Quantile Autoregression

Similar documents
QUANTILE AUTOREGRESSION

Distributions, spatial statistics and a Bayesian perspective

QUANTILE AUTOREGRESSION

Simple Linear Regression (single variable)

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Censored Quantile Regression and Survival Models

Probability, Random Variables, and Processes. Probability

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Lyapunov Stability Stability of Equilibrium Points

SAMPLING DYNAMICAL SYSTEMS

Source Coding and Compression

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came.

Bayesian nonparametric modeling approaches for quantile regression

Quantile Regression for Dynamic Panel Data

Computational modeling techniques

ENSC Discrete Time Systems. Project Outline. Semester

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y )

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression

Admissibility Conditions and Asymptotic Behavior of Strongly Regular Graphs

Instrumental Variables Quantile Regression for Panel Data with Measurement Errors

A Matrix Representation of Panel Data

Computational modeling techniques

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9.

Modeling the Nonlinear Rheological Behavior of Materials with a Hyper-Exponential Type Function

IN a recent article, Geary [1972] discussed the merit of taking first differences

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression

Computational modeling techniques

NOTE ON A CASE-STUDY IN BOX-JENKINS SEASONAL FORECASTING OF TIME SERIES BY STEFFEN L. LAURITZEN TECHNICAL REPORT NO. 16 APRIL 1974

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

Quantile Regression Methods for Reference Growth Charts

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM

COMP 551 Applied Machine Learning Lecture 4: Linear classification

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter

Eric Klein and Ning Sa

MATHEMATICS SYLLABUS SECONDARY 5th YEAR

Comparing Several Means: ANOVA. Group Means and Grand Mean

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank

Inference in the Multiple-Regression

Perturbation approach applied to the asymptotic study of random operators.

MATCHING TECHNIQUES Technical Track Session VI Céline Ferré The World Bank

Tree Structured Classifier

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis

Instrumental Variables Quantile Regression for Panel Data with Measurement Errors

Introduction: A Generalized approach for computing the trajectories associated with the Newtonian N Body Problem

QUANTILE REGRESSION METHODS FOR RECURSIVE STRUCTURAL EQUATION MODELS

ECAS Summer Course. Quantile Regression for Longitudinal Data. Roger Koenker University of Illinois at Urbana-Champaign

What is Statistical Learning?

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium

Determining the Accuracy of Modal Parameter Estimation Methods

Homology groups of disks with holes

Module 4: General Formulation of Electric Circuit Theory

CONVERGENCE RATES FOR EMPICAL BAYES TWO-ACTION PROBLEMS- THE UNIFORM br(0,#) DISTRIBUTION

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers

Kinematic transformation of mechanical behavior Neville Hogan

AP Statistics Practice Test Unit Three Exploring Relationships Between Variables. Name Period Date

Pressure And Entropy Variations Across The Weak Shock Wave Due To Viscosity Effects

Resampling Methods. Chapter 5. Chapter 5 1 / 52

Least Squares Optimal Filtering with Multirate Observations

Support-Vector Machines

Building to Transformations on Coordinate Axis Grade 5: Geometry Graph points on the coordinate plane to solve real-world and mathematical problems.

Math Foundations 20 Work Plan

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA

Part 3 Introduction to statistical classification techniques

Chapter 4. Unsteady State Conduction

A NOTE ON THE EQUIVAImCE OF SOME TEST CRITERIA. v. P. Bhapkar. University of Horth Carolina. and

Thermodynamics and Equilibrium

Estimation and Inference for Actual and Counterfactual Growth Incidence Curves

Compressibility Effects

Discussion on Regularized Regression for Categorical Data (Tutz and Gertheiss)

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa

Group Report Lincoln Laboratory. The Angular Resolution of Multiple Target. J. R. Sklar F. C. Schweppe. January 1964

On Huntsberger Type Shrinkage Estimator for the Mean of Normal Distribution ABSTRACT INTRODUCTION

The multivariate skew-slash distribution

Kinetic Model Completeness

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s

Mathematics Methods Units 1 and 2

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets

7 TH GRADE MATH STANDARDS

ECEN620: Network Theory Broadband Circuit Design Fall 2012

You need to be able to define the following terms and answer basic questions about them:

Chapter 3 Kinematics in Two Dimensions; Vectors

ECE 2100 Circuit Analysis

Lecture 10, Principal Component Analysis

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank

FIELD QUALITY IN ACCELERATOR MAGNETS

Maximum A Posteriori (MAP) CS 109 Lecture 22 May 16th, 2016

The blessing of dimensionality for kernel methods

NUMBERS, MATHEMATICS AND EQUATIONS

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Elements of Machine Intelligence - I

OF SIMPLY SUPPORTED PLYWOOD PLATES UNDER COMBINED EDGEWISE BENDING AND COMPRESSION

Technology, Dhauj, Faridabad Technology, Dhauj, Faridabad

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

CHAPTER 8 ANALYSIS OF DESIGNED EXPERIMENTS

CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS

Kinetics of Particles. Chapter 3

Lecture 6: Phase Space and Damped Oscillations

Transcription:

Quantile Autregressin Rger Kenker University f Illinis, Urbana-Champaign University f Minh 12-14 June 2017 Centercept Lag(y) 6.0 7.0 8.0 0.8 0.9 1.0 1.1 1.2 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Rger Kenker (UIUC) QAR Braga 12-14.6.2017 1 / 32

Intrductin In classical autregressin mdels y t = αy t 1 + u t, y t = h(y t 1, α) + u t, cnditining cvariates influence nly the lcatin f the cnditinal distributin f the respnse: Respnse = Signal + IID Nise. But why shuld nise always be s nice and well-behaved? Rger Kenker (UIUC) QAR Braga 12-14.6.2017 2 / 32

A Mtivating Example tday's max temperature 10 20 30 40 10 15 20 25 30 35 40 yesterday's max temperature Daily Temperature in Melburne: An AR(1) Scatterplt Rger Kenker (UIUC) QAR Braga 12-14.6.2017 3 / 32

Estimated Cnditinal Quantiles f Daily Temperature tday's max temperature 10 20 30 40 10 15 20 25 30 35 40 yesterday's max temperature Daily Temperature in Melburne: A Nnlinear QAR(1) Mdel Rger Kenker (UIUC) QAR Braga 12-14.6.2017 4 / 32

Cnditinal Densities f Melburne Daily Temperature Yesterday's Temp 11 Yesterday's Temp 16 Yesterday's Temp 21 density 0.05 0.15 density 0.00 0.05 0.10 0.15 density 0.02 0.06 0.10 10 12 14 16 18 12 16 20 24 15 20 25 30 tday's max temperature tday's max temperature tday's max temperature Yesterday's Temp 25 Yesterday's Temp 30 Yesterday's Temp 35 density 0.01 0.03 0.05 0.07 density 0.01 0.03 0.05 0.07 density 0.01 0.03 0.05 0.07 15 20 25 30 35 20 25 30 35 20 25 30 35 40 tday's max temperature tday's max temperature tday's max temperature Lcatin, scale and shape all change with y t 1. When tday is ht, tmrrw s temperature is bimdal! Rger Kenker (UIUC) QAR Braga 12-14.6.2017 5 / 32

Linear AR(1) and QAR(1) Mdels The classical linear AR(1) mdel y t = α 0 + α 1 y t 1 + u t, with iid errrs, u t : t = 1,, T, implies E(y t F t 1 ) = α 0 + α 1 y t 1 and cnditinal quantile functins are all parallel: Q yt (τ F t 1 ) = α 0 (τ) + α 1 y t 1 with α 0 (τ) = F 1 u (τ) just the quantile functin f the u t s. But isn t this rather bring? What if we let α 1 depend n τ t? Rger Kenker (UIUC) QAR Braga 12-14.6.2017 6 / 32

A Randm Cefficient Interpretatin If the cnditinal quantiles f the respnse satisfy: Q yt (τ F t 1 ) = α 0 (τ) + α 1 (τ)y t 1 then we can generate respnses frm the mdel by replacing τ by unifrm randm variables: y t = α 0 (u t ) + α 1 (u t )y t 1 u t iid U[0, 1]. This is a very special frm f randm cefficient autregressive (RCAR) mdel with cmntnic cefficients. Rger Kenker (UIUC) QAR Braga 12-14.6.2017 7 / 32

On Cmntnicity Definitin: Tw randm variables X, Y : Ω R are cmntnic if there exists a third randm variable Z : Ω R and increasing functins f and g such that X = f(z) and Y = g(z). If X and Y are cmntnic they have rank crrelatin ne. Frm ur pint f view the crucial prperty f cmntnic randm variables is the behavir f quantile functins f their sums, X, Y cmntnic implies: X+Y(τ) = F 1 X (τ) + F 1 Y (τ) F 1 X and Y are driven by the same randm (unifrm) variable. Rger Kenker (UIUC) QAR Braga 12-14.6.2017 8 / 32

The QAR(p) Mdel Cnsider a p-th rder QAR prcess, Q yt (τ F t 1 ) = α 0 (τ) + α 1 (τ)y t 1 +... + α p (τ)y t p Equivalently, we have randm cefficient mdel, y t = α 0 (u t ) + α 1 (u t )y t 1 + + α p (u t )y t p x t α(u t ). Nw, all p + 1 randm cefficients are cmntnic, functinally dependent n the same unifrm randm variable. Rger Kenker (UIUC) QAR Braga 12-14.6.2017 9 / 32

Vectr QAR(1) representatin f the QAR(p) Mdel Y t = µ + A t Y t 1 + V t where µ = [ µ0 0 p 1 ] [ at α, A t = p (u t ) I p 1 0 p 1 a t = [α 1 (u t ),..., α p 1 (u t )], Y t = [y t,, y t p+1 ], v t = α 0 (u t ) µ 0. ] [ vt, V t = 0 p 1 ] It all lks rather cmplex and multivariate, but it is really still nicely univariate and very tractable. Rger Kenker (UIUC) QAR Braga 12-14.6.2017 10 / 32

Sluching Tward Asymptpia We maintain the fllwing regularity cnditins: A.1 {v t } are iid with mean 0 and variance σ 2 <. The CDF f v t, F, has a cntinuus density f with f(v) > 0 n V = {v : 0 < F(v) < 1}. A.2 Eigenvalues f Ω A = E(A t A t ) have mduli less than unity. A.3 Dente the cnditinal CDF Pr[y t < y F t 1 ] as F t 1 (y) and its derivative as f t 1 (y), f t 1 is unifrmly integrable n V. Rger Kenker (UIUC) QAR Braga 12-14.6.2017 11 / 32

Statinarity Therem 1: Under assumptins A.1 and A.2, the QAR(p) prcess y t is cvariance statinary and satisfies a central limit therem with 1 n (y t µ y ) N ( 0, ω 2 n y), t=1 µ 0 µ y = 1 p j=1 µ, p µ j = E(α j (u t )), j = 0,..., p, ω 2 y = lim 1 n n E[ (y t µ y )] 2. t=1 Rger Kenker (UIUC) QAR Braga 12-14.6.2017 12 / 32

Example: The QAR(1) Mdel Fr the QAR(1) mdel, r with u t iid U[0, 1]. Q yt (τ y t 1 ) = α 0 (τ) + α 1 (τ)y t 1, y t = α 0 (u t ) + α 1 (u t )y t 1, if ω 2 = E(α 2 1 (u t)) < 1, then y t is cvariance statinary and 1 n (y t µ y ) N ( 0, ω 2 n y), t=1 where µ 0 = Eα 0 (u t ), µ 1 = E(α 1 (u t ), σ 2 = V(α 0 (u t )), and µ y = µ 0 (1 µ 1 ), ω2 y = (1 + µ 1 )σ 2 (1 µ 1 )(1 ω 2 ), Rger Kenker (UIUC) QAR Braga 12-14.6.2017 13 / 32

Qualitative Behavir f QAR(p) Prcesses The mdel can exhibit unit-rt-like tendencies, even temprarily explsive behavir, but episdes f mean reversin are sufficient t insure statinarity. Under certain cnditins,the QAR(p) prcess is a semi-strng ARCH(p) prcess in the sense f Drst and Nijman (1993). The impulse respnse f y t+s t a shck u t is stchastic but cnverges (t zer) in mean square as s. Rger Kenker (UIUC) QAR Braga 12-14.6.2017 14 / 32

Estimated QAR(1) v. AR(1) Mdels f U.S. Interest Rates Centercept Lag(y) 6.0 7.0 8.0 0.8 0.9 1.0 1.1 1.2 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Data: Seasnally adjusted mnthly: April, 1971 t June, 2002. D 3-mnth T-bills really have a unit rt? Rger Kenker (UIUC) QAR Braga 12-14.6.2017 15 / 32

Estimatin f the QAR mdel Estimatin f the QAR mdels invlves slving, ˆα(τ) = argmin α n t=1 ρ τ (y t x t α), where ρ τ (u) = u(τ I(u < 0)), the -functin. Fitted cnditinal quantile functins f y t, are given by, ˆQ t (τ x t ) = x t ˆα(τ), and cnditinal densities by the difference qutients, ˆf t (τ x t 1 ) = 2h ˆQ t (τ + h x t 1 ) ˆQ t (τ h x t 1 ), Rger Kenker (UIUC) QAR Braga 12-14.6.2017 16 / 32

The QAR Prcess Therem 2: Under ur regularity cnditins, nω 1/2 (ˆα(τ) α(τ)) B p+1 (τ), a (p + 1)-dimensinal standard Brwnian Bridge, with Ω = Ω 1 1 Ω 0Ω 1 1. n Ω 0 = E(x t x t ) = lim n 1 x t x t, Ω 1 = lim n 1 n t=1 t=1 f t 1 (F 1 t 1 (τ))x tx t. Rger Kenker (UIUC) QAR Braga 12-14.6.2017 17 / 32

Inference fr QAR mdels Fr fixed τ = τ 0 we can test the hypthesis: H 0 : Rα(τ) = r using the Wald statistic, W n (τ) = n(rˆα(τ) r) [R ˆΩ 1 1 ˆΩ 0 ˆΩ 1 1 R ] 1 (Rˆα(τ) r) τ(1 τ) This apprach can be extended t testing n general index sets τ T with the crrespnding Wald prcess. Rger Kenker (UIUC) QAR Braga 12-14.6.2017 18 / 32

Asympttic Inference Therem: Under H 0, W n (τ) Q 2 m(τ), where Q m (τ) is a Bessel prcess f rder m = rank(r). Fr fixed τ, Q 2 m(τ) χ 2 m. Klmgrv-Smirv r Cramer-vn-Mises statistics based n W n (τ) can be used t implement the tests. Fr knwn R and r this leads t a very nice thery estimated R and/r r testing raises new questins. The situatin is quite analgus t gdness-f-fit testing with estimated parameters. Rger Kenker (UIUC) QAR Braga 12-14.6.2017 19 / 32

Example: Unit Rt Testing Cnsider the augmented Dickey-Fuller mdel y t = δ 0 + δ 1 y t 1 + p δ j y t j + u t. We wuld like t test this cnstant cefficients versin f the mdel against the mre general QAR(p) versin: j=2 Q yt (τ x t ) = δ 0 (τ) + δ 1 (τ)y t 1 + p δ j (τ) y t j The hypthesis: H 0 : δ 1 (τ) = δ 1 = 1, fr τ T = [τ 0, 1 τ 0 ], is cnsidered in K and Xia (JASA, 2004). j=2 Rger Kenker (UIUC) QAR Braga 12-14.6.2017 20 / 32

Example: Tw Tests When δ 1 < 1 is knwn we have the candidate prcess, V n (τ) = n(ˆδ 1 (τ) δ 1 )/ ˆω 11. where ˆω 2 11 is the apprpriate element frm ˆΩ 1 1 ˆΩ 0 ˆΩ 1 1. Fluctuatins in V n (τ) can be evaluated with the Klmgrv-Smirnv statistic, sup V n (τ) sup B(τ). τ T τ T When δ 1 is unknwn we may replace it with an estimate, but this disrupts the cnvenient asympttic behavir. Nw, ˆV n (τ) = n((ˆδ 1 (τ) δ 1 ) (ˆδ 1 δ 1 ))/ ˆω 11 Rger Kenker (UIUC) QAR Braga 12-14.6.2017 21 / 32

Martingale Transfrmatin f ˆV n (τ) Khmaladze (1981) suggested a general apprach t the transfrmatin f parametric empirical prcesses like ˆV n (τ) : Ṽ n (τ) = ˆV n (τ) τ 0 [ ġ n (s) C 1 n (s) 1 s ] ġ n (r)d ˆV n (r) ds where ġ n (s) and C n (s) are estimatrs f ġ(r) = (1, (ḟ/f)(f 1 (r))) ; C(s) = 1 s ġ(r)ġ(r) dr. This is a generalizatin f the classical Db-Meyer decmpsitin. Rger Kenker (UIUC) QAR Braga 12-14.6.2017 22 / 32

Restratin f the ADF prperty Therem Under H 0, Ṽ n (τ) W(τ) and therefre sup Ṽ n (τ) sup W(τ), τ T τ T with W(r) a standard Brwnian mtin. The martingale transfrmatin f Khmaladze annihilates the cntributin f the estimated parameters t the asympttic behavir f the ˆV n (τ) prcess, thereby restring the asympttically distributin free (ADF) character f the test. Rger Kenker (UIUC) QAR Braga 12-14.6.2017 23 / 32

Three Mnth T-Bills Again Centercept Lag(y) 6.0 7.0 8.0 0.8 0.9 1.0 1.1 1.2 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 A test f the lcatin-shift hypthesis yields a test statistic f 2.76 which has a p-value f rughly 0.01, cntradicting the cnclusin f the cnventinal Dickey-Fuller test. Rger Kenker (UIUC) QAR Braga 12-14.6.2017 24 / 32

QAR Mdels fr Lngitudinal Data In estimating grwth curves it is ften valuable t cnditin nt nly n age, but als n prir grwth and pssibly n ther cvariates. Autregressive mdels are natural, but cmplicated due t the irregular spacing f typical lngitudinal measurements. Finnish Height Data: {Y i (t i,j ) : j = 1,..., J i, i = 1,..., n.} Partially Linear Mdel [Pere, Wei, K, and He (2006)]: Q Yi (t i,j )(τ t i,j, Y i (t i,j 1 ), x i ) = g τ (t i,j ) + [α(τ) + β(τ)(t i,j t i,j 1 )]Y i (t i,j 1 ) + x i γ(τ). Rger Kenker (UIUC) QAR Braga 12-14.6.2017 25 / 32

Parametric Cmpnents f the Cnditinal Grwth Mdel τ Bys Girls ˆα(τ) ˆβ(τ) ˆγ(τ) ˆα(τ) ˆβ(τ) ˆγ(τ) 0.03 0.845 (0.020) 0.147 (0.011) 0.024 (0.011) 0.809 (0.024) 0.135 (0.011) 0.1 0.787 (0.020) 0.25 0.725 (0.019) 0.5 0.635 (0.025) 0.75 0.483 (0.029) 0.9 0.422 (0.024) 0.97 0.383 (0.024) 0.159 (0.007) 0.170 (0.006) 0.173 (0.009) 0.187 (0.009) 0.213 (0.016) 0.214 (0.016) 0.036 (0.007) 0.051 (0.009) 0.060 (0.013) 0.063 (0.017) 0.070 (0.017) 0.077 (0.018) 0.757 (0.022) 0.685 (0.021) 0.612 (0.027) 0.457 (0.027) 0.411 (0.030) 0.400 (0.038) 0.153 (0.007) 0.163 (0.006) 0.175 (0.008) 0.183 (0.012) 0.201 (0.015) 0.232 (0.024) 0.042 (0.010) 0.054 (0.009) 0.061 (0.008) 0.070 (0.009) 0.094 (0.015) 0.100 (0.018) 0.086 (0.027) Estimates f the QAR(1) parameters, α(τ) and β(τ) and the mid-parental height effect, γ(τ), fr Finnish children ages 0 t 2 years. Rger Kenker (UIUC) QAR Braga 12-14.6.2017 26 / 32

Frecasting with QAR Mdels Given an estimated QAR mdel, ˆQ yt (τ F t 1 ) = x t ˆα(τ) based n data: y t : t = 1, 2,, T, we can frecast ŷ T +s = x T +sˆα(u s), s = 1,, S, where x T +s = [1, ỹ T +s 1,, ỹ T +s p ], U s U[0, 1], and ỹ t = { yt if t T, ŷ t if t > T. Cnditinal density frecasts can be made based n an ensemble f such frecast paths. Rger Kenker (UIUC) QAR Braga 12-14.6.2017 27 / 32

Linear QAR Mdels May Pse Statistical Health Risks Lines with distinct slpes eventually intersect. [Euclid: P5] Quantile functins, Q Y (τ x) shuld be mntne in τ fr all x, intersectins imply pint masses r even wrse. What is t be dne? Cnstrained QAR: Quantiles can be estimated simultaneusly subject t linear inequality restrictins. Nnlinear QAR: Abandn linearity in the lagged yt s, as in the Melburne temperature example, bth parametric and nnparametric ptins are available. Rger Kenker (UIUC) QAR Braga 12-14.6.2017 28 / 32

Nnlinear QAR Mdels via Cpulas An interesting class f statinary, Markvian mdels can be expressed in terms f their cpula functins: G(y t, y t 1,, y y p ) = C(F(y t ), F(y t 1 ),, F(y y p )) where G is the jint df and F the cmmn marginal df. Differentiating, C(u, v), with respect t u, gives the cnditinal df, H(y t y t 1 ) = u C(u, v) (u=f(y t ),v=f(y t 1 )) Inverting we have the cnditinal quantile functins, Q yt (τ y t 1 ) = h(y t 1, θ(τ)) Rger Kenker (UIUC) QAR Braga 12-14.6.2017 29 / 32

Example 1 (Fan and Fan) 20 15 10 5 0 5 10 20 15 10 5 0 5 10 x y τ= 0.9 τ= 0.8 τ= 0.7 τ= 0.6 τ= 0.5 τ= 0.4 τ= 0.3 τ= 0.2 τ= 0.1 Mdel: Q yt (τ y t 1 ) = (1.7 1.8τ)y t 1 + Φ 1 (τ). Rger Kenker (UIUC) QAR Braga 12-14.6.2017 30 / 32

Example 2 (Near Unit Rt) 0 20 40 60 80 100 120 140 β(τ) 0.6 0.7 0.8 0.9 1.0 1.1 0 20 60 100 140 0.0 0.2 0.4 0.6 0.8 1.0 τ Mdel: Q yt (τ y t 1 ) = 2 + min{ 3 4 + τ, 1}y t 1 + 3Φ 1 (τ). Rger Kenker (UIUC) QAR Braga 12-14.6.2017 31 / 32

Cnclusins QAR mdels are an attempt t expand the scpe f classical linear time-series mdels permitting lagged cvariates t influence scale and shape as well as lcatin f cnditinal densities. Efficient estimatin via familiar linear prgramming methds. Randm cefficient interpretatin nests many cnventinal mdels including ARCH. Wald-type inference is feasible fr a large class f hyptheses; rank based inference is als an attractive ptin. Frecasting cnditinal densities is ptentially valuable. Many new and challenging pen prblems.... Rger Kenker (UIUC) QAR Braga 12-14.6.2017 32 / 32