D- 3 He HA tokamak device for experiments and power generations

Similar documents
Plasma and Fusion Research: Regular Articles Volume 10, (2015)

The high density ignition in FFHR helical reactor by NBI heating

Overview of Pilot Plant Studies

STELLARATOR REACTOR OPTIMIZATION AND ASSESSMENT

Burn Stabilization of a Tokamak Power Plant with On-Line Estimations of Energy and Particle Confinement Times

A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR

Computational Study of Non-Inductive Current Buildup in Compact DEMO Plant with Slim Center Solenoid

Design concept of near term DEMO reactor with high temperature blanket

Evolution of Bootstrap-Sustained Discharge in JT-60U

INTRODUCTION TO MAGNETIC NUCLEAR FUSION

Physics of fusion power. Lecture 14: Anomalous transport / ITER

DT Fusion Ignition of LHD-Type Helical Reactor by Joule Heating Associated with Magnetic Axis Shift )

Exhaust scenarios. Alberto Loarte. Plasma Operation Directorate ITER Organization. Route de Vinon sur Verdon, St Paul lez Durance, France

Studies of Next-Step Spherical Tokamaks Using High-Temperature Superconductors Jonathan Menard (PPPL)

Introduction to Fusion Physics

US-Japan workshop on Fusion Power Reactor Design and Related Advanced Technologies, March at UCSD.

Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets

Toward the Realization of Fusion Energy

Evolution of Bootstrap-Sustained Discharge in JT-60U

Aspects of Advanced Fuel FRC Fusion Reactors

Simulation of alpha particle current drive and heating in spherical tokamaks

Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics October Introduction to Fusion Leading to ITER

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011

Non-ohmic ignition scenarios in Ignitor

PHYSICS OF CFETR. Baonian Wan for CFETR physics group Institute of Plasma Physcis, Chinese Academy of Sciences, Hefei, China.

Fusion Nuclear Science - Pathway Assessment

THE OPTIMAL TOKAMAK CONFIGURATION NEXT-STEP IMPLICATIONS

High-Density, Low Temperature Ignited Operations in FFHR

Energetic Particle Physics in Tokamak Burning Plasmas

Design window analysis of LHD-type Heliotron DEMO reactors

Real Plasma with n, T ~ p Equilibrium: p = j B

Spherical Torus Fusion Contributions and Game-Changing Issues

Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk

Physical Design of MW-class Steady-state Spherical Tokamak, QUEST

HIGH PERFORMANCE EXPERIMENTS IN JT-60U REVERSED SHEAR DISCHARGES

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science

Divertor Requirements and Performance in ITER

0 Magnetically Confined Plasma

(Inductive tokamak plasma initial start-up)

Study on supporting structures of magnets and blankets for a heliotron-type type fusion reactors

GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO

Hydrogen and Helium Edge-Plasmas

Critical Physics Issues for DEMO

Innovative fabrication method of superconducting magnets using high T c superconductors with joints

INTRODUCTION TO BURNING PLASMA PHYSICS

STEADY-STATE EXHAUST OF HELIUM ASH IN THE W-SHAPED DIVERTOR OF JT-60U

DEMO Concept Development and Assessment of Relevant Technologies. Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor

The GDT-based fusion neutron source as a driver of subcritical nuclear fuel systems

1. Motivation power exhaust in JT-60SA tokamak. 2. Tool COREDIV code. 3. Operational scenarios of JT-60SA. 4. Results. 5.

Fusion Development Facility (FDF) Mission and Concept

EU PPCS Models C & D Conceptual Design

Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system

Helium Catalyzed D-D Fusion in a Levitated Dipole

Abstract. The Pegasus Toroidal Experiment is an ultra-low aspect ratio (A < 1.2) spherical tokamak (ST) capable of operating in the high I N

JET and Fusion Energy for the Next Millennia

Advanced Tokamak Research in JT-60U and JT-60SA

Evaluation of Anomalous Fast-Ion Losses in Alcator C-Mod

Characteristics of the H-mode H and Extrapolation to ITER

Radiative type-iii ELMy H-mode in all-tungsten ASDEX Upgrade

Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power

Dependence of Achievable β N on Discharge Shape and Edge Safety Factor in DIII D Steady-State Scenario Discharges

Magnetic Confinement Fusion and Tokamaks Chijin Xiao Department of Physics and Engineering Physics University of Saskatchewan

GA A23114 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES

Integrated Transport Modeling of High-Field Tokamak Burning Plasma Devices

Plasma Breakdown Analysis in JFT-2M without the Use of Center Solenoid

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706

CONFINEMENT TUNING OF A 0-D PLASMA DYNAMICS MODEL

Ripple Loss of Alpha Particles in a Low-Aspect-Ratio Tokamak Reactor

ASSESSMENT AND MODELING OF INDUCTIVE AND NON-INDUCTIVE SCENARIOS FOR ITER

The Dynomak Reactor System

Plasma Physics Performance. Rebecca Cottrill Vincent Paglioni

Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options

Calculations of Energy Losses due to Atomic Processes in Tokamaks with Applications to the ITER Divertor

ª 10 KeV. In 2XIIB and the tandem mirrors built to date, in which the plug radius R p. ª r Li

Chapter IX: Nuclear fusion

MHD. Jeff Freidberg MIT

EF2200 Plasma Physics: Fusion plasma physics

Tokamak Fusion Basics and the MHD Equations

Influence of Beta, Shape and Rotation on the H-mode Pedestal Height

Non-Solenoidal Plasma Startup in

Plasma Wall Interactions in Tokamak

Reduction of Turbulence and Transport in the Alcator C-Mod Tokamak by Dilution of Deuterium Ions with Nitrogen and Neon Injection

Fusion Nuclear Science (FNS) Mission & High Priority Research

Formation of An Advanced Tokamak Plasma without the Use of Ohmic Heating Solenoid in JT-60U

Feedback control of the heating power to access the thermally unstable ignition regime in FFHR

Self-consistent modeling of ITER with BALDUR integrated predictive modeling code

Simple examples of MHD equilibria

Toroidal confinement devices

Critical Gaps between Tokamak Physics and Nuclear Science. Clement P.C. Wong General Atomics

The Levitated Dipole Experiment: Towards Fusion Without Tritium

The Path to Fusion Energy creating a star on earth. S. Prager Princeton Plasma Physics Laboratory

Implementation of a long leg X-point target divertor in the ARC fusion pilot plant

Neutronic Activation Analysis for ITER Fusion Reactor

Mission and Design of the Fusion Ignition Research Experiment (FIRE)

- Effect of Stochastic Field and Resonant Magnetic Perturbation on Global MHD Fluctuation -

Heating and Current Drive by Electron Cyclotron Waves in JT-60U

CORSICA Modelling of ITER Hybrid Operation Scenarios

TOKAMAK EXPERIMENTS - Summary -

Multifarious Physics Analyses of the Core Plasma Properties in a Helical DEMO Reactor FFHR-d1

1 EX/P7-12. Transient and Intermittent Magnetic Reconnection in TS-3 / UTST Merging Startup Experiments

Transcription:

D- He HA tokamak device for experiments and power generations US-Japan Fusion Power Plant Studies Contents University of Tokyo, Japan January -, 5 O.Mitarai (Kyushu Tokai University).Motivation.Formalism, control algorithm, and hot ion mode criterion.calculated results 4.Summary and further issues in collaboration with H.Matsuura (Kyushu University), Y.Tomita (NIFS)

. Motivation ST has a large potential for D- He fusion. Although the large plasma current required for ignition can be ramped up by the vertical field and heating power even without the central solenoid, the following concerns may appear: []the plasma current itself is very large, []the plasma current changes when the plasma energy changes. []the current hole produced in the initial phase does not shrink due to long resistive decay time, leading to the high energy particle confinement problems, and q min = limitation of the plasma current. Purpose of this study: @ Using the central solenoid in the high aspect ratio tokamak, disadvantageous point of ST is removed. Namely, the current hole is removed in the initial low temperature phase, leading to improving the high energy particle confinement, q min limit, and the plasma current change. @ Feasibility of D- He HA

. Formalism, Control algorithm, and Hot ion mode criterion.. -dimensional particle and power balance equations Deuterium dn D () = ( +α n )S D (t) n D () τ D * [ ] ( +α n ) n D ()n T () σv DT (x) + n D () { σv DDPT (x) + σv DDHEN (x)}+ n D ()n He () σv DHE (x) Helium- dn HE () = ( +α n )S HE (t) + (+ α n ) n () D σv DDHEN (x) n D ()n He () σv DHE (x) n () He * τ HE Tritium dn T () = ( +α n ) n D() σv DDPT (x) n D ()n T () σv DT (x) n T () * τ T Alpha ash dn α () = ( + α n ){ n D ()n T () σv DT (x) + n D ()n He () σv DHE (x)} n α () τ α * Proton ash dn p () = (+ α n ) n D () σv DDPT (x) + n D ()n He () σv DHE (x) n P () * τ P

Electron density n e () = n D () + n T () + n He () + n α () + n p () + ( + α n )Zn imp Power balance (T i /T e =.5) dt i () +α = n + α T.5e( f D + f T +/γ i + f He + f α + f P )n e () [{ P EXT /V o + P oh + P DHE + P DDPT + P DDHEN + P DT } { P L + P b + P s }] T i () ( ) f D + f T +/γ i + f He + f α + f P + γ i ( +α n )Zf imp ( ) n e () dn D () + dn T () where T i (x)/t i () = T e (x)/t e () = (-x ) α T n(x)/n() = n α (x)/n α () = (-x ) α n + dn P () + + γ i ( ( + α n )Zf imp ) n e () dn α () + dn He() Tokamak:.9.9 τ IPB (y,) =.56A i I p [MA]n.4 9 [ 9 m.97 ]R o [m]ε κ.78 B.5 to [T]/P.69 HT [MW ] τ AUX = γ HH τ IPB (y,) IPB98(y,) confinement law with τ E = min{τ NA, τ AUX } where the mass factor : 4

A i = {n D () + n HE () + n T ()}/{ n D () + n HE () + n T ()}.. Hot ion mode criterion. Energy transfer from ion to electron: ( ) P ie [ W / m ]=.4 5 n e ()[m ]/ f D + 4 f He + α n.5α T A D A He + f p A p + 4 f He4 A He4 + f T ln Λ j A T T i () T e () T e ()[kev].5 Ion power balance P f f i =P ie + P Li Electron power balance P f (-f i )+P ie =P b +(P sw +P sv )+ P Lie where f i is the energy transfer fraction of the fusion power to ion. P f f i >P ie must be satisfied to have ion and electron power balances. The contour map of (P f f i - P ie ) is drawn on the n-t i plane with MW. [] T i /T e =.5, f i =.8, f D =.54,f HE =.8,f T =.5,f p =.,f HE4 =.88, lnλ= T i >9 kev is necessasry 5

[]Critical ion temperature vs ion energy fraction f i for T i /T e =.5 Higher temperature is required for the hot ion mode..5 5 Ti-critical (ev) 5 5 4..4.6.8 Fi 6

7

Even when the global power balance analysis gives us the answer, it is sometimes rejected by this criterion. [] Improper case: R eff =.9 Fusion power P f =-6 MW(neutron)=6 MW Brems rad. P b =95 MW Synchrotron rad. P s =5+ MW Plasma conduction P L =865 MW n()=.6x m - T i = 8.5 kev, T e = 55.6 kev, T i -T e = 7.9 kev P ie =8 MW 6f i =8 + 6(-f i )+8 =95+5++ 665 f i > Impossible [] Proper case R eff =.99 Fusion power P f =-6 MW(neutron)=7 MW Brems rad. P b =79 MW Synchrotron rad. P s =48.+65 = MW Plasma conduction P L =69 MW n()=.8x m - T i =98 kev, T e =65. kev, T i -T e =.7 kev P ie =798 MW 7 f i =798 + 7 (-f i )+788 =79++69 For the limit of P Li =, f i >.8 is obtained. This criterion with f i =.8 gives us n() <.x m -, 8

T i () > 98 kev for HA D- He fusion reactor. 9

.. External heating power: P EXT HL [W] = M HL (t)x 6 P thresh - P oh +P F -P b -P s V o where P thresh [MW] =.84 n.58 [ m - ] B t.8 [T] R. [m] a.8 /A i.4. Fueling Total fueling is controlled by the minimum error between the three signals e DHE ( p f ) = ( P f / P fo ) e DHE (n) = ( n() / n() GW ) e DHE (< β >) = ( <β > / < β > MAX ) { } e DHE (min) = min e DHE (p f ),e DHE (n),e DHE (< β >) S DHE = S DHE e DHE (min) + T INT e DHE (min) + T d de DHE (min) where Integration time: T int = sec, Derivative time: T d =, D- He Fuel ratio is controlled by n S D (t) = D () n D () + n He () + G NDHE e(n D / n He ) + o n S HE (t) = He () n D () + n He () + G NDHE e(n He / n D ) + o n where e(n D / n He ) = D () n D () + n He () o n e(n He / n D ) = He () n D () + n He () o T DHE int T DHE int n D () n D () + n He () n He () n D () + n He () t e(n D / n He ) S (t) DHE t e(n He / n D ) S (t) DHE @ The fuel ratio: n D : n He = : ~.4 :.58.:.7 @The particle confinement time ratio : τ D */τ E = τ HE */τ E = τ T */τ E = τ p */τ E = τ α */τ E = ~ 4 @The prompt loss of fusion products is to be zero.

.5. Plasma circuit equation: Plasma circuit equation: L p di p di + R p (I p I CD I BS ) = M V PV and the vertical field + M Psh di sh + M Pdiv di div + V OH () B VE = B zov I V - B zodiv I div + B zosh I sh () provides the equivalent circuit equation with α div = I div /I p and α sh = I sh /I V, di p L peff = R peff I p M PV + M Psh α sh db VE + V B zov + B zosh α sh OH () where L peff = L p + M Pdiv M PV + M Psh α sh B zov + B zosh α sh B zodiv α div R peff = R p ( f CD f BS ) f BS = I BS / I p = C BS εβ p C BS =.5 α div =.,α sh = Feedback controlled OH by V OH =(-I p /I po ) As the vertical field drives the plasma current, the OH contribution is reduced during the fusion power rise-up phase.

.6. D- He Tokamak device (5m,.5m) BL (.5m, 6.5m) BT ITER FEAT (4m, m) 6 m m 8 m 6 m 4 m ITER-FEAT Cross section of D- He ST "Thermonuclear Boiler Plant" Final ST D- He HAT Although machine sizes of D- He HAT are slightly larger than the present ITER, it may be constructed with the present technology in spite of the larger plasma parameters. Radial build: R=7.5 m, a=. m, SO =. m, BL =.8 m, SP =. m, BT =. m, OH =.8m (total gap =.4 m) OH coil:r OH =R a - SO - BL - SP - BT - OH / =.7 m B OH =. T, Φ OH = πr OH (B OH )=9.7x(B OH ) = 7 Vs

. Calculated results of temporal evolution.. Power generation plant without parameter constraints [] Wall reflection R eff =.95, n/n GW =.8, β max =.7%, T i /T e =.5,τ p * /τ E =, D: He=.46:.54, f ash =5.7%, P f =. GW, Ignition, P n =75 MW, P e = MW [4%] n()=.4x m -, T i ()=99.9 kev, P f f i =4 MW>P ie =5 MW n() (m - ) f ash 4..6..8.4 NE FASH PF PF T 5.5 5 5 5 4 5 9 4 9 9 9 9. T i () (ev) P f BETAP. P n I p P EXT β p τ E (s) 5 5 8.5 8 Flux(Vs) 8 5 7 5 7 4 7 7 7 7 4 - -4 4 8 8 8 8 PNV IP BVFLUX OHFLUX PEXT TAUE (g) BETAA MHLI BV ICD IBS SSDD SSHE. 4.5.5 β t M HL B v (T) 5 7 4 7 7 7 7 4 8 8 8 8 4 6 8 Time (s) TOTFLUX I CD S D.S He (m - /s ) 4

[] Worse wall reflection R eff =.9, n/n GW =.65, β max =.9% T i /T e =.5,τ * p /τ E =, D: He=.6:.4, f ash =5.9%,,P f =. GW, Ignition, P n =4MW, P e = MW [4%] n()=.7x m -, T i ()= kev, P f f i =89 MW>P ie =76 MW 5

n() (m - ) f ash 4..6..8.4 5 NE FASH TAUE PF PF T MHLI 5.5 5 5 5 4 5 9 4 9 9 9 9 4 T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT Flux(Vs) β p 8.5 8 8 5 7 5 7 4 7 7 7 7 4 - -4 4 8 8 8 8 PNV IP BVFLUX OHFLUX PEXT (h) (g) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) 5 7 4 7 7 7 7 4 8 8 8 8 4 6 8 Time (s) TOTFLUX [] Good wall reflection R eff =.99, n/n GW =.85, β max =4.%, T i /T e =.5,τ * p /τ E =, D: He=.4:.58, f ash =5.4%, P f =. GW, Ignition, P n =6MW, P e = MW [4%], I CD S D.S He (m - /s ) 6

n()=.46x m -, T i ()= kev, P f f ion =5 MW>P ie =9 MW If a wall reflection is good, the neutron power can be further reduced. n() (m - ) f ash 4..6..8.4 5 NE FASH (b) TAUE PF PF T MHLI 5.5 5 5 5 4 5 9 4 9 9 9 9 4 T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT β p 8.5 8 Flux(Vs) 8 5 7 5 7 4 7 7 7 7 4 - -4 4 8 8 8 8 PNV IP BVFLUX OHFLUX PEXT (g) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) 5 7 4 7 7 7 7 4 8 8 8 8 4 6 8 Time (s) TOTFLUX.. Possible power generation experiments with parameter constraints : [4] The beta limit: β max =.%, n/n GW =.6, I CD S D.S He (m - /s ) 7

R eff =.95, T i /T e =.5,τ p * /τ E =, D: He=.5:.5, f ash =5.5%, P f =.4 GW, Ignition, P n =74MW, P e =877 MW [4%] n()=.x m -, T i ()=98.5 kev, P f f i =887 MW>P ie =79 MW n() (m - ) f ash 4..6..8.4 5 NE FASH (b) TAUE PF PF T MHLI 5.5 5 5 5 4 5 9 4 9 9 9 9 4 T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT β p 8.5 8 Flux(Vs) 8 5 7 5 7 4 7 7 7 7 4 - -4 4 8 8 8 8 PNV IP BVFLUX OHFLUX PEXT (h) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) 5 7 4 7 7 7 7 4 8 8 8 8 4 6 8 Time (s) TOTFLUX [5] Additional density limit : n/n GW =.5, β max =.%, R eff =.95, T i /T e =.5,τ p * /τ E =, D: He=.5:.48, f ash =5.5%, P f =. I CD S D.S He (m - /s ) 8

GW, Ignition, P n =7W, P e =755 MW [4%] n()=.79x m -, T i ()=97 kev, P f f i =64 MW >P ie =58 MW n() (m - ) f ash 4..6..8.4 5 NE FASH (b) TAUE PF PF T MHLI 5.5 5 5 5 4 5 9 4 9 9 9 9 4 T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT β p 8.5 8 Flux(Vs) 8 5 7 5 7 4 7 7 7 7 4 - -4 4 8 8 8 8 PNV IP BVFLUX OHFLUX PEXT (g) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) 5 7 4 7 7 7 7 4 8 8 8 8 4 6 8 Time (s) TOTFLUX [6] The beta limit : β max =.%, n/n GW =.4, I CD S D.S He (m - /s ) 9

R eff =.95, T i /T e =.5,τ * p /τ E =, D: He=.54:.46, f ash =5.9%, P f =.8 GW, Ignition, P n =68MW, P e =6 MW [4%] n()=.59x m -, T i ()=94 kev, P f f i =7 MW>P ie =7 MW n() (m - ) f ash 4..6..8.4 5 NE FASH (a) (b) TAUE PF PF T MHLI 5.5 5 5 5 4 5 9 4 9 9 9 9 4 T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT β p 8.5 8 Flux(Vs) 8 5 7 5 7 4 7 7 7 7 4 - -4 4 8 8 8 8 PNV IP BVFLUX OHFLUX PEXT (h) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) 5 7 4 7 7 7 7 4 8 8 8 8 4 6 8 Time (s) TOTFLUX I CD S D.S He (m - /s )

[7] Additional density limit : n/n GW =., β max =6.8% R eff =.95, T i /T e =.5,τ p * /τ E =, D: He=.6:.4, f ash =6%, P f =.87 GW, Sub-Ignition, P n =47MW, P e = MW [4%], Q E =.7 n()=.86x m -, T i ()=87 kev, P f f ion =78 MW>P ie =696 MW n() (m - ) f ash 4..6..8.4 5 NE FASH TAUE PF PF T MHLI 5.5 5 5 5 4 5 9 4 9 9 9 9 4 T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT β p 8.5 8 Flux(Vs) 8 5 7 5 7 4 7 7 7 7 4 - -4 4 8 8 8 8 PNV IP BVFLUX OHFLUX PEXT (g) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) 5 7 4 7 7 7 7 4 8 8 8 8 4 6 8 Time (s) TOTFLUX I CD S D.S He (m - /s )

[8] Long particle confinement time : τ * p /τ E =, f ash =8.5% R eff =.95, T i /T e =.5,D: He=.58:.4, n/n GW =.6, β max =.8%, P f =.7 GW, Ignition, P n =MW, P e =88 MW [4%] n()=.98x m -, T i ()=95 kev, P f f i =795 MW>P ie =674 MW

n() (m - ) f ash 4..6..8.4 NE (a) FASH (b) PF PF T 5.5 5 5 5 4 5 9 4 9 9 9 9. T i () (ev) P f BETAP (c). P n I p P EXT β p τ E (s) 5 5 8.5 8 Flux(Vs) 8 5 7 5 7 4 7 7 7 7 4 - -4 4 8 8 8 8 PNV TAUE (e) IP BVFLUX OHFLUX PEXT (h) (f) (g) (d) BETAA MHLI BV ICD IBS SSDD SSHE. 4.5.5 β t M HL B v (T) 5 7 4 7 7 7 7 4 8 8 8 8 4 6 8 Time (s) TOTFLUX I CD S D.S He (m - /s )

[9] He rich operation (Possibly He plasma +D-beam with E> MeV),τ * p /τ E =4, D: He=.:.7, f ash =.67%, H-mode operation,p f =44 MW, P n =.5 W, P EXT = MW, P e =8 MW[4%], Q E =.4,n()=6.x 9 m -, T i ()=7 kev, P f f i =97 MW>P ie =9 MW 4

n() (m - ) 4 NE T 5.5 5 5 5 4 T i () (ev) f ash..6..8.4 5 FASH TAUE (c) PF PF 5 9 4 9 9 9 9 4 P f τ E (s) 5 MHLI. M HL BETAP (d). β p BETAA. β t P n I p P EXT 6.5 6 Flux(Vs) 6 5 5 5 7 4 7 7 7 7 4 - -4 4 8 8 8 8 PNV IP BVFLUX OHFLUX PEXT (g) (e) BV ICD IBS SSDD SSHE.5.5 B v (T) 5 7 4 7 7 7 7 4 8 8 8 8 4 6 8 Time (s) TOTFLUX I CD S D.S He (m - /s ) 5

.. Parameters of D- He HAT: No Limit Beta limit Density limit Beta limit β % n/n GW.5 β % Major radius: R 7.5 m 7.5 7.5 7.5 Minor radius: a. m... Toroidal field: B o 5-6.5 T 5-6.5 5-6.5 5-6.5 Maximum field: B max. T... Radius B t coil : BT.8m.8m.8m.8m Plasma Current: I p 4 MA 4 4 4 Safety factor: Q MHD.98-.8.98-. 8.98-. 8.98-.8 Internal inductance l i.5.5.5.5 Plasma inductance: L p 7.4 µh 7.4 7.4 7.4 Heating power: P EXT -> MW -> ->.6 ->.7 Plasma volume: V m Confinement factor over IPB(y,) scaling : γ HH.... Confinement time: τ E 7. s 8. 8.8 9.9 Ash density fraction: f ash 5.7% 5.8 5.9 6. Be impurity fraction: f Be % Effective charge: Z eff.7.7.7.7 Particle confinement time ratio: τ α */τ E =τ p */τ E Fuel ratio: n D :n He.46:.54.5:.5.5:.48.54:.46 Fusion product heating efficiency: η α = η p =.. Wall reflectivity: R eff.95.95.95.95 Hole fraction ; f H.... Density profile: α n.... Temperature profile: α T.... Electron density: n().4x m -.87x.8x.8x Greenwald factor n()/n() GW.8.6.5.4 Ion temperature: T i () kev 99 97 78. Tmperature ratio: T i ()/T e ().5.5.5.5 Toroidal beta value: <β >.7%... Poloidal beta value: Normalized beta value: <β p > β. 7.. 6.4.9 5.7.7 4.5 Fusion power: P f MW 4 78 Neutron power: P n 75 MW 74 7 69 Bremsstrahlung loss: P b 958MW 7 6 57 Synchrotron radiation loss to the wall: P s 47 MW 89 for energy conv.: P s Plasma conduction loss: P L 48 MW 954 77 Electric power (η c =4%) P e 877 75 6 Average neutron wall loading Γ n.47 MW/m.46.45.4 Average heat flux: Γ h.94 MW/m.77.68.59 Divertor heat load Γ div.5mw/m 4.. 6. P L /(πrx m) Energy multiplication Q F 69 449 5 6

Density limit Worse He rich n/n GW. p/e ratio operation Major radius: R 7.5 m 7.5 7.5 7.5 Minor radius: a. m... Toroidal field: B o 5-6.5 T 5-6.5 5-6.5 5-6.5 Maximum field: B max. T... Radius B t coil : BT.8m.8m.8m.8m Plasma Current: I p 4 MA 4 4 4 Safety factor: Q MHD.98-.8.98-. 8.98-. 8.98-.8 Internal inductance l i.5.5.5.5 Plasma inductance: L p 7.4 µh 7.4 7.4 7.4 Heating power: P EXT ->85. MW -> ->.5 -> Plasma volume: V m Confinement factor over IPB(y,) scaling : γ HH.... Confinement time: τ E 5. s 7.8 8. 4.5 Ash density fraction: f ash 6.%. 8.5.8 Be impurity fraction: f Be % Effective charge: Z eff.6.6.6.8 Particle confinement time ratio: τ α */τ E =τ p */τ E 4 4 Fuel ratio: n D :n He.6:.4.6:.4.58:.4.:.7 Fusion product heating efficiency: η α = η p =.. Wall reflectivity: R eff.95.99.95.95 Hole fraction ; f H.... Density profile: α n.... Temperature profile: α T.... Electron density: n().86x m -.x.98x.6x Greenwald factor n()/n() GW..6.6. Ion temperature: T i () 87 kev 95 94 7 Tmperature ratio: T i ()/T e ().5.5.5.5 Toroidal beta value: Poloidal beta value: <β > <β p > 6.8....6..7. Normalized beta value: β Ν.5 6. 6..9 Fusion power: P f 66 MW 64 76 44 Neutron power: P n 47 MW 4 7.5 Bremsstrahlung loss: P b 45 MW 69 674 64 Synchrotron radiation loss to the wall: P s 5 MW 6 9 85.5 for energy conv.: P s Plasma conduction loss: P L 4 MW 55 5 9 Electric power (η c =4%) P e MW 79 8 8 Average neutron wall loading Γ n. MW/m.8.7. Average heat flux: Γ h.6 MW/m.6.7. Divertor heat load Γ div 7. MW/m 4.5..9 P L /(πrx m) Energy multiplication Q E.7 57.4 7

4. Summary and issues [] D- He HA Tokmak device is proposed with CS. @ R= 7.5 m, a=.m, B to = 5~6.5 T, (5.5 T in ITER) @ Plasma current of ~4MA (7 MA in ITER) @ IPB98y confinement factor γ HH =. (. in JT6) @ Wall reflectivity.95 @ Low ash confinement ratio of -->low neutron power of 75 MW Ash confinement time ratio of 4 is possible @ Neutron wall loading.4 MW/m, @ Heat flux=.87 MW/m (. MW/m ) @ Greenwald factor<.8 (.5 in DIII-D,ASDEX) @ β=. % (.8%) (β=.6 % in DIII-D) A D- He tokamak reactor would be possible within small extension of the present data base. *For reference D- He ST reactor GW power generation @R= 5.6 m, a=.4m, B to = 4.4 T, @heating power and vertical field ramp to 9 MA (NSTX <.5 MA) @IPB98y confinement factor γ HH =.5 ~.8 (NSTX ~.6) @heat flux =.99 MW/m (. MW/m ) @Greenwald factor=.9 (.5 in DIII-D,ASDEX ) @β=9. % @Initial heating power MW (β=8 % in NSTX) @Maximum toroidal field B max =.5 T(Bi-high temperature superconductor B max = T) 8

@ash confinement time ratio up to 5 (4 at present) @low wall reflection (R eff.5) @low ash confinement time ratio down to -->low neutron power of 5 MW, low neutron wall loading of. MW/m. [] Common issues in D- He reactors () A large fraction (8 %) of the fusion power should go to ions to keep the hot ion mode of T i /T e =.5. [] Nuclear elastic scattering (Nakao and Matsuura) may provide 4 %. [] The rest of 4 % should be provided by the stochastic ion heating (D.Gates et al ) as observed in NSTX, NSTX: T i /T e = for V NBI ~ 4V A D- He ST reactor: V α ~.8V A,V p ~ 7.5V A D- He HA tokamak reactor: V α ~.7V A, V p ~ 5.5V A and gyro-stream cyclotron instability as proposed by Cheng. () Divertor heat flux is very large Pebble divertor by Nishikawa Ga Liquid divertor 9