CHAPTER 4 Integration

Similar documents
CHAPTER 4 Integration

AP Calculus BC Summer Math Packet

CHAPTER 11 Limits and an Introduction to Calculus

Math 21B-B - Homework Set 2

Indefinite Integral. Lecture 21 discussed antiderivatives. In this section, we introduce new notation and vocabulary. The notation f x dx

CALCULUS AB SECTION I, Part A Time 60 minutes Number of questions 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM.

Maximum and Minimum Values

TECHNIQUES OF INTEGRATION

y = f x x 1. If f x = e 2x tan -1 x, then f 1 = e 2 2 e 2 p C e 2 D e 2 p+1 4

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute

MATH 10550, EXAM 3 SOLUTIONS

AP Calculus BC Review Applications of Derivatives (Chapter 4) and f,

Riemann Sums y = f (x)

Calculus I Practice Test Problems for Chapter 5 Page 1 of 9

MATHEMATICS. 61. The differential equation representing the family of curves where c is a positive parameter, is of

1988 AP Calculus BC: Section I

2 ) 5. (a) (1)(3) + (1)(2) = 5 (b) {area of shaded region in Fig. 24b} < 5

MATH 1A FINAL (7:00 PM VERSION) SOLUTION. (Last edited December 25, 2013 at 9:14pm.)

MEI Conference 2009 Stretching students: A2 Core

Section 13.3 Area and the Definite Integral

The Definite Integral. Day 3 Riemann Sums

PRACTICE FINAL/STUDY GUIDE SOLUTIONS

MAT136H1F - Calculus I (B) Long Quiz 1. T0101 (M3) Time: 20 minutes. The quiz consists of four questions. Each question is worth 2 points. Good Luck!

2.3 Warmup. Graph the derivative of the following functions. Where necessary, approximate the derivative.

MATH CALCULUS II Objectives and Notes for Test 4

(a) (b) All real numbers. (c) All real numbers. (d) None. to show the. (a) 3. (b) [ 7, 1) (c) ( 7, 1) (d) At x = 7. (a) (b)

Math 105: Review for Final Exam, Part II - SOLUTIONS

GULF MATHEMATICS OLYMPIAD 2014 CLASS : XII

Representing Functions as Power Series. 3 n ...

CHAPTER 5 INTEGRATION

Student s Printed Name:

AP Calculus BC 2007 Scoring Guidelines Form B

Objective Mathematics

Honors Calculus Homework 13 Solutions, due 12/8/5

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations

MATH Exam 1 Solutions February 24, 2016

Name: Math 10550, Final Exam: December 15, 2007

Calculus 2 Test File Fall 2013

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0,


Areas and Distances. We can easily find areas of certain geometric figures using well-known formulas:

For example suppose we divide the interval [0,2] into 5 equal subintervals of length

Area Approximation and Accumulation

The type of limit that is used to find TANGENTS and VELOCITIES gives rise to the central idea in DIFFERENTIAL CALCULUS, the DERIVATIVE.

Calculus 2 Quiz 1 Review / Fall 2011

MATH 2411 Spring 2011 Practice Exam #1 Tuesday, March 1 st Sections: Sections ; 6.8; Instructions:

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim


For example suppose we divide the interval [0,2] into 5 equal subintervals of length

Mathematics 1 Outcome 1a. Pascall s Triangle and the Binomial Theorem (8 pers) Cumulative total = 8 periods. Lesson, Outline, Approach etc.

MTH Assignment 1 : Real Numbers, Sequences

AP Calculus AB 2006 Scoring Guidelines Form B

Math 1314 Lesson 16 Area and Riemann Sums and Lesson 17 Riemann Sums Using GeoGebra; Definite Integrals

f t dt. Write the third-degree Taylor polynomial for G

1 Cabin. Professor: What is. Student: ln Cabin oh Log Cabin! Professor: No. Log Cabin + C = A Houseboat!

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

AP Calculus BC 2011 Scoring Guidelines Form B

An Insight into Differentiation and Integration

Topic 5 [434 marks] (i) Find the range of values of n for which. (ii) Write down the value of x dx in terms of n, when it does exist.

Chapter 4. Fourier Series

Calculus. Ramanasri. Previous year Questions from 2016 to

MATH 1080: Calculus of One Variable II Fall 2017 Textbook: Single Variable Calculus: Early Transcendentals, 7e, by James Stewart.

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0.

(A) 0 (B) (C) (D) (E) 2.703

2018 MAΘ National Convention Mu Individual Solutions ( ) ( ) + + +

Diploma Programme. Mathematics HL guide. First examinations 2014

Math 113, Calculus II Winter 2007 Final Exam Solutions

Mathematics Extension 1

4.1 SIGMA NOTATION AND RIEMANN SUMS

Example 2. Find the upper bound for the remainder for the approximation from Example 1.

September 2012 C1 Note. C1 Notes (Edexcel) Copyright - For AS, A2 notes and IGCSE / GCSE worksheets 1

In exercises 1 and 2, (a) write the repeating decimal as a geometric series and (b) write its sum as the ratio of two integers _

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1

Calculus with Analytic Geometry 2

Chapter 2 Transformations and Expectations

Chapter 9: Numerical Differentiation

Error for power series (Day 2) YOU MAY USE YOUR CALCULATOR TO COMPUTE FRACTIONS AND OTHER SIMPLE OPERATIONS

18.01 Calculus Jason Starr Fall 2005

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5

CALCULUS BASIC SUMMER REVIEW

B U Department of Mathematics Math 101 Calculus I

' ' Š # # ' " # # # Section 5.3 The Definite Integral 275. œ x dx 1 dx x dx 1 dx. œ " # œ x dx 1 dx œ (3 1) œ ( 1 2) œ (see parts (a) and (b) above).

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS

Review Exercises for Chapter 2

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t

7.) Consider the region bounded by y = x 2, y = x - 1, x = -1 and x = 1. Find the volume of the solid produced by revolving the region around x = 3.

Castiel, Supernatural, Season 6, Episode 18

WELCOME. Welcome to the Course. to MATH 104: Calculus I

Taylor Series (BC Only)

NATIONAL JUNIOR COLLEGE SENIOR HIGH 1 PROMOTIONAL EXAMINATIONS Higher 2

Calculus 2 Test File Spring Test #1

Fooling Newton s Method

Taylor Polynomials and Taylor Series

MATHEMATICS (Three hours and a quarter)

HOMEWORK #10 SOLUTIONS

EDEXCEL STUDENT CONFERENCE 2006 A2 MATHEMATICS STUDENT NOTES

CHAPTER 3 Applications of Differentiation

Indian Institute of Information Technology, Allahabad. End Semester Examination - Tentative Marking Scheme

Transcription:

CHAPTER Itegratio Sectio. Atierivatives a Iefiite Itegratio......... 77 Sectio. Area............................. 8 Sectio. Riema Sums a Defiite Itegrals........... 88 Sectio. The Fuametal Theorem of Calculus.......... 9 Sectio. Itegratio b Substitutio................. 97 Sectio. Numerical Itegratio................... Review Eercises............................. 9 Problem Solvig..............................

CHAPTER Itegratio Sectio. Solutios to O-Numbere Eercises Atierivatives a Iefiite Itegratio. C C 9 9. C. t t 7. t C C t t C t C Give Rewrite Itegrate Simplif 9. C C. C C. C C. C 7. C C C 9. C. C C C. C C. C C C C 77

78 Chapter Itegratio 7. C C C 9.. C C 7 7 C 7 7 C. C. C si cos cos si C cos si C si cos 7. csc t cot t t t csc t C 9. sec si ta cos C t csc t C csc t cot t t ta cos C sec si. ta sec ta C. ta C sec ta f cos C C C. f 7. f C f f ) ) ) f ) f 9. f C f ) ) f ) ),, C C C Aswers will var. f Aswers will var.

Sectio. Atierivatives a Iefiite Itegratio 79.. cos,, cos si C si C C si (a) Aswers will var.,, C 8 C C. f, f 7. f C f C C f ht 8t, h ht 8t t t t C h C C ht t t 9. f. f f f f f f C f C C f f C f C C f f C C f C C f f C f C C f. (a) ht.t t.7t t C h C C ht.7t t h.7 9 cm

8 Chapter Itegratio. f. Graph of is give. f (a) f. No. The slopes of the taget lies are greater tha o,. Therefore, f must icrease more tha uits o,. (c) No, f < f because f is ecreasig o,. () f is a maimum at. because f. a the first erivative test. (e) f is cocave upwar whe is icreasig o, a,. f is cocave owwar o,. Poits of iflectio at,. f (f) (g) f is a miimum at. 8 7. at ftsec vt t t C v C st t t t t C s C st t t Positio fuctio The ball reaches its maimim height whe vt t t t 8 secos s 8 8 8. feet 9. From Eercise 8, we have: st t v t st t v whe maimum height. v s v v v v v v, v 87.7 ftsec t v time to reach 7. 7. at 9.8 7. From Eercise 7, ft.9t t. v t 9.8t (Maimum height whe v. ) vt 9.8 t 9.8t C 9.8t v v C vt 9.8t v t f t 9.8t v t.9t 9.8 v t C f s C f t.9t v t s a. f 7. m 9.8 vt. t.t v.t, sice the stoe was roppe, v. st.t t.8t s s.8 s s Thus, the height of the cliff is meters. vt.t v msec

Sectio. Atierivatives a Iefiite Itegratio 8 77. t t t 9t t 79. vt t t > t (a) vt t t t 9 t t t t t vt t t C at vt t t C C vt > whe < t < or < t <. t t positio fuctio (c) at t whe t. at vt v t acceleratio t 8. (a) v kmhr v 8 kmhr 8 8 msec at a costat acceleratio vt at C v v 8 st a t a s 7 vt at a a 7.7 msec 8 t s 89.8 m msec 8. Truck: Automobile: At the poit where the automobile overtakes the truck: (a) vt st t Let s. t t at t t vt t Let v. st t Let s. tt whe t sec. s ft v ftsec mph 8. mihr8 ftmi sechr ftsec (a) t V ftsec.7.7.7. 9. V t.8t.t.79 V t.8t.799t.77 V ftsec.8.7 7.8 88 9.87 9. (c) S t V t t.8 t. t.79t S t V t t.8t I both cases, the costat of itegratio is because S S S 9. feet S 97. feet.799t.77t The seco car was goig faster tha the first util the e.

8 Chapter Itegratio 87. at k vt kt st k sice v s. t At the time of lift-off, kt a kt.7. Sice kt.7, t. k v. k k. k.k k. 8,8.7 mihr 7. ftsec. 89. True 9. True 9. False. For eample, because C C C 9. f,, f C, C, f C C f is cotiuous: Values must agree at : C C, f, < < < The left a right ha erivatives at o ot agree. Hece f is ot ifferetiable at. Sectio. Area. i. k 7. 9 i i i i i k 7 i 9. 8 8 8 j j 8.. i i 7. i i. k c c c c c c i i i. i i 9 i i 99 7 i i

Sectio. Area 8 9. i ii i,,8, i i i i. sum seq,,,, 9 (TI-8) i > i i 9. S 9.. s 9. S s 7 7. 9. S.78 8 s.8 8 S 7 8 9 7 8.7 9 s 7 8 9 7 8 9.. lim 8 8 8 8 lim. lim 8 8 9 8 lim. i i i i S S. S. S. S,. 7. kk k k k k S.98 S.9998 S.999998 S,.99999998 S 9. lim 8 lim 8 lim lim i i lim i i 8

8 Chapter Itegratio. lim i i lim lim i i lim lim. lim lim lim lim i i i i i. (a) (e) s..8.9.98 S.... Epoits: < < <... < < (c) Sice is icreasig, f m i f i o i, i. s () f M i f i o i, i S f i i i i f i f i i i i f i i i (f) lim i i lim lim lim i i lim i lim i i lim lim i 7. o,. Note: s i f i i i i i Area lim s 9. o,. Note: S f i i i i i i Area lim S 7

Sectio. Area 8. o,. Note: s i f i i i i i i 8 8 8 Area lim s 8 7. o s i i,. Note: f i i i 7i 7i 7 9i 7 9 7 89 8 8 7 8 7 Area lim s 89 7 8.. o,. Note: Agai, T is either a upper or a lower sum. T i i i f i i i i i i i 8i i i i 8i i i i i i i i Area lim T

8 Chapter Itegratio 7. f, Note: S f m i i i i i f i i i Area lim S lim 9.. f, S i f i i i 7 Note: 7 7 Area lim S lim 9 9 9 S i i i i i i i g i i Area lim S 8 i i 9 7 9 9 g,. Note: i i i 8i i 8i 8 8 8. f,,. Let c i i i. c c c c 7,,,, Area f c i c i i i 9 9 9 8 7. f o,. 8 f ta,, Let c i i i. Area f c i ta c i i i c c c,,,, ta ta c 7 7 ta ta. Approimate area.88..9..8 Eact value is

Sectio. Area 87 9. f ta o,. 8 8 Approimate area..87.8.. 7. We ca use the lie boue b a a b. The sum of the areas of these iscribe rectagles is the lower sum. The sum of the areas of these circumscribe rectagles is the upper sum. a b a b We ca see that the rectagles o ot cotai all of the area i the first graph a the rectagles i the seco graph cover more tha the area of the regio. The eact value of the area lies betwee these two sums. 7. (a) 8 8 (c) Lower sum: s. 8 Upper sum: S.7 () I each case,. The lower sum uses left epoits, i. The upper sum uses right epoits, i. The Mipoit Rule uses mipoits, i. (e) Mipoit Rule: M 7 9 9. 8 s S M. 7.8 8.9 8.99 9..7.8 9.79 9. 9.88 9. 9. 9.7 9. 9. (f) s icreases because the lower sum approaches the eact value as icreases. S ecreases because the upper sum approaches the eact value as icreases. Because of the shape of the graph, the lower sum is alwas smaller tha the eact value, whereas the upper sum is alwas larger.

88 Chapter Differetiatio 7. 77. True. (Theorem. ()) b. A square uits 79. f si,, Let A area boue b f si, the -ais, a. Let A area of the rectagle boue b,,, a. Thus, A.779. I this program, the computer is geeratig N pairs of raom poits i the rectagle whose area is represete b A. It is keepig track of how ma of these poits, N, lie i the regio whose area is represete b A. Sice the poits are raoml geerate, we assume that A A N N A N N A...7.. f ( ) = si( ) π π ( ) π, The larger N is the better the approimatio to A. 8. Suppose there are rows i the figure. The stars o the left total..., as o the stars o the right. There are stars i total, hece....... 8. (a).9..7.9 (c) Usig the itegratio capabilit of a graphig utilit, ou obtai A 7,897. ft. Sectio. Riema Sums a Defiite Itegrals. f,,,, c i i i i i i = lim fc i i lim i i i i lim lim i i i () )...... ( lim.

Sectio. Riema Sums a Defiite Itegrals 89. o,. f c i i f i i i. o,. Note:, as lim i i i i i i i i Note:, as f c i i f i i i i i i i 8i i lim 7. o,. Note:, as 9. lim f c i i f i i i i i i i i i i i lim i c i i o the iterval,. i. lim i c i i o the iterval,... 7. 9. si.. Rectagle A bh A Rectagle

9 Chapter Itegratio. Triagle A bh A 8 Triagle 7. Trapezoi A b b h 9 A 9 Trapezoi 9. Triagle A bh Triagle A. Semicircle A r A 9 9 Semicircle I Eercises 9,,. 7. 8, 8 8 9... (a) 7 (c) f () f f 7 f f f f f. (a) (c) g g () f f f g f g 8 g f g f. (a) Quarter circle below -ais: r Triagle: bh (c) Triagle Semicircle below -ais: () Sum of parts a (c): (e) Sum of absolute values of a (c): (f) Aswer to () plus : 7. The left epoit approimatio will be greater tha the actual area: > 9. Because the curve is cocave upwar, the mipoit approimatio will be less tha the actual area: <

Sectio. Riema Sums a Defiite Itegrals 9. f. is ot itegrable o the iterval, a f has a iscotiuit at. a. A square uits.. si 7. L M R 9. si 8.8.99.77..77.8.7.88.7.9.8.99.77..77 L M R 8.89.87.799.7.7.78.78.78.78.78.987.88.88.8.87. True. True. False 7. f,, 8,,, 7, 8,,, c, c, c, c 8 f c i f f f f 8 i 88 7

9 Chapter Differetiatio 9. f,, is ratioal is irratioal is ot itegrable o the iterval,. As, f c i or f c i i each subiterval sice there are a ifiite umber of both ratioal a irratioal umbers i a iterval, o matter how small. 7. Let f,, a i. The appropriate Riema Sum is f c i i i i i i lim... lim i. lim lim Sectio. The Fuametal Theorem of Calculus. f is positive.. f. 7. 9. t t t t. t t t t t t t t.. u u u u u u u u 7. t t t t 9. 8. t t t t t 7. split up the itegral at the zero 9 9 9 9 9 9 9 9 9

Sectio. The Fuametal Theorem of Calculus 9. 8 8 9 8 8 7. 9... 7. A si cos sec ta sec ta sec,t t, t t $,. A 9. A cos si. Sice o,,. Sice o,,. A. A 8. 8 f c c c c c c 8 c ± c ± c.8 or c.798

( ( 9 Chapter Itegratio 7. sec ta f c sec c 8 sec c sec c ± c ±arcsec ±arccos ±.87 9. 8 8 8 8 8 8 (, ( 8, Average value 8. whe 8 8 si cos Average value si.9,. or ±. f area of regio A. 9. f f. (a) F k sec. F k F sec.. ±.. (.9, π (., π ( (. If f is cotiuous o a, b a F f o a, b, b the f Fb Fa. a 7. f f f... sec.79t.t.7t t.8t.7t.9t.8 liter ta 8.99 ewtos 87 ewtos

Sectio. The Fuametal Theorem of Calculus 9. (a) The area above the -ais equals the area below the -ais. Thus, the average value is zero. The average value of S appears to be g. 7. (a) v 8. t.78t.8t.9 9 9. 7. (c) 7 vt t 8. t.78t.8t.9t F t t t t F 8 77. (a) F F8 8 8 F cos si F si si.78 F si si.8 F8 si 8 si.79 7. si si t t 8 t 8 7. (a) 7 meters F v v F F 8 F8 7 8 79. (a) v v v t t t t sec t t ta t ta ta sec 8. F t t t 8. F t t 8. F t cos t t F F F cos

9 Chapter Itegratio 87. 89. 9. F t t F 8 t t 8 Alterate solutio si F t t si F t t si t si 9. F si cos cos si F si si si cos g f t t g, g, g, g, g f g Alterate solutio: F t t t t t t t t t t F 8 9. (a) F si t t F si si C t t t C $7, C $,7 C $8,9 g has a relative maimum at. 97. True 99. False;. f t t t t B the Seco Fuametal Theorem of Calculus, we have f. Sice f, f must be costat. Each of these itegrals is ifiite. f has a oremovable iscotiuit at.

Sectio. Itegratio b Substitutio 97.. t t t 9t t t t 9 t t t t Total istace tt t t t t t t t t t 8 uits Total istace tt vt t t t t t t t uits Sectio. Itegratio b Substitutio f gg u g u g... ta sec ta sec 7. 9. 9 C C 9 C 9 C 9 C 9 9

98 Chapter Itegratio. C C C. C C C. tt t t t t t t t C t t C t t t C 7. C 8 C 8 C 8 9. C C C. C C C. C C C. t t t t t t t C t t C t t t t 7. C C C

Sectio. Itegratio b Substitutio 99 9. 7 7 C C C 7. t t t t t t t t t C t t t C t t t t t. 9 9 9 C C C C 9 9. 7. C C C C 9. (a),, C C, : C C. si cos C. si si cos C. cos cos si C

Chapter Itegratio 7. si cos cos OR si si C si C si cos cos si cos C cos C OR si cos si cos si cos C 8 9. ta sec ta C ta C. csc cot cot csc cot C cot C ta C sec C sec C. cot csc cot C. f cos si C Sice f si C, C. Thus, f si. 7. u, u, u u u u u u u u u C u u C C C 9. u, u, u u u u u u u u u u 7 u7 C u u u C C 8 C

Sectio. Itegratio b Substitutio. u, u, u u u u 8u u u u 8u u u u 8 u u u C u u u C C 8 C C. u, u, u u u u u uu u u u u u u C u u C C C C where C C. u. Let u, u. 8 7. Let u, u 9 9 7 8 9

Chapter Itegratio 9. Let u, u. 9 7. Let u, 9 u. 9 9 7. u, u, u Whe, u. Whe, u. u u u 7. cos si u u u u u 77. u, u, u Whe, u. Whe 7, u 8. 7 8 Area u u u 79. A 8. Area 8. 8 u u u 7 u7 u 8 si si cos cos sec. sec ta 8. 8 7 7 9 8 7 8.8 87. cos 7.77 8 89. C C C The iffer b a costat: C C.

Sectio. Itegratio b Substitutio 9. f is eve. 9. f is o. (c) 8 7 9. the fuctio is a eve fuctio. 8 ; (a) 8 8 () 97. 99. Aswers will var. See Guielies for Makig a Chage of Variables o page 9. 8. f is o. Hece,.. V t k t Vt k t t k t C V k C, V k C, Solvig this sstem iels k, a C,. Thus, Vt, t,. Whe t, V $,.. b b a 7..7 si (a) (c) a 7.t. 7.t. 7.t. t t b a t cos.. t cos. 7 7.t. t cos. 89. thousa uits.. thousa uits. cos t b a 7. thousa uits

Chapter Itegratio 7. b a (a) (c) a b sit cost t b a cost cost cost sit sit sit cost b sit a.8 amps amps.7 amps 9. False C. True. True a b c a c O si cos si cos C b Eve b. Let u h, the u. Whe a, u a h. Whe b, u b h. Thus, bh bh f h f u u f. b a ah ah Sectio.. Eact: Trapezoial: Simpso s:. Eact: Trapezoial: Simpso s: Numerical Itegratio 8.7 8. 7.7.7..

Sectio. Numerical Itegratio. Eact: Trapezoial: Simpso s: 7. Eact: Trapezoial: Simpso s: 9. Eact: Trapezoial: Simpso s:. 9 8 7 8.. 9 7 8. 9 9 8 8.7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 9 8.7 8 8 9.7 7 9 8 8 9.7.7. Trapezoial: Simpso s: Graphig utilit:. 8 78.8 8 78.. Trapezoial: Simpso s: 8..7 Graphig utilit:.9

Chapter Itegratio. Trapezoial: Simpso s: Graphig utilit:.977 cos 8 cos cos cos cos.97 cos cos cos cos cos.978 cos cos. 7. Trapezoial: si 8 si si. si. si.7 si..89. Simpso s: si si si. si. si.7 si..89 Graphig utilit:.89 9. Trapezoial: ta ta ta ta Simpso s: ta 8 ta ta ta Graphig utilit:.8.9.8. (a). f a b = f() The Trapezoial Rule overestimates the area if the graph of the itegra is cocave up. f f f f (a) Trapezoial: Error. sice f is maimum i, whe. Simpso s: Error f. sice 8. f i,. f (a) is maimum whe a Trapezoial: Error f i, f f. is maimum whe a whe <., >,., >.; let. f. 8 <., Simpso s: Error >,.7, >.; let.

Sectio. Numerical Itegratio 7 7. f (a) f i,. f is maimum whe a 8 Trapezoial: Error <., >,.7, > 9.; let. f f i, 7 is maimum whe a f. f. Simpso s: Error <., >,.7, >.; let. 8 9. f ta (a) f sec ta i,. is maimum whe a f 9.. f Trapezoial: Error 9. <., >,7.7, >.; let. f 8 sec ta ta 8 ta i, f is maimum whe a f 98.7. Simpso s: Error <., >,,8., > 7.; let 8. 8 98.7. Let f A B C D. The f. b a Simpso s: Error 8 Therefore, Simpso s Rule is eact whe approimatig the itegral of a cubic polomial. Eample: This is the eact value of the itegral.. f o,. L M R T S.777.9 8...8 8.88.8.9...9..97.88.8.8.78..8.7.77..8.7.7.9.8.7.7.7

8 Chapter Itegratio. f si o,. L M R T S.8..7.79.99 8.89...8..78.99..9..99.9.9..7..9.7.8.7.7.888...79 7. A cos Simpso s Rule: cos 8 cos 8 cos 8 cos cos 8 8... cos.7 π π 9. W Simpso s Rule:...,.8 ft lb. Simpso s Rule,.9.8.98...98.98.. Area 9 9 9 88 7 89, sq m. t si, B trial a error, we obtai t.77.