Glass Bath

Can we reduce health inequalities? An analysis of the English strategy ( )

Voltage Stability of Multiple Distributed Generators in Distribution Networks

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque.

Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars

L institution sportive : rêve et illusion

Beat phenomenon at the arrival of a guided mode in a semi-infinite acoustic duct

Sound intensity as a function of sound insulation partition

Loss Minimization Design Using Magnetic Equivalent Circuit for a Permanent Magnet Synchronous Motor

Antipodal radiation pattern of a patch antenna combined with superstrate using transformation electromagnetics

Multiphase operation of switched reluctance motor drives

RHEOLOGICAL INTERPRETATION OF RAYLEIGH DAMPING

TRING-module : a high-range and high-precision 2DoF microsystem dedicated to a modular micromanipulation station.

A Simple Nonlinear Model of the Switched Reluctance Motor

Review of Basic Electrical and Magnetic Circuit Concepts EE

On the Earth s magnetic field and the Hall effect

Revision Guide for Chapter 15

Transcription:

Influence of Stator Yoke Thickness and Stator Teeth Shape upon Ripple and Average Torque of Switched Reluctance Motors Emmanuel Hoang, Bernard Multon, Rafael Vives Fos, Marc Geoffroy To cite this version: Emmanuel Hoang, Bernard Multon, Rafael Vives Fos, Marc Geoffroy. Influence of Stator Yoke Thickness and Stator Teeth Shape upon Ripple and Average Torque of Switched Reluctance Motors. Symposium SPEEDAM, Jun 1994, TAORMINA, Italy. pp.145-149, 1994. HAL Id: hal-00674032 https://hal.archives-ouvertes.fr/hal-00674032 Submitted on 27 Feb 2012 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Influence of Stator Yoke Thickness and Stator Teeth Shape upon Ripple and Average Torque of Switched Reluctance Motors E. HOANG, B. MULTON, R. VIVES FOS, M. GEOFFROY L.E.SI.R- U.R.A. C.N.R.S D1375-E.N.S Cachan 61 av du Pdt Wilson 94235 Cachan cedex France Tel : 33.1.47.40.21.11 Fax : 33.1.47.40.21.99 ABSTRACT During the investigation of the Switched Reluctance Motor (SRM), we became interested in two apparently secondary parameters which are: - the thickness of the stator yoke; - the shape of stator teeth. In keeping the other geometrical parameters, like the outer and air gap diameters, constant, we could study the impacts from varying these two parameters with respect to: - the curve of instantaneous single-phase torque; - the poly-phase ripple torque at low speed with a current supply mode; - the power semi-conductor rating at maximum power; - and the size power ratio of the converter with a full-wave voltage supply mode. A prototype has been built and enables drawing a comparison between the theoretical and practical results. Keywords : variable reluctance motor, yoke thickness, average torque, ripple torque, converter rating

I.Introduction To design a motor meeting specifications, both experience and the use of equations are necessary. These equations take geometrical parameters and some constraints like copper losses into account [2]. An initial geometrical result motivated us to define all parameters, such as outer diameter, pole shaping and air gap radius. However, in order to assess precisely the ratio of average torque per copper losses and to fill coil space in the most optimal way, we became interested in two particular geometrical parameters for the switched reluctance motor (SRM): stator yoke thickness and shape of stator teeth (see Fig. 1). The use of a 2-D. finite-element software is essential for taking equations which are not linear into account (for example, saturable magnetic material) and for calculating the characteristic variables of a motor, like magnetic flux or torque. With this software, we can plot : - In the flux-current set of curves, two extreme position curves (opposition and conjunction) define average torque in the case of an ideal current supply mode. - Curve network flux in terms of electrical angle for several currents, which helps to estimate the influence of the stator yoke thickness and the shape of stator teeth by means of a simulation software on power semi-conductor rating at maximum power use and on " size power ratio " of the converter. Switched reluctance motor mode with full-wave voltage is also studied. At higher speed, many authors have shown that this supply mode is very efficient. - Curve network torque in terms of electrical angle for several currents to calculate ripple torque at low running speed. II.Presentation of motors under study A.Geometrical definition In order to optimize several constraints which will be indicated, we modified the stator yoke thickness and the stator tooth shape of a SRM with 6 and 8 teeth at the stator and rotor, respectively a rated speed of 3000 rpm and a rated torque of 9.5 Nm; thus a power of 2.95 kw. The results of a initial sizing provides the dimensions of the machine (Ec1as1) as follows: - Outer diameter : 143 mm - Air gap diameter : 82 mm - Iron active length 80 mm - βs = 0.32 ; βr = 0.48 - Stator yoke thickness (Ec1) 6.5 mm - The tooth of the stator and rotor are right-pole shaped.

Ec1 Ec2 10 Ec1 = 6.5 mm Ec2 = 8 mm Fig. 1 Stator size of studied machines B.Magnetic core modifications The second (Ec2as1) differs from the first in yoke thickness (Ec2 = 8 mm ). The third (Ec2as2) differs from the first in yoke thickness (Ec2 = 8 mm) and in stator pole shape (angle of teeth side = 10 ). The prototype has been built with Ec2as2 geometrical parametric results. C.Number of spires, winding area The converter topology is an asymmetric half-bridge per phase and the DC voltage supply is 300 volts. These 300 V are fixed by the power network. To optimise the motor's performance we varied the turn coils. We computed the turns coils to obtain an average torque of 9.5 Nm at 3000 rpm with a DC. supply voltage of 300 V ( see section V high speed and voltage feeding ). To compute iron losses : p cu = qri 2 rms nl R =ρ S cu n = number of turns, L = average length of a turn w L = 2 L + k w + s a tb s 2 π k tb is a coefficient to take into account winding-heads form 1< ktb < ktb 1. 3. 2 2πR e βs 2πR e ( 1 βs ) w s = andw N s = s N s S k S cu = bob b n Two methods to compute winding area are: 1 Winding area is equal to the total unoccupied space between stator teeth, and k b is dependent on coil winding technique.

2 Winding area is a square-shaped and kb is only dependent on coil winding technique and is independent of stator yoke shape. 1 S bob = w s h s and k b 06. 2 h s = height of stator tooth machine Ec1as1 Ec2as1 Ec2as2 Sbob1(m 2 ) 4.97E-04 4.57E-04 4.14E-04 Sbob2 (m 2 ) 3.50E-04 3.27E-04 3.27E-04 L (m) 0.234 0.234 0.234 spire number 190 200 187 R1 (Ω) 0.567 0.683 0.659 R2 (Ω) 0.805 0.954 0.834 Table 1.Data on coil realization III.Presentation of analysis criteria To compare the machines under study, we have defined analysis criteria: A.Converter, size power ratio [5] defines a "sizing factor" which, based on actuator performances (load power, phase voltage and current) and converter topology, allows comparing silicium power. For one phase : (size power ratio) δ' = U max I rms P1 δ" = U max I max P1 For a converter : with P1 power per phase with P1 power per phase U I F d ' = n max rms i with n P i the number of power switches U I F d " = n max max i P Example : for AC. motor drive supplied with a PWM voltage, F d " = 8 cosϕ B.Motor performance B.1 average torque Average torque is a fundamental piece of data. Four methods are possible to compute average torque. 1 Based on magnetisation curves (Flux-current locus) both in opposition and in conjunction [1](see Fig. 2).

2 Based on data on permeance function P ( θ) and values of Lo, Lc and ls (minimum, maximum and saturated inductance) computiation of converter-machine electromagnetic behaviour [6]. 3 With an E.F. 2-D software (Maxwell Ansoft), we can compute the values for several data like poly-phase instantaneous torque, phase current and flux density in different parts of the machine. But computing time is significant (around 100 hours for one operating point). 4 With a E.F. 2-D software (Maxwell Ansoft), we can compute flux( θ,i) et torque( θ,i) and the simple phase instantaneous torque [7]. computing method : dϕ dϕ U(t) ϕn ( θ) = ϕn 1( θ) + dt dθ ϕ θ, i i θ ( ) ( ) ( θ, i) Γ( θ) Γ To compare the three machines, we have fixed the average torque at 9.5 Nm. B.2 Torque ripple It is difficult to assess the impacts of the torque ripple on noise and on vibration; however, we can define a relative torque ripple by: Γ Γ Γ % max = min < Γ > A frequency spectra analysis is useful to have some information on torque ripple harmonics. This data can be computed accurately in the case of method 3 (computing with E.F. 2-D software). B.3 Copper losses (see section II.c Number of spires, winding area) B.4 Iron losses The loss model utilized takes into account the variation of flux density and we adopt the following formulation : pf (W/m3)= ph + pec where ph represents the hysteresis loss component and pec the eddy current loss component. ph = wh f and wh = kh1 Bpp + kh2 Bpp2 However, when an induction waveform contains minor loops, an empirical correction must be applied [10]: 0.32 n wh = (kh1 Bpp+ kh2 Bpp2) 1 + Bi Bpp i= 1 pec = 1 T 2 db α p dt T 0 dt with Bpp : total variation of flux density. Bi : variation of flux density for minor cycle.

ep 2 αp 1.3 12ρ ep : steel thickness (mm) ; ρ : resistivity (Ω.m) for example : steel : 0.35 mm ;2.8w/kg (1.5T, 50 Hz) kh1= 5 ; kh2 = 40 ; αp = 0.025 B(t) = sinusoidal waveform. B(t) Bm; + Bm Pf = kh 1(2B m) + kh 2 (2B m) 2 f + 2 π 2 α pbm 2 f 2 B(t) = triangular waveform. B(t) 0; + Bm Pf = kh 2 f + 4 2 f 2 1 (B m ) + kh 2 (B m ) α p B m When induction is rotational, losses pre-determination is difficult because no rigorous physical model has been developed. Therefore, loss value is usually computed from the loss deduced separately for each of the two orthogonal alternating flux density components [8][9]. Determination of flux density components with E.F. 2D software in different parts of the machines ( 18 for the rotor, 12 stator teeth and 3 for stator yoke) coupled with the iron loss model allows us to estimate iron loss values. VI. Low speed and square- wave current supply A.Ampere turns and copper losses At low speed, the machine is supplied by square-wave current supply (PWM control), and we have chosen to maximise average torque on copper loss ratio. In Fig. 2 we show energy strokes which have the same area (same average torque of 9.5 Nm). Principals results are presented in Table 2.

0.0025 0.002 Flux / turn (Wb) Ec2as2 Ec2as1 0.0015 Ec1as1 0.001 0.0005 0 N I (A) 0 500 1000 1500 2000 2500 3000 Fig. 2 Magnetization curves Ec1as1 Ec2as1 Ec2as2 ampere turns 2609 2280 2080 Irms 9.71 8.06 7.87 Copper losses 1 160 133 122 Copper losses 2 228 186 155 averagetorque R1 I 0.0593 0.0714 0.0777 average torque R2 I 0.0417 0.0511 0.0614 Table 2 Data on copper losses at low speed We can note that for the same amount converted energy, the increase in yoke thickness and the evolution in the shape of stator teeth allow reducing copper losses at a ratio of 1.22 between Ec1as1 and Ec2as1 machines and at a ratio of 1.2 between Ec2as1 and Ec2as2 machines. B. Instantaneous torque and ripple torque With data on single-phase torque at constant current torque( θ,i)(see Fig. 3), a simulation allows us to define ripple torque at low speed for a current supply mode. The square-form ampere turns are 1200, 2400 and 4000 A with 120 angular duration ( θon = 15 ; θoff = 135 ).

20 Torque (Nm) ni = 4000 A Ec2as2 Ec2as1 15 Ec1as1 ni = 2400 A 10 ni = 1600 A 5 0 0 30 60 90 120 150 180 Angular rotor position (electrical angle) Fig. 3 Instantaneous torque N I (A) Ec1as1 Ec2as1 Ec2as2 average (Nm) 1200 5.63 6.20 6.55 ripple (%) 96% 69% 65% average (Nm) 2400 8.29 9.34 10.05 ripple (%) 106% 71% 65% average (Nm) 4000 12.29 14.22 15.68 ripple (%) 98% 71% 68% Table 3 Data on torque at low speed We can note that for the same ampere turns, the increase in yoke thickness and the evolution in the shape of stator teeth allow increasing average torque with a lower relative torque ripple. With a current feeding to minimise the torque ripple [7], single phase instantaneous torque of the Ec2as2 machine permits obtaining a lower torque ripple on a wider speed range. V.High speed and voltage feeding To maximise the converter's silicium power at high speed, it is necessary to feed SRM with a square-wave voltage. We sought to obtain the same average torque (9.5 Nm) at the same speed (3000 rpm, electric frequency = 400 Hz) and at a DC voltage supply of 300 V by optimising turn coils and control parameters (ψ = advance angle relative to unaligned inductance and θp = electrical magnetisation, θp = θoff - θon, ψ = -θon). Control angles are the same for the three machines (ψ = 70 electrical angle and θp = 180 electrical angle, see section II.c for number of turns). In Fig. 4 to Fig. 7, elements of comparison are presented. In Fig. 4 current phases are represented, in Fig. 5 the magnetization curves in the case of voltage fed, in Fig. 6 it's the poly-phase instantaneous torque.

In Fig. 7 relative ripple torque spectra analyses are represented. The first harmonic is q.f = 3*400 Hz. Principals results are presented in Table 4. 30 Phase current (A) 25 Ec1as1 20 Ec2as1 15 10 Ec2as2 5 0 0 60 120 180 240 300 360 Angular rotor position (electrical angle) Fig. 4 Current phase 0.0025 Flux / turn (Wb) Ec2as2 Ec2as1 0.002 0.0015 0.001 Ec1as1 0.0005 N I (A) 0 0 1000 2000 3000 4000 5000 6000 Fig. 5 Magnetization curves on voltage fed

14 12 Torque (Nm) Ec2as2 10 8 Ec1as1 6 4 Ec2as1 2 0 0 15 30 45 60 75 90 105 120 Angular rotor position (electrical angle) Fig. 6 Poly-phase instantaneous torque 0.3 Γ/<Γ> Ec2as2 0.25 Ec2as1 0.2 0.15 Ec1as1 0.1 0.05 Frequency (Hz) 0 0 1200 2400 3600 4800 6000 7200 8400 Fig. 7 Ripple torque spectra Ec1as1 Ec2as1 Ec2as2 Pu (W) 2917 2966 2987 <Γ> (Nm) 9.29 9.44 9.51 Γ (Nm) 4.84 5.95 6.27 Γ (%) 52% 63% 66% Γ1/<Γ> 0.16 0.25 0.27 copper losses 354 210 188 (W) Irms (A) 12.11 8.56 8.66 Imax(A) 28.51 17.5 15.72 Fd' (V A/W) 7.5 5.2 5.2 Fd" (V A/W) 17.6 10.5 9.5 Iron losses 115 94 101 (W) rotor (W) 44.6 39.7 39.9 stator (W) 70.7 53.7 61.0 efficiency 86.1 % 90.7 % 91.1 % Table 4 Data on studied machines at high speed

The increase in yoke thickness and the evolution in the shape of stator teeth, with voltage fed, and at a same level of average torque, allow reducing copper losses, the size power ratio and increasing the efficiency. However iron losses and ripple torque increase between Ec2as1 and Ec2as2 machines. A complementary study of a machine with a yoke thickness equal to 9.5 mm permits to reduce iron losses of 10 % but the copper increase. The efficiency increase from 91.1 % to 91.4 %. VI.Conclusion It is possible to find optimal stator geometrical parameters taking analysis criteria into account, such as, ripple torque at low speed, power semi-conductor rating at maximum power and "size power ratio" of the converter at high speed in full-wave voltage supply mode. Optimal stator yoke thickness value increases with the average torque level; however, there is a limit to this value at oversaturation of the magnetic material. For the second parameter under study, it is worthwhile to make stator teeth with a trapezoidal shape in order to improve the instantaneous torque diagram and thereby to reduce ripple torque. VII.Nomemclature Ec : stator yoke thickness n : number of turn coil for one phase L : average length of one turn coil La : iron active length βs : reduce stator pole arc βr : reduce rotor pole arc Re : air gap radius Ns : number of stator teeth Sbob : winding area Scu : copper area for one conductor Umax : maximal voltage for one phase Imax : maximal current for one phase Irms : RMS current for one phase P1 : active power for one phase P : total active power <Γ> : average torque Γmax : maximal poly-phase torque Γmin : minimal poly-phase torque Γ1 : amplitude of the first torque harmonic

VIII.References [1] P.J Lawrenson, J.M Stephenson, P.T. Blenkinsop, J. Corda, N. Fulton Variable Speed Switched Reluctance Motors IEE Proc. B, Elect. Power Appl., vol. 127, pp 253-265, July 1980. [2] B. Multon, D. Bonot, J.M. Hube Conception d'un Moteur à Réluctance Autocommuté Alimenté en Courant. MOPP Lausanne, pp. 215-226, Juillet 1990. [3] J.V. Byrne, M.F. McMullin Design of a Reluctance Motor as a 10 kw Spindle Drives. MOTORCON (Genève). Sept. 1982. pp. 10-24. [4] A.R. Eastham, H Yuan, G.E. Dawson, P.C. Choudhury, P.M.Cusack A Finite Element Evaluation of Pole Shaping in Switched Reluctance Motors Electrosoft 1990. Vol. n 1, pp. 55-67. [5] B. Multon, C. Glaize Size Power Ratio Optimization for The Converters of Switched Reluctance Motors IMACS TC1'90, Nancy, pp. 325-331, 19-21 Sept. 90. [6] S. Hassine Optimisation des Paramètres de Commande en Tension des Machines à Réluctance Variable Autopilotées en Régime Permanent Thèse de doctorat es sciences. Paris XI. E.N.S. Cachan, 30 Janvier 1992. [7] J. Y. Lechenadec, B. Multon, S. Hassine Current Feeding of Switched Reluctance Motor. Optimization of the the current Waveform to Minimize the Torque Ripple. IMACS TC1'93, Montréal, pp. 267-272, 7-9 July 1993 [8] T. Yamaguchi, K. Narita Rotational Power Losses in Commercial Silicon-Iron Laminations Elec. Eng. in Japan, vol 96, no. 4, pp 15-20, 1976. [9] K. Atallah, Z. Q. Zhu, D. Howe An Improved Method for Predicting Iron Losses in Brushless Permanent Magnet DC Drives IEEE Trans. Magn., vol 28, no. 5, pp 2997-2999, 1992. [10] J.D. Lavers, P.P. Biringer, H. Hollitscher A Simple Method of Estimating the Minor Loop Hysteresis Loss in Thin Laminations IEEE Trans. Magn., vol 14, pp 386-388, 1978.