J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/2 H$moS> Z. 65/2/3 Code No.

Similar documents
J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/2 H$moS> Z. 65/2/1 Code No.

J{UV 65/1/C. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/C H$moS> Z. 65/1

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/1/C H$moS> Z. 65/1/2 Code No.

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/1/C H$moS> Z. 65/1/3

J{UV 65/2. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series GBM

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/1/C H$moS> Z. 65/1/1

CBSE Question Paper. Mathematics Class-XII (set-1)

J{UV 65/1/RU. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO

J{UV 65/3. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series GBM

J{UV 65/3. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SGN

J{UV 65/1. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SGN

CBSE QUESTION PAPER. MATHEMATICS,(1)1d

J{UV (Ho$db ZoÌhrZ narjm{w `m Ho$ {be) MATHEMATICS. g H${bV narjm II SUMMATIVE ASSESSMENT II. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90.

EMT December - Examination 2017 BAP Examination Elementary Mathematics Paper - EMT

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

30/1/3 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

30/1/2 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

Downloaded from g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

J{UV 65/2/1/F. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO/2

BMT June - Examination 2017 BSCP Examination Mathematics J{UV. Paper - BMT. Time : 3 Hours ] [ Max. Marks :- 80

MT-03 December - Examination 2016 B.A. / B.Sc. Pt. I Examination Co-ordinate Geometry & Linear Programming Paper - MT-03

MT-03 June - Examination 2016 B.A. / B.Sc. Pt. I Examination Co-ordinate Geometry and Mathematical Programming Paper - MT-03

SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

Downloaded from g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

PH-02 June - Examination 2017 B.Sc. Pt. I Examination Oscillation and Waves. Paper - PH-02. Time : 3 Hours ] [ Max. Marks :- 50

Downloaded from g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

PH-03 December - Examination 2016 B.Sc. Pt. I Examination Electromagnetism. Paper - PH-03. Time : 3 Hours ] [ Max. Marks :- 50

J{UV (311) Time : 3 Hours ] [ Max i mum Marks : 100. Note : (i) This Question Paper consists of two Sections, viz., A and B.

CBSE QUESTION PAPER CLASS-X

CBSE Examination Paper, Foreign-2014

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

{Magå V {dúwvj{vh$s VWm gmno{îmh$vm H$m {d{eîq> {gõmýv

Set 3 30/1/3 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

MPH-03 June - Examination 2016 M.Sc. (Previous) Physics Examination Quantum Mechanics. Paper - MPH-03. Time : 3 Hours ] [ Max.

Set 1 30/1/1 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

MSCPH-03 June - Examination 2017 MSC (Previous) Physics Examination Solid State Physics. Paper - MSCPH-03. Time : 3 Hours ] [ Max.


{dúwv Mwpå~H$s {gõm V VWm ñnoñq >moñh$monr

Time allowed: 3 hours Maximum Marks: 90

MSCCH - 09 December - Examination 2015 M.Sc. Chemistry (Final) Examination Drugs and Pharmaceuticals Paper - MSCCH - 09

{Magå V {dúwvj{vh$s VWm gmno{îmh$vm H$m {d{eîq> {gõm V

II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

{ZX}e : h àíz-nì "A', "~' VWm "g' VrZ IÊS>m {d^m{ov h & àë oh$ IÊS> Ho$ {ZX}emZwgma àízm H$m CÎma Xr{OE&

J{UV 65/1/MT. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO

àoau à^md {H$go H$hVo h?

{dúwv Mwpå~H$s {gõm V VWm ñnoñq >moñh$monr

J{UV (311) Time : 3 Hours ] [ Max i mum Marks : 100. Note : (i) This Question Paper consists of two Sections, viz., A and B.

PH-06 June - Examination 2016 BSc Pt. II Examination Optics. àh$m{eh$s. Paper - PH-06. Time : 3 Hours ] [ Max. Marks :- 50

agm`z {dkmz (g ÕmpÝVH$) 56/1/G {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

agm`z {dkmz (g ÕmpÝVH$) 56/2/G {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

J{UVr ^m {VH$s VWm {Magå V m {ÌH$s

J{UV MATHEMATICS. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90 IÊS> A SECTION A

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/1/C H$moS> Z. 56/1/3 Code No.

Mathematics. Guess Paper: 2014 Class: XII. Time Allowed: 3Hours Maximum Marks: 70. Section A

This ques tion pa per con sists of 32 ques tions [Sec tion A (24) + Sec tion B (4+4)] and 12 printed pages. MATHEMATICS J{UV (311) 2...

^m {VH$ {dkmz (g ÕmpÝVH$) PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series OSR H$moS> Z. 55/2/1 Code No.

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/1/C H$moS> Z. 56/1/2 Code No.

J{UV (311) (narjm H$m {XZ d {XZmßH$) Signature of Invigilators 1... ({ZarjH$m Ho$ hòvmja) Bg ÌZ-nà nwpòvh$m Ho$ A VJ V 23 _w{ V n apple> h ü&

^m {VH$ {dkmz (g ÕmpÝVH$) 55/3/C. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Downloaded From:

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/C H$moS> Z. 56/1

agm`z {dkmz (g ÕmpÝVH$) 56/1/MT {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/1/C H$moS> Z. 56/1/1

agm`z {dkmz (g ÕmpÝVH$) 56/1 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series GBM

^m {VH$ {dkmz (g ÕmpÝVH$) PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series OSR H$moS> Z. 42/3 (SPL) Code No.

II SUMMATIVE ASSESSMENT II

^m {VH$ {dkmz (g ÕmpÝVH$) 55/2/1. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series GBM/2

Series HRS/2 H$moS> Z. 31/2/2 Code No.

MATHEMATICS. Time allowed : 3 hours Maximum Marks : 100

^m {VH$ {dkmz (g ÕmpÝVH$) 55/3/A. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series SSO

^m {VH$ {dkmz (g ÕmpÝVH$) 55/1/A. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series SSO

^m {VH$ {dkmz (g ÕmpÝVH$) 55/3. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series GBM

agm`z {dkmz (g ÕmpÝVH$) 56/3/RU {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

Series HRS H$moS> Z. 31/3 Code No. g H${bV narjm II SUMMATIVE ASSESSMENT II {dkmz SCIENCE

agm`z {dkmz (g ÕmpÝVH$) 56/1/B {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

gm_mý` {ZX}e : àízm Ho$ CÎma {bizo h & (ii) g^r àíz A{Zdm` h & (iii) AmnH$mo ^mj A Am a ^mj ~ Ho$ g^r àízm Ho$ CÎma n WH²$-n WH²$ ^mj Ho$ AmYma na

31/1/2 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

MODEL PAPER - I MATHEMATICS. Time allowed : 3 hours Maximum marks : 100

agm`z {dkmz (g ÕmpÝVH$) 56/2/1 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series GBM/2

^m {VH$ {dkmz (g ÕmpÝVH$) 55/1/MT. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series SSO

agm`z {dkmz (g ÕmpÝVH$) 56/2 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series GBM

Bg narjm _ {ZåZ{b{IV àíznì hm Jo

{dîm Am a à~ YZ na {díbofumë_h$

MATHEMATICS. Time allowed : 3 hours Maximum Marks: 100

31/1/3 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

II SUMMATIVE ASSESSMENT II

MINIMUM PROGRAMME FOR AISSCE

II SUMMATIVE ASSESSMENT II

agm`z {dkmz (g ÕmpÝVH$) 56/3 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SGN

agm`z {dkmz (g ÕmpÝVH$) 56/1 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SGN

Transcription:

Series OSR/ H$moS> Z. 65//3 Code No. amob Z. Roll No. narjmwu H$moS >H$mo CÎma-nwpñVH$m Ho$ _wi-n ð >na Adí` {bio & Candidates must write the Code on the title page of the answer-book. H $n`m Om±M H$a b {H$ Bg àíz-nì _o _w{ðv n ð> 1 h & àíz-nì _ Xm{hZo hmw H$s Amoa {XE JE H$moS >Zå~a H$mo N>mÌ CÎma-nwpñVH$m Ho$ _wi-n ð> na {bi & H $n`m Om±M H$a b {H$ Bg àíz-nì _ >9 àíz h & H $n`m àíz H$m CÎma {bizm ewê$ H$aZo go nhbo, àíz H$m H«$_m H$ Adí` {bi & Bg àíz-nì H$mo n T>Zo Ho$ {be 15 {_ZQ >H$m g_` {X`m J`m h & àíz-nì H$m {dvau nydm _ 10.15 ~Oo {H$`m OmEJm & 10.15 ~Oo go 10.30 ~Oo VH$ N>mÌ Ho$db àíz-nì H$mo n T> Jo Am a Bg Ad{Y Ho$ Xm amz do CÎma-nwpñVH$m na H$moB CÎma Zht {bi Jo & Please check that this question paper contains 1 printed pages. Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate. Please check that this question paper contains 9 questions. Please write down the Serial Number of the question before attempting it. 15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period. J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100 Time allowed : 3 hours Maimum Marks : 100 65//3 1 P.T.O.

gm_mý` {ZX}e : (i) (ii) (iii) (iv) (v) g^r àíz A{Zdm` h & Bg àíz nì _ 9 àíz h Omo VrZ IÊS>m _ {d^m{ov h : A, ~ VWm g & IÊS> A _ 10 àíz h {OZ_ go àë`oh$ EH$ A H$ H$m h & IÊS> ~ _ 1 àíz h {OZ_ go àë`oh$ Mma A H$ H$m h & IÊS> g _ 7 àíz h {OZ_ go àë`oh$ N> A H$ H$m h & IÊS> A _ g^r àízm Ho$ CÎma EH$ eãx, EH$ dmš` AWdm àíz H$s Amdí`H$Vm AZwgma {XE Om gh$vo h & nyu àíz nì _ {dh$ën Zht h & {\$a ^r Mma A H$m dmbo 4 àízm _ VWm N> A H$m dmbo àízm _ AmÝV[aH$ {dh$ën h & Eogo g^r àízm _ go AmnH$mo EH$ hr {dh$ën hb H$aZm h & H $bhw$boq>a Ho$ à`moj H$s AZw_{V Zht h & `{X Amdí`H$ hmo Vmo Amn bkwjuh$s` gma{u`m± _m±j gh$vo h & General Instructions : (i) All questions are compulsory. (ii) The question paper consists of 9 questions divided into three sections A, B and C. Section A comprises of 10 questions of one mark each, Section B comprises of 1 questions of four marks each and Section C comprises of 7 questions of si marks each. (iii) (iv) (v) All questions in Section A are to be answered in one word, one sentence or as per the eact requirement of the question. There is no overall choice. However, internal choice has been provided in 4 questions of four marks each and questions of si marks each. You have to attempt only one of the alternatives in all such questions. Use of calculators is not permitted. You may ask for logarithmic tables, if required. 65//3

IÊS> A SECTION A àíz g»`m 1 go 10 VH$ àë`oh$ àíz 1 A H$ H$m h & Question numbers 1 to 10 carry 1 mark each. 1. _mz kmv H$s{OE : Evaluate : sin sin cos cos. Amì`yh g_rh$au 4 3 1 3 0 C C C 1 H$m à`moj H$s{OE & 3 1 0 1 _ àma {^H$ ñv ^ g {H«$`mAm Use elementary column operations C C C 1 in the matri 4 1 0 equation. 3 3 0 3 1 1 3. aoimam r = ^i 5 ^j + ^k + (3^i + ^j + 6^k ) VWm r = 7^i 6^k + (^i + ^j + ^k ) Ho$ ~rm H$m H$moU kmv H$s{OE & Find the angle between the lines r = ^i 5 ^j + ^k + (3^i + ^j + 6^k ) and r = 7^i 6^k + (^i + ^j + ^k ). 4. `{X A EH$ Eogm 3 3 Amì`yh h {H$ A 0 VWm 3A = k A h, Vmo k H$m _mz {b{ie & If A is a 3 3 matri, A 0 and 3A = k A, then write the value of k. 65//3 3 P.T.O.

5. _mzm R = {(a, a 3 ) : a, nm±m go N>moQ>r A^mÁ` g»`m h } EH$ g ~ Y h & R H$m n[aga kmv H$s{OE & Let R = {(a, a 3 ) : a is a prime number less than 5} be a relation. Find the range of R. 1 1 1 1 6. cos sin H$m _mz {b{ie & Write the value of cos 1 1 sin 1 1. 7. g{xe ^i + ^j + ^k H$m g{xe ^j Ho$ AZw{Xe àjon {b{ie & Write the projection of vector ^i + ^j + ^k along the vector ^j. 8. `{X a 4 8 3b a 6 8 b a 8b h, Vmo a b H$m _mz {b{ie & If a 4 8 3b a 6 8 b, write the value of a b. a 8b 9. {ZåZ H$m _mz {b{ie : ^i ( ^j + ^k ) + ^j (^k + ^i ) + ^k (^i + ^j ) Write the value of the following : ^i ( ^j + ^k ) + ^j (^k + ^i ) + ^k (^i + ^j ) 10. _mz kmv H$s{OE : 1 0 e Evaluate : 1 0 e 65//3 4

IÊS> ~ SECTION B àíz g»`m 11 go VH$ àë`oh$ àíz 4 A H$ H$m h & Question numbers 11 to carry 4 marks each. 11. Xem BE {H$ g{xe a, b, c g_vbr` h `{X Am a Ho$db `{X a + b, b + c VWm c + a g_vbr` h & AWdm EH$ Eogm _mìh$ g{xe kmv H$s{OE Omo XmoZm g{xem a + b VWm a b na bå~dv h, Ohm± a = ^i + ^j + ^k VWm b = ^i + ^j + 3^k. Show that the vectors a, b, c are coplanar if and only if a + b, b + c and c + a are coplanar. OR Find a unit vector perpendicular to both of the vectors a b where a = ^i + ^j + ^k, b = ^i + ^j + 3^k. a + b and 1. f(3. 0) H$m g{þh$q> _mz Xe_bd Ho$ ñwmzm VH$ kmv H$s{OE, Ohm± f() = 3 + 5 + 3 h & AWdm dh A Vamb kmv H$s{OE {OZ_ \$bz f() = 3 4 4 3 45 + 51 (a) (b) {Za Va dy _mz h & {Za Va õmg_mz h & Find the approimate value of f(3. 0), upto places of decimal, where f() = 3 + 5 + 3. OR Find the intervals in which the function f() = 3 4 4 3 45 + 51 is (a) (b) strictly increasing. strictly decreasing. 65//3 5 P.T.O.

13. AdH$b g_rh$au ( y ) dy + (y + y ) = 0 H$mo hb H$s{OE, {X`m h {H$ O~ = 1 h, Vmo y = 1 h & Solve the differential equation ( y ) dy + (y + y ) = 0, given that y = 1, when = 1. 14. Ho$ {be hb H$s{OE : cos (tan 1 ) = sin AWdm cot 1 3 4 {gõ H$s{OE {H$ : cot 1 7 + cot 1 8 + cot 1 18 = cot 1 3 Solve for : cos (tan 1 ) = sin cot 1 3 4 OR Prove that : cot 1 7 + cot 1 8 + cot 1 18 = cot 1 3 15. _mzm f : W W, f() = 1, `{X {df_ h VWm f() = + 1, `{X g_ h, Ûmam n[a^m{fv h & Xem BE {H$ f ì`wëh«$_ur` h & f H$m à{vbmo_ kmv H$s{OE, Ohm± W g^r nyu g»`mam H$m g_wƒ` h & Let f : W W, be defined as f() = 1, if is odd and f() = + 1, if is even. Show that f is invertible. Find the inverse of f, where W is the set of all whole numbers. 16. AÀN>r àh$ma go \ $Q>r JB Vme H$s 5 nîmm H$s JÈ>r _ go VrZ nîmo `mñàn>`m ({~Zm à{vñwmnzm Ho$) {ZH$mbo JE & {ZH$mbo JE bmb nîmm H$s g»`m H$m àm{`h$vm ~ Q>Z kmv H$s{OE & AV ~ Q>Z H$m _mü` kmv H$s{OE & Three cards are drawn at random (without replacement) from a well shuffled pack of 5 playing cards. Find the probability distribution of number of red cards. Hence find the mean of the distribution. 65//3 6

17. `{X = a cos + b sin VWm y = a sin b cos h, Vmo Xem BE {H$ y d y dy y 0. If = a cos + b sin and y = a sin b cos, show that y d y dy y 0. 18. _mz kmv H$s{OE : cos 1 1 AWdm _mz kmv H$s{OE : (3 ) 1 Evaluate : cos 1 1 OR Evaluate : (3 ) 1 65//3 7 P.T.O.

19. {ZåZ{b{IV Xr JB aoimam l 1 Am a l Ho$ ~rm H$s Xÿar kmv H$s{OE : l 1 : r = ^i + ^j 4^k + (^i + 3 ^j + 6^k ); l : r = 3^i + 3 ^j 5^k + (4^i + 6 ^j + 1^k ) Find the distance between the lines l 1 and l given by l 1 : r = ^i + ^j 4^k + (^i + 3 ^j + 6^k ); l : r = 3^i + 3 ^j 5^k + (4^i + 6 ^j + 1^k ) dy 0. AdH$b g_rh$au log + y = log H$mo hb H$s{OE & dy Solve the differential equation log + y = log. 1. `{X cos y = cos (a + y), Ohm± cos a 1 h, Vmo {gõ H$s{OE {H$ dy cos (a y). sin a If cos y = cos (a + y), where cos a 1, prove that dy cos (a y). sin a. gma{uh$m Ho$ JwUY_m] Ho$ à`moj go {ZåZ {gõ H$s{OE : a bc ac c a ab b ac 4a b c ab b bc c Prove the following, using properties of determinants : a bc ac c a ab b ac 4a b c ab b bc c 65//3 8

IÊS> g SECTION C àíz g»`m 3 go 9 VH$ àë`oh$ àíz Ho$ 6 A H$ h & Question numbers 3 to 9 carry 6 marks each. 3. EH$ Hw$Q>ra CÚmoJ {Z_m Vm n S>oñQ>b b n VWm bh$ S>r Ho$ eos> ~ZmVm h & àë`oh$ Ho$ {Z_m U _ EH$ aj S>Zo/H$mQ>Zo H$s _erz Am a EH$ ñào`a H$s Amdí`H$Vm hmovr h & EH$ n S>oñQ>b b n Ho$ {Z_m U _ K Q>o aj S>Zo/H$mQ>Zo H$s _erz Am a 3 K Q>o ñào`a H$s Amdí`H$Vm hmovr h O~{H$ EH$ eos> Ho$ {Z_m U _ 1 K Q>m aj S>Zo/H$mQ>Zo H$s _erz Am a K Q>o ñào`a H$s Amdí`H$Vm hmovr h & ñào`a à{v{xz A{YH$V_ 0 K Q>o Am a aj S>Zo/H$mQ>Zo H$s _erz à{v{xz A{YH$V_ 1 K Q>o Ho$ {be CnbãY h & EH$ b n H$s {~H«$s na < 5 bm^ VWm EH$ eos> H$s {~H«$s na < 15 bm^ hmovm h & `h _mzvo hþe {H$ {Z_m Vm {Z{_ V g^r b n VWm eos> ~om bovm h, Vmo ~VmBE {H$ dh à{v{xz {Z_m U H$s H $gr `moozm ~ZmE {H$ Cgo A{YH$V_ bm^ hmo & Cnamoº$ H$mo EH$ a {IH$ àmoj«m_z g_ñ`m ~Zm H$a J«m\$ Ûmam hb H$s{OE & A cottage industry manufactures pedestal lamps and wooden shades, each requiring the use of a grinding/cutting machine and a sprayer. It takes hours on the grinding/cutting machine and 3 hours on the sprayer to manufacture a pedestal lamp. It takes 1 hour on the grinding/cutting machine and hours on the sprayer to manufacture a shade. On any day, the sprayer is available for at the most 0 hours and the grinding/cutting machine for at the most 1 hours. The profit from the sale of a lamp is < 5 and that from a shade is < 15. Assuming that the manufacturer can sell all the lamps and shades that he produces, how should he schedule his daily production in order to maimise his profit. Formulate an LPP and solve it graphically. 65//3 9 P.T.O.

4. Cg g_vb H$m g_rh$au kmv H$s{OE {Og_ {~ÝXþ (1, 1, ) pñwv h VWm Omo g_vbm + 3y z = 5 VWm + y 3z = 8 na b ~dv h & AV D$na kmv {H$E JE g_vb go {~ÝXþ P(, 5, 5) H$s Xÿar kmv H$s{OE & AWdm {~ÝXþAm A(, 1, ) VWm B(5, 3, 4) H$mo {_bmzo dmbr aoim VWm g_vb y + z = 5 Ho$ à{vàn>oxz {~ÝXþ H$s {~ÝXþ P( 1, 5, 10) go Xÿar kmv H$s{OE & Find the equation of the plane that contains the point (1, 1, ) and is perpendicular to both the planes + 3y z = 5 and + y 3z = 8. Hence find the distance of point P(, 5, 5) from the plane obtained above. OR Find the distance of the point P( 1, 5, 10) from the point of intersection of the line joining the points A(, 1, ) and B(5, 3, 4) with the plane y + z = 5. 5. Xmo {dúmb` P VWm Q AnZo MwZo hþe {dúm{w `m H$mo ghzerbvm, X`mbwVm VWm ZoV Ëd Ho$ _yë`m na nwañh$ma XoZm MmhVo h & {dúmb` P AnZo H«$_e 3, VWm 1 {dúm{w `m H$mo BZ VrZ _yë`m na H«$_e <, < y VWm < z XoZm MmhVm h O~{H$ BZ nwañh$mam H$m Hw$b _yë` <,00 h & {dúmb` Q AnZo H«$_e 4, 1 VWm 3 {dúm{w `m H$mo BZ _yë`m Ho$ {be Hw$b < 3,100 XoZm MmhVm h (VWm {dúmb` P O go hr VrZ _yë`m na dhr nwañh$ma am{e XoZm MmhVm h ) & `{X BZ VrZm _yë`m na {XE JE EH$-EH$ nwañh$ma H$s Hw$b am{e < 1,00 h, Vmo Amì`yhm H$m à`moj H$aHo$ àë`oh$ _yë` Ho$ {be Xr JB nwañh$ma am{e kmv H$s{OE & Cn`w º$ VrZ _yë`m Ho$ A{V[aº$ EH$ AÝ` _yë` gwpmbe, Omo nwañh$ma XoZo Ho$ {be em{_b hmozm Mm{hE & 65//3 10

Two schools P and Q want to award their selected students on the values of Tolerance, Kindness and Leadership. The school P wants to award < each, < y each and < z each for the three respective values to 3, and 1 students respectively with a total award money of <,00. School Q wants to spend < 3,100 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as school P). If the total amount of award for one prize on each value is < 1,00, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award. 6. EH$ ~r_m H $nzr 000 ñhy$q>a MmbH$m, 4000 H$ma MmbH$m VWm 6000 Q >H$ MmbH$m H$m ~r_m H$aVr h {OZHo$ XþK Q>ZmJ«ñV hmozo H$s àm{`h$vme± H«$_e 0. 01, 0. 03 VWm 0. 15 h & ~r_mh $V ì`{º$`m (MmbH$m ) _ go EH$ XþK Q>ZmJ«ñV hmo OmVm h & Cg ì`{º$ Ho$ ñhy$q>a MmbH$ AWdm H$ma MmbH$ hmozo H$s àm{`h$vm kmv H$s{OE & AWdm AÀN>r àh$ma go \ $Q>r JB Vme H$s EH$ JÈ>r _ go nm±m nîmo, EH$-EH$ H$aHo$ à{vñwmnzm g{hv, {ZH$mbo OmVo h & àm{`h$vm kmv H$s{OE {H$ (i) g^r {ZH$mbo JE nîmo BªQ> Ho$ h & (ii) Ho$db 3 nîmo BªQ> Ho$ h & (iii) H$moB ^r nîmm BªQ> H$m Zht h & An insurance company insured 000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probabilities of an accident for them are 0. 01, 0. 03 and 0. 15 respectively. One of the insured persons meets with an accident. What is the probability that he is a scooter driver or a car driver? OR Five cards are drawn one by one, with replacement, from a well shuffled deck of 5 cards. Find the probability that (i) (ii) (iii) all the five cards are diamonds. only 3 cards are diamonds. none is a diamond. 65//3 11 P.T.O.

9 y 4 3 7. XrK d Îm 1 VWm aoim 1 Ûmam {Kao N>moQ>o joì H$m joì\$b kmv H$s{OE & y y Find the area of the smaller region bounded by the ellipse 1 9 4 y and the line 1. 3 8. EH$ d Îm Am a EH$ dj Ho$ n[a_mnm H$m `moj\$b k h, Ohm± k EH$ AMa h & {gõ H$s{OE {H$ CZHo$ joì\$bm H$m `moj\$b Ý`yZV_ h O~ dj H$s ^wom d Îm Ho$ ì`mg Ho$ ~am~a h & The sum of the perimeters of a circle and a square is k, where k is some constant. Prove that the sum of their areas is least when the side of the square is equal to the diameter of the circle. 9. _mz kmv H$s{OE : / 4 0 sin cos 9 16 sin Evaluate : / 4 0 sin cos 9 16 sin 65//3 1,800