arxiv:hep-ph/ v1 1 Apr 2005

Similar documents
ATLAS Discovery Potential of the Standard Model Higgs Boson

VBF SM Higgs boson searches with ATLAS

Discovery potential of the SM Higgs with ATLAS

Constraints on Higgs-boson width using H*(125) VV events

PoS(CORFU2016)060. First Results on Higgs to WW at s=13 TeV with CMS detector

HIGGS + 2 JET PRODUCTION AT THE LHC

Physics at Hadron Colliders

Identification of the Higgs boson produced in association with top quark pairs in proton-proton

Searching for New High Mass Phenomena Decaying to Muon Pairs using Proton-Proton Collisions at s = 13 TeV with the ATLAS Detector at the LHC

arxiv:hep-ph/ v1 13 Mar 2002

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Higgs Searches at CMS

ATLAS-CONF October 15, 2010

Search for single production of vector-like quarks decaying into a W-boson and a b-quark at 13 TeV

SUSY Phenomenology & Experimental searches

Perspectives of SM Higgs measurements at the LHC

PoS(EPS-HEP 2013)215. WW, WZ, and ZZ production at CMS. Jordi DUARTE CAMPDERROS (on behalf of CMS collaboration)

Theoretical Predictions For Top Quark Pair Production At NLO QCD

Overview of the Higgs boson property studies at the LHC

Measurements of the Higgs Boson at the LHC and Tevatron

HIGGS Bosons at the LHC

PoS(ICHEP2012)300. Electroweak boson production at LHCb

Discovery Potential for the Standard Model Higgs at ATLAS

arxiv: v1 [hep-ph] 3 Jul 2010

Searching for the Higgs at the LHC

PoS(EPS-HEP2011)250. Search for Higgs to WW (lνlν, lνqq) with the ATLAS Detector. Jonas Strandberg

Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD. Abstract

Search for Next Generations of Quarks and Leptons at the Tevatron and LHC

Two Early Exotic searches with dijet events at ATLAS

Study of Higgs Boson Decaying to Four Muons at s =14 TeV

Higgs + 2 Jet Production: Loops and CP properties

Beyond the Standard Model Higgs boson searches using the ATLAS etector

THEORY OUTLOOK AFTER THE CMS HIGGS WIDTH CONSTRAINT. Felix Yu Fermilab

Higgs Property Measurement with ATLAS

Higgs boson signal and background in MCFM

Review of Higgs results at LHC (ATLAS and CMS results)

Precision Calculations for Collider Physics

arxiv: v1 [hep-ex] 8 Nov 2010

Measurements of the production of a vector boson in association with jets in the ATLAS and CMS detectors

Application of the Tau Identification Capability of CMS in the Detection of Associated Production of MSSM Heavy Neutral Higgs Bosons Souvik Das

Higgs Boson Production at the LHC

WZ di-boson production at CMS

Status and Prospects of Higgs CP Properties with CMS and ATLAS

Boosted top quarks in the ttbar dilepton channel: optimization of the lepton selection

Search for H ± and H ±± to other states than τ had ν in ATLAS

Top production measurements using the ATLAS detector at the LHC

Inclusive. W & Z measurements in CMS. Georgios Daskalakis. on behalf of CMS Collaboration. .C.S.R. Demokritos

PoS(DIS 2010)190. Diboson production at CMS

Search for a new spin-zero resonance in diboson channels at 13 TeV with the CMS experiment

An update on vector boson pair production at hadron colliders

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential

SEARCH FOR ASSOCIATED PRODUCTION OF THE HIGGS BOSON IN THE H W W CHANNEL WITH A FULLY LEPTONIC FINAL STATE

Z+jet production at the LHC: Electroweak radiative corrections

Weak boson scattering at the LHC

What to do with Multijet Events?

A Search for Vector Diquarks at the CERN LHC

Higgs Boson in Lepton Decay Modes at the CMS Experiment

Mass Reconstruction Techniques for Resonances in W ± W ± Scattering

Top Physics in Hadron Collisions

Highlights of top quark measurements in hadronic final states at ATLAS

University of Wisconsin - Madison. H WW as the discovery mode for a light Higgs boson. Abstract

Higgs and Z τ + τ in CMS

Physics at Hadron Colliders Part II

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Constraints on the Higgs Width

Higgs Prospects at the Upgraded Tevatron: Fermilab Study Results

Detecting H->hh in the Mirror Model at the LHC

QCD and Top physics studies in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector

Higgs Searches - Overview. Kétévi A. Assamagan BNL

Statistical methods in CMS searches

Mono-X, Associate Production, and Dijet searches at the LHC

Constraining total width of Higgs boson at the LHC. Kajari Mazumdar Tata Institute of Fundamental Research Mumbai

Evidence for Higgs Boson Decays to a Pair of τ-leptons

arxiv:hep-ph/ v1 24 Jul 1996

Higgs Production at LHC

Top, electroweak and recent results from CDF and combinations from the Tevatron

Measurement of Z+ Jets Cross-Section at ATLAS

Studies of Top Quark properties at the LHC. Top quark physics. S. Bentvelsen NIKHEF Kruislaan SJ Amsterdam the Netherlands

arxiv:hep-ph/ v1 17 Apr 2000

Search for the Standard Model Higgs in H ZZ 4l channel with the CMS experiment

Model Independent Search in 2-Dimensional Mass Space

Measurement of t-channel single top quark production in pp collisions

Search for Invisible Decay of Higgs boson at LHC

Early SUSY searches at the LHC

Excited Muon Discovery Potential in s = 13 TeV proton-proton Collision with CMS Experiment

Higgs-related SM Measurements at ATLAS

Outline Motivations for ILC: e + e γ/z q qg LHC: pp l + l + jet (q q l + l g + qg l + l q + qg l + l q) Existing literature The complete EW one-loop c

WW scattering at the LHC Part 2 simulations

On behalf of the ATLAS and CMS Collaborations

Search for Fermionic Higgs Boson Decays in pp Collisions at ATLAS and CMS

Prospects On Standard Model And Higgs Physics At The HL-LHC

Inclusive top pair production at Tevatron and LHC in electron/muon final states

Search for the Standard Model Higgs Boson in H WW lν lν with the ATLAS experiment

BSM Higgs Searches at ATLAS

arxiv: v1 [hep-ph] 8 Dec 2010

Measuring the Higgs Quantum Numbers

Searching for H! in weak boson fusion at the LHC. D. Rainwater and D. Zeppenfeld. Department of Physics, University of Wisconsin, Madison, WI 53706

Searches for SM H ττ at the LHC

arxiv: v1 [hep-ph] 5 Dec 2013

Measurement of the jet production properties at the LHC with the ATLAS Detector

Transcription:

Preprint typeset in JHEP style - PAPER VERSION Freiburg-THEP-05/01 DCPT/05/08 IPPP/05/04 hep-ph/0504006 arxiv:hep-ph/0504006v1 1 Apr 005 The process gg WW as a background to the Higgs signal at the LHC M. Dührssen, K. Jakobs and J. J. van der Bij Institut für Physik, Albert-Ludwigs Universität Freiburg, Hermann-Herder-Str. 3, 79104, Freiburg, Germany E-mail: Michael.Duehrssen@physik.uni-freiburg.de, Karl.Jakobs@physik.uni-freiburg.de, jochum@physik.uni-freiburg.de P. Marquard Institute of Particle Physics Phenomenology, Department of Physics, University of Durham, Durham, DH1 3LE, UK E-mail: Peter.Marquard@durham.ac.uk Abstract: The production of W pairs from the one-loop gluon fusion process is studied. Formulas are presented for the helicity amplitudes keeping the top mass finite, but all other quark masses zero. The correlations among the leptons coming from the W bosons are kept. The contribution of this background to the Higgs boson search in the WW decay mode at the LHC is estimated by applying the cuts foreseen in experimental searches using the PYTHIA Monte Carlo program. Kinematic distributions for the final state leptons are compared to those of the Higgs boson signal and of the q q WW background. After applying final cuts, the gg background is found to be large, at the level of 35% of the q q background. The characteristics of the gg background are very similar to those of the signal. Therefore, an experimental normalization of this background component appears to be very difficult and the uncertainty must largely be determined by theory. As a result, the significance of a Higgs signal in the gg H WW mode at the LHC is reduced. Keywords: One-loop, QCD, Higgs, Hadron Colliders.

1. Introduction The Standard Model is well established and in agreement with all collider data. The only part of the model, not explored so far, is the Higgs sector. Because this sector plays a distinguished role in the theory, being responsible for the masses and mixings of all particles, the search for the Higgs boson is one of the highest priorities at the LHC. Within the Standard Model all properties of the Higgs boson are fixed when its mass is known. From indirect limits the Higgs boson is expected to have a mass in the range 114.4 GeV/c < m H < 46 GeV/c (95% C.L.) [1]. When the Higgs mass is above the Z pair threshold, it decays with a large branching fraction into Z bosons, that can be discovered in the golden l + l + l l decay mode. As long as m H 130 GeV/c the decay into four leptons can still be used. Within the region 155 GeV/c < m H < 170 GeV/c the ZZ branching fraction goes through a minimum, while the WW decay mode opens up. In this mass range the gg H WW lν lν [] and the recently established vector boson fusion mode qq qqh qqw W qq lν lν [3, 4, 5] have the largest discovery potential. Since two neutrinos appear in the final state, no invariant mass peak can be reconstructed. This implies that there is a large background from the W pair production process q q WW. This background can only be reduced by considering the specific differences in distributions between the signal and background processes. The first important difference is in the rapidity distributions of the final state leptons. The q q WW background tends to be produced at a larger rapidity, because of the harder distribution of the valence quarks, whereas the signal comes from gluon fusion. The second difference lies in the lepton correlations, since the W bosons from the Higgs boson decay are in a scalar state. It was shown in Ref. [] that it is possible, using these differences, to strongly improve the signalto-background ratio, in comparison to older calculations that ignored the spin correlations [6, 7]. To get a high confidence level for the signal, a normalization of the background is needed in a phase space region where the signal contribution is small. Using Monte Carlo calculations an extrapolation into the signal region needs to be performed. Hereby it is assumed that the shape of the distributions can be well predicted, even when the normalization is uncertain. The features that distinguish the q q background from the signal are absent in the gg WW process. Since the gg process can be quite large in the signal region, a calculation of this process is necessary. The gluon fusion process has been studied in the literature before, however, without accounting for correlations among the final decay products [8, 9]. For the gg ZZ process, full calculations with correlations do exist [10, 11]. These programs can easily be adapted to the production of W bosons, as long as the quarks inside the loop are degenerate, so as to describe the effect of the light quarks only. For the top-bottom generation this is not correct and one has to separately calculate this contribution to the helicity amplitudes. The formulas will be rather complicated compared to the formulas of Ref. [1] in the massless case. Since a priori the presence of a heavy particle in the loop can affect the distributions, one has to check this contribution. Ultimately we found out, however, that the effect is negligible (10%) as compared to the calculation with only the light quarks. 1

The programs for the cross section calculation were interfaced with the PYTHIA Monte Carlo program [13], so as to allow for a more realistic analysis. The comparison between the two backgrounds was performed at leading order, since no K-factor for the gluon process is known. Next-to-leading order (NLO) programs exist for the q q process [14, 15, 16, 17, 18, 19], however, only rough estimates on the significance of the K-factors for the backgrounds can be made at present. The outline of the paper is as follows: in Section some theoretical issues are discussed, in Section 3 the simulation and the event selection is presented, in Section 4 results for the different distributions are given and conclusions are drawn in Section 5. The new formulas for the helicity amplitudes are given in the appendix.. Theoretical issues For the process gg W + W, which appears first at the one loop level, a new calculation has been performed. In this calculation we included the full dependence on the masses of the quarks inside the loop but restricted ourselves to on-shell W bosons and used the narrowwidth approximation instead. Only the box graphs contribute. Off-shell W bosons would only be interesting in the threshold region, but otherwise lead to negligible corrections, since there is no interference with the signal. The contribution of the squared top-quark loop is of the order of 1% while the interference with light quarks gives a contribution of the order of 10%. To obtain the full spin correlation we calculated the helicity amplitudes for gg WW and used spin matrices to combine them with the polarized decay amplitudes for W lν. The calculation has been performed using standard techniques [0, 1] to reduce the tensor integrals appearing in the calculation and has been checked in several limits against known calculations [8, 10, 1]. The remaining scalar integrals have been evaluated numerically using the programs of Refs. [, 3]. The helicity amplitudes can be obtained from the authors 1 together with the full Monte Carlo program. Since no NLO calculation is available, the effect of the NLO corrections can at present only be estimated. Since the calculation is at leading order, the renormalization scale dependence emerges only from the parton distribution functions (pdf) and the running of α s and we chose Q = ŝ/4. 3. Simulation and Event Selection In several studies [, 4, 5] it has been shown that the q q WW, top pair and single top production constitute the principal backgrounds in the Higgs boson search in the gg H WW lν lν mode. In the present study the gg WW contribution of the background is compared to the q q WW and tt backgrounds. Both the Higgs boson signal and the background processes were generated with PYTHIA 6.6 [13] using the CTEQ5L [6] structure function parametrization. The decays of the W bosons into all lepton flavours (eν,µν and τν) have been included. Since in the event selection only electrons and muons 1 email: Michael.Duehrssen@physik.uni-freiburg.de, Peter.Marquard@durham.ac.uk

are considered, tau leptons only contribute if they decay leptonically. The gg W W background was also generated with CTEQ5L and interfaced to PYTHIA using the Les Houches Accord matrix element interface [7]. The signal selection is divided into two parts: a preselection is applied to identify the final state and to reduce all backgrounds that contain no true W pair and in a final selection the signal is separated from the dominant backgrounds as far as possible. It should be stressed that no simulation of detector effects was performed and cuts were applied based on particle level information available in PYTHIA. 3.1 Preselection 1. The final state is triggered and selected by requiring exactly two isolated leptons of opposite charge (e or µ) with p T (l 1 ) > 0 GeV/c and p T (l ) > 10 GeV/c in the pseudorapidity interval η <.5. A lepton reconstruction efficiency of 90% independent of p T and η was assumed. A lepton is considered to be isolated if not more than 10 GeV of energy is carried by all particles within R = ( η) + ( φ) < 0. of the lepton.. The missing transverse momentum p miss T is defined as the sum of all neutrinos, ignoring experimental smearing and resolution effects, and is required to be larger than 40 GeV/c. This cut reduces all potential backgrounds with no intrinsiv p miss T from neutrinos, e.g., q q Z ee/µµ. 3. The modulus of the vector sum of the two leptons and the p miss T vector in the transverse plane is required to be smaller than 60 GeV/c. This requirement mainly reduces the huge t t background. 4. Jets are reconstructed using a cone algorithm with R = 0.7 and a particle seed of p T > GeV/c. Furthermore, a jet is called a b-jet if a b quark is found within R < 0.4 of the jet axis. For b-jets a detector reconstruction efficiency of 60% and a light jet mistag probability of 1% is assumed. To reduce the t t background, no jets with p T above 40 GeV/c are allowed within η < 4.5 and no b-jets with p T above 0 GeV/c within η <.5. 5. Events containing Z bosons are rejected by requiring that two same flavour leptons of opposite charge may not have an invariant mass within 10 GeV/c of the Z mass. 6. Z τ τ events with τ lνν have the same final state as the signal, but the leptons tend to be back-to-back. All events where the azimuthal opening angle φ ll between the two leptons is larger than 3.0 are rejected. Using the collinear approximation [8], it is possible to reconstruct the τ momenta. If the collinear approximation is successful, φ ll is larger than.0 and one of the τ-decay leptons carries less than 50% of the τ momentum, the event is rejected. 3

3. Final Selection 7. Some tails of the backgrounds are removed by requiring η(l 1,l ) < 1.5 and η ll : = η( p l1 + p l ) < 3.0. 8. A cut on the pseudorapidity of the sum of the two leptons, η ll < 1.47, strongly suppresses the q q WW background. 9. The transverse mass M T, defined as M T := p T (l 1 + l ) p miss T (1 cos φ T ), where φ T is the transverse opening angle between p T miss and the sum of the two leptons p T (l 1 +l ), is required to be in the range m H 30 GeV/c < M T < m H. Given the shapes of the transverse mass distributions for signal and backgrounds, this cut helps to increase the signal-to-background ratio for Higgs boson masses above 150 GeV/c. 10. A final cut on φ ll < 1.0 exploits the main difference between signal and background. 4. Results The acceptance for a Higgs boson signal with a mass of 170 GeV/c and for the various backgrounds after the application of the successive cuts is summarized in Table 1. At the level of the basic acceptance cuts, i.e., requiring two leptons and the cut on the missing transverse momentum (cuts 1 and ), the total background is dominated by tt production. This background can be largely suppressed by applying jet vetos and a cut on the total transverse momentum of the dilepton-p miss T system. After the preselection cuts, the W W background is dominant and sums up to a cross section of 603 fb. This is roughly five times larger than the signal cross section. At that stage, the newly considered gg WW contribution amounts to only about 11% of the total WW background. Further cuts on the transverse mass M T of the dilepton-p miss T system, on the pseudorapidity of the dilepton system η ll and on the azimuthal separation between the two leptons φ ll are applied to improve the signal-to-background ratio. The motivation for these cuts is illustrated in Figs. 1 and, where the transverse mass and the pseudorapidity η ll are shown versus φ ll for signal events with m H = 170 GeV/c and for the various backgrounds considered. These plots show a striking difference between the q q WW and the gg W W backgrounds. Whereas the q q W W background peaks at large values of φ ll and η ll, the gg WW distributions are more signal like, i.e., a significant fraction of the gg WW background has both small φ and small η ll values. The additional cuts applied in the signal selection (cuts 7-10) aim to reduce in particular the WW background. After all cuts, the signal-to-background ratio is found to be at the level of 1. For an integrated luminosity of 10 fb 1 at the LHC about 193 signal events and a total background of 183 events are expected. The background is still dominated by WW events, which account for a fraction of about 86%. About 6% of the WW background results from the gg WW process. The increase in the fraction of the gg WW background is due to the different behaviour of the gg WW and q q WW backgrounds in the φ ll and η ll distributions, as discussed above. The final signal selection cuts favour the gg WW component. 4

signal (fb) background (fb) m H = 170 GeV /c qq WW gg WW tt Total Lepton acceptance + p miss T 30.9 85.9 113.8 11698 1638 (cuts 1+) + Jet vetos, anti tt and 1.9 535. 67.7 10.6 705.5 anti Z cuts (cuts 3-6) + cut (7) 113.4 363.7 51.9 7.0 487.6 + η ll (cut 8) 76.9 190.9 33.6 40.6 65.1 + Transverse mass (cut 9) 1.5 4.4 7.0 8.7 40.1 + φ ll (cut 10) 19.3 11.6 4.1.6 18.3 Table 1: Accepted signal (for m H = 170 GeV /c ) and background cross-sections in fb for the H WW lνlν (with l = e, µ) channel after the application of successive cuts. The contributions from W τν lννν are included. ] [GeV/c M T 300 50 00 ] [GeV/c M T 300 50 00 150 100 150 100 [GeV/c M T 50 50 Signal (m H =170GeV) 0 0 0.5 1 1.5.5 3 300 50 00 φ ll [GeV/c M T ] ] tt 0 0 0.5 1 1.5.5 3 300 50 00 φ ll 150 100 50 qq WW 0 0 0.5 1 1.5.5 3 φ ll 150 100 50 gg WW 0 0 0.5 1 1.5.5 3 φ ll Figure 1: Distributions of the transverse mass M T versus φ ll for signal events with m H = 170 GeV /c and for the tt, q q WW and gg WW backgrounds. Due to the presence of neutrinos in the final state, it is not possible to reconstruct a Higgs boson mass peak. Evidence for a Higgs boson signal has therefore to be extracted from an excess of events above the backgrounds. Unlike in the case of a narrow Higgs boson resonance, the background cannot be determined in the experiment from sideband distributions. The difficulty of a signal extraction is illustrated in Fig. 3, where the distribution of the reconstructed transverse mass is shown for a Higgs boson signal with m H = 170 GeV/c and the backgrounds after all cuts, except the transverse mass cut (cut 9). However, it has been shown in several experimental studies [, 4, 9] that in particular 5

φ ll 3.5 φ ll 3.5 1.5 1 1.5 1 0.5 0.5 Signal (m H =170GeV) tt 0 0 0 0.5 1 1.5.5 3 3.5 4 4.5 5 0 0.5 1 1.5.5 3 3.5 4 4.5 5 η ll η ll φ ll 3 φ ll.5.5 3 1.5 1 0.5 qq WW 0 0 0.5 1 1.5.5 3 3.5 4 4.5 5 η ll 1.5 1 0.5 gg WW 0 0 0.5 1 1.5.5 3 3.5 4 4.5 5 η ll Figure : Distributions of the azimuthal separation φ ll versus η ll for signal events with m H = 170 GeV /c and for the tt, q q WW and gg WW backgrounds. ] [fb/10 GeV/c dσ/dm T H WW 0 gg WW WW 18 tt 16 14 1 10 8 m H =170 GeV/c 6 4 0 0 50 100 150 00 50 300 M [GeV/c ] Figure 3: Distribution of the transverse mass M T for a Higgs boson signal with M H = 170 GeV /c and backgrounds. The accepted cross section dσ/dm T (in fb / 10 GeV /c ) including efficiency and acceptance factors is shown. the distribution of the azimuthal separation φ ll can be used to constrain and to normalize the background. The dominant qq WW and tt backgrounds, which have been considered so far, show after the application of selection cuts a rather flat behaviour. Therefore, it was hoped that, after a normalization of the backgrounds in the region of φ ll > 1.5, a reliable extrapolation of the background could be performed with the help of Monte 6

[fb/0.31] dσ/d φ ll 14 H WW 1 gg WW WW tt 10 8 6 4 m H =170 GeV/c 0 0 0.5 1 1.5.5 3 φ [fb/0.31] dσ/d φ ll 16 14 1 10 8 6 4 H WW gg WW WW tt m H =140 GeV/c 0 0 0.5 1 1.5.5 3 φ Figure 4: Distribution of the azimuthal separation φ ll between the two leptons after all cuts for backgrounds and Higgs bosons signals with m H = 170 GeV/c (left) and m H = 140 GeV/c (right). Carlo calculations. Unfortunately, this situation is changed if the gg W W background is included, since this background has a large component which shows a signal-like behaviour. Primarily it leads to an increased WW background of the order of 35%. In addition, due to potentially large uncertainties on the shape of the gg WW background, the extrapolation uncertainties and therefore the systematic uncertainties on the background estimates in the signal region increase. The φ ll distribution found after the application of all cuts is shown in Fig. 4 for two Higgs boson masses (m H = 170 GeV/c and m H = 140 GeV/c ). 5. Conclusions The production of W pairs from the one-loop gluon fusion process is found to significantly increase the WW background in the Higgs search in H WW lν lν final states at the LHC. Since for this background the correlations of the final state leptons are similar to those of the Higgs boson signal, the fraction of the gg WW contribution is enhanced by the selection cuts foreseen in the experimental searches, e.g., for a Higgs boson with a mass of 170 GeV/c, the WW background is increased by 35% due to the gg WW contribution, after final cuts are applied. This larger background decreases the sensitivity of the LHC experiments for Higgs boson searches in the gg H WW mode. Due to the presence of two neutrinos in the final state no mass peak can be reconstructed and it is necessary to normalize the background in a phase space region where the signal contribution is small, for example, using the distribution of the azimuthal difference between the leptons. Due to the large gg W W contribution in the signal region, this normalization and subsequent extrapolation into the signal region might be affected with larger uncertainties. They lead in turn to larger systematic uncertainties on the background and thereby reduce the signal significance further. It should be stressed that the experimental collaborations should include the gg W W background in their detailed detector simulation and re-evaluate the signal significance in the gg H WW mode. Given the striking differences between the leading order 7

q q W W and the one-loop gluon-fusion process gg W W in the final state lepton correlations, it appears necessary to use a full NLO calculation in form of an event-by-event Monte Carlo generator for a more reliable estimate of the Higgs boson discovery potential in this channel. Acknowledgments During the final phase of our work we became aware that also the group of Ref. [30] was working on the same process. We compared our results with theirs and with the older literature. The amplitudes are in agreement with each other. M.D. wants to thank David Rainwater for many useful discussions. References [1] Review of particle physics, Phys. Lett. B 59 (004) 1. [] M. Dittmar and H. Dreiner, Phys. Rev. D 55 (1997) 167. [3] D.L. Rainwater and D. Zeppenfeld, Phys. Rev. D 60 (1999) 113004, [Erratum-ibid. Phys. Rev. D 61 (000) 099901], hep-ph/990618; N. Kauer, T. Plehn, D.L. Rainwater and D. Zeppenfeld, Phys. Lett. B 503 (001) 113. [4] S.Asai et al., Prospects for the search of a Standard Model Higgs boson in ATLAS using vector boson fusion, Eur. Phys. J. C 3 (003) 09, ATLAS note SN-ATLAS-003-04, hep-ph/04054. [5] S. Abdullin et al., Summary of the CMS potential for the Higgs boson discovery, CMS NOTE 003/033. [6] E.W.N. Glover, J. Ohnemus and S.D. Willenbrock, Phys. Rev. D 37 (1988) 3193. [7] V. Barger, G. Bhattacharya, T. Han and B.A. Kniehl, Phys. Rev. D 43 (1991) 779. [8] E.W.N. Glover and J.J. van der Bij, Phys. Lett. B 19 (1989) 488. [9] Chung Kao and D.A. Dicus, Phys. Rev. D 44 (1991) 1403. [10] T. Matsuura and J.J. van der Bij, Z. Physik C 51 (1991) 59. [11] C. Zecher, T. Matsuura and J.J. van der Bij, Z. Physik C 64 (1994) 19. [1] E.W.N. Glover and J.J. van der Bij, Nucl. Phys. B 31 (1989) 561. [13] T. Sjöstrand, P. Edén, C. Friberg, L. Lönnblad, G. Miu, S. Mrenna and E. Norrbin, Comput. Phys. Commun. 135 (001) 38. [14] J. Ohnemus, Phys. Rev. D 44 (1991) 1403. [15] J. Ohnemus, Phys. Rev. D 50 (1994) 1931. [16] S. Frixione, Nucl. Phys. B 410 (1993) 80. [17] L.J. Dixon, Z. Kunszt and A. Signer, Nucl. Phys. B 531 (1998) 3. [18] L.J. Dixon, Z. Kunszt and A. Signer, Phys. Rev. D 60 (1999) 114037. [19] J.M. Campbell and R.K. Ellis, Phys. Rev. D 60 (1999) 113006. 8

[0] G. J. van Oldenborgh and J. A. M. Vermaseren, Z. Physik C 46 (1990) 45. [1] G. Passarino and M. J. G. Veltman, Nucl. Phys. B 160 (1979) 151. [] T. Hahn and M. Perez-Victoria, Comput. Phys. Commun. 118 (1999) 153. [3] G. J. van Oldenborgh, Comput. Phys. Commun. 66 (1991) 1. Z. Bern, A. De Freitas and L. J. Dixon, J. High Energy Phys. 109 (001) 037. [4] ATLAS Collaboration, Detector and Physics Performance Technical Design Report, CERN/LHCC/99-15 (1999). [5] D. Green et al., Search for the Standard Model Higgs boson with m H 170GeV /c, in W + W decay mode, J. Phys. G 6 (000) 1751. [6] H.L. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 Parton distributions, Eur. Phys. J. C 1 (000) 375, hep-ph/990631. [7] E. Boos et al., Generic user process interface for event generators, Proc. Les Houches workshop 001, hep-ph/0109068. [8] R.K. Ellis, I. Hinchliffe, M. Soldate and J.J. van der Bij, Nucl. Phys. B 97 (1988) 1. [9] T. Han, A.S. Turcot, R.-J. Zhang, Phys. Rev. D 59 (1999) 093001. [30] T.Binoth, M. Ciccolini, N. Kauer and M. Krämer, hep-ph/0503094. 9

A. Helicity amplitudes In this appendix we give the helicity amplitudes needed for the process gg W + W. We limit ourselves to present the results for the case of one massless and one heavy quark with mass m 1. The helicity configurations are defined for all incoming particles. In total there are 8 independent amplitudes. The others can be obtained by bose symmetry and parity transformation, e.g. where M ++ (β) = M ++++ (β), M +++ (β) = M ++ + (β), M + (β) = M + ++ (β), M + + (β) = M + + ( β), M +++0 (β) = M ++0+ (β) = M ++ 0 ( β) = M ++0 ( β), M + +0 (β) = M + 0+ ( β) = M + 0 ( β) = M + 0 (β). β = 1 4 M W s. To obtain shorter expressions we introduce several new functions s 1 = s M W, s = s M W, s 4 = s 4M W, t 1 = t M W, t = t M W, u 1 = u MW, u = u MW, Y = ut MW, 4 Y = i s 4 MW. The helicity amplitudes are given in terms of the one loop scalar integrals which are denoted as follows B 0 (s) = B(s,m 1,m 1 ) B 1 (s) = B(s,m 1,0) B (s) = B(s,0,0) C 0 (s) = C(0,0,s,m 1,m 1,m 1 ) C 1 1 (s) = C(s,M W,M W,m 1,m 1,0) C 1(s) = C(0,s,M W,m 1,m 1,0) C 1 (s) = C(s,M W,M W,0,0,m 1) C (s) = C(0,s,M W,0,0,m 1) D 1 (s,t) = D(0,0,M W,M W,s,t,m 1,m 1,m 1,0) D (s,t) = D(0,M W,0,M W,s,t,m 1,m 1,0,0) D 3 (s,t) = D(0,0,M W,M W,s,t,0,0,0,m 1 ) Here we followed the notation given in []. The full Monte Carlo program including the helicity amplitudes can be obtained by email from the authors Michael.Duehrssen@physik.uni-freiburg.de, Peter.Marquard@durham.ac.uk 10

M ++++ M ++++ = 16(D 1(s,u) + D 1 (s,t) + D (t,u))m 1 6 s 4 + m 1 β s s 4 t 1 u 1 (8C 1(u)M W s (s + ( + β)s )t 1 + (8C 1(t)M W s (s + ( + β)s ) + t 1 (β (16C 0 (s)m W s + s (4D 1 (s,u)m W s + 4D 1 (s,t)m W s + D (t,u)(s ss (t u) ))) + (s s )(8C 0 (s)s + 4D 1 (s,u)m W s + 4D 1 (s,t)m W s + D (t,u)s D (t,u)ss D (t,u)t + D (t,u)tu D (t,u)u )))u 1 ) 1 β s s 4 t 1 u (4B 1(MW)M W s (s + ( + β)s )(s 4 s 3 s + 4s (t u) 1 ss (t u) (t u) 4 ) + 4B 1 (u)s( s + s β s )t 1 (s 3 (t u) u + s (t + u) + s (t + tu + 5u )) 16β M W s t 1 (s ss (t u) )u 1 + 8s (s s )t 1 (s ss + (t u) )u 1 + 4C 1 (t)(s + ( + β)s )t 1 3 (s ss (t u) )u 1 + 4C (t)(s + ( + β)s )t 1 3 (s ss (t u) )u 1 + D (t,u)(s + ( + β)s )t 1 (s ss (t u) )(s ss + (t u) )u 1 + 4B 1 (t)s( s + s β s )(s 3 t(t u) + s (t + u) + s (5t + tu + u ))u 1 + 4C 1(u)(s + ( + β)s )t 1 (s ss (t u) )u 1 3 + 4C (u)(s + ( + β)s )t 1 (s ss (t u) )u 1 3 ) 4m 1 4 β s s 4 ((D 1 (s,u) + D 1 (s,t))s(s s ) + β (8C 0 (s)s + D 1 (s,u)s + D 1 (s,t)s + D (t,u)s D (t,u)ss + D (t,u)t + 4C 1(t)t 1 + 4C (t)t 1 D (t,u)tu + D (t,u)u + 4C 1(u)u 1 + 4C (u)u 1 )) M +++ 1 M +++ = s s 4 t 1 u ((s ss + (t u) )( B 1 (MW )M W s (s 3 + s s 1 s (t u) + s (t u) ) + 4B 1 (u)m W s t 1 (s u) + u 1 ( M W s (4B 1 (t)t + D (t,u)s t 1 )u 1 + s ( 4s t 1 + M W (4B 1 (t) + D (t,u)t 1 )u 1 ) + M W t 1 u 1 (D (t,u)(t u) + 4(C 1(t)t 1 + C (t)t 1 + (C 1(u) + C (u))u 1 ))))) 4(D 1(s,u) + D 1 (s,t) + D (t,u))m 1 6 (s ss (t u) ) s 4 Y + m 1 4 s s 4 Y (8C 0(s)s(s ss (t u) ) + 4C 1(t)t 1 (s ss (t u) ) + 4C (t)t 1 (s ss (t u) ) + D (t,u)(3s 6ss (t u) )(s ss + (t u) ) + 4D 1 (s,u)s(s 3 3s (t u) + s (5t + u) + s (7t + tu u )) + 4D 1 (s,t)s(s 3 3s (t u) + s (t + 5u) + s ( t + tu + 7u )) 11

+ 4C 1(u)(s ss (t u) )u 1 + 4C (u)(s ss (t u) )u 1 ) + m 1 ss 4 t 1 u 1 Y,(C 1(u)t 1 (3s 5 + s (t u) 4 s (t u) 3 (5t + 3u) + s 4 (5t + 7u) + s 3 (5t + 14tu 3u ) 4s u( 5t + 10tu + 11u )) + 16C 1 1(s)s (s s ) t 1 u 1 8C 0 (s)ss t 1 (s ss (t u) )u 1 4C (t)(s s )t 1 (s ss + (t u) )u 1 D (t,u)(s 3s )t 1 (s ss + (t u) ) u 1 + C 1(t)(3s 5 + s (t u) 4 + s (t u) 3 (3t + 5u) + s 4 (7t + 5u) 4s t (11t + 10tu 5u ) + s 3 ( 6t + 8tu + 10u ))u 1 + D 1 (s,u)st 1 (s 4 4s 3 s + (t u ) + s (3t + 4tu u ) + 4s(t 3 + t u 3tu 3u 3 ))u 1 + D 1 (s,t)st 1 (s 4 4s 3 s s (t 4tu 3u ) + (t u ) 4s(3t 3 + 3t u t u u 3 ))u 1 4C (u)(s s )t 1 (s ss + (t u) )u 1 ) M +++0 M +++0 = ( 1 + β) M W β s t 1 u 1 ( 4B 1 (M W )M W s ( 3s + (t u) )(t u) + 4B 1 (u)st 1 (s + (t u)u + s (t + 3u)) u 1 (4B 1 (t)s 3 u 1 s(4b 1 (t)t + D (t,u)s t 1 )(t u)u 1 + t 1 (t u)u 1 (D (t,u)(t u) + 4(C 1(t)t 1 + C (t)t 1 + (C 1(u) + C (u))u 1 )) + s (u(8t 1 + 4B 1 (t)u 1 D (t,u)t 1 u 1 ) + t ( 8t 1 + 1B 1 (t)u 1 + D (t,u)t 1 u 1 )))) 8(D 1(s,u) + D 1 (s,t) + D (t,u)) m 1 6 (t u) β Y + m 1 4 β s Y ( (D 1(s,u)s(s + ( s + i( 1 + β)s )(t u) + s ((3 + i + (1 i)β)t + (5 i (1 i)β)u))) + D 1 (s,t)s(s ( s + i( 1 + β)s )(t u) + s ((5 i (1 i)β)t + (3 + i + (1 i)β)u)) + (t u)(8c 0 (s)s id (t,u)s + (1 + i)β D (t,u)s(s s ) + id (t,u)ss + D (t,u)t + 4C 1(t)t 1 + 4C (t)t 1 D (t,u)tu + D (t,u)u + 4C 1(u)u 1 + 4C (u)u 1 )) ( 1 + β) m 1 β s t 1 u 1 Y (8C 0 (s)s(( 1 + i)s is )t 1 (t u)u 1 + (4 + 4i)C (t)(s s )t 1 (t u)u 1 + D (t,u)((3 + i)s (4 + i)s )t 1 (s ss + (t u) )(t u)u 1 D 1 (s,u)s(( 1 + i)s is )t 1 (s ss + t u )u 1 + D 1 (s,t)s(( 1 + i)s is )t 1 (s ss t + u )u 1 C 1 (t)(8s4 + s 3 (3t + 5u) + s (t u)(t + 4it 1 tu + u ) 1

+ 4s (t + 7tu + 7u ) s (t u)(5t + 4it 1 + 14tu + 13u ))u 1 + (4 + 4i)C (u)(s s )t 1 (t u)u 1 + C1 (u)t 1 (8s 4 + s 3 (5t + 3u) + 4s (7t + 7tu + u ) s (t u)(t tu + u + 4iu 1 ) + s (t u)(13t + 14tu + 5u + 4iu 1 ))) M ++00 M ++00 = 8(D 1(s,u) + D 1 (s,t) + D (t,u))m 1 6 s M W s 4 m 1 4 M W s 4,(8C 0 (s)s + 4D 1 (s,t)m W s + 8D 1 (s,t)m W s + 4D 1 (s,u)m W (s + s ) + 4C 1 (t)t 1 + 4C (t)t 1 9D (t,u)tu + 3D (t,u)t u + 4C 1 (u)u 1 + 4C (u)u 1 + 3D (t,u)tu D (t,u)t u ) 8M W s s 4 t 1 u 1,(B 1(M W)M W s (s 4 s 3 s + 4s (t u) ss (t u) (t u) 4 ) B 1 (u)st 1 (s 3 (t u) u + s (t + u) + s (t + tu + 5u )) u 1 (B 1 (t)s(s 3 t(t u) + s (t + u) + s (5t + tu + u ))u 1 4t 1 Y ( s + t 1 u 1 (C 1 (t)t 1 + C (t)t 1 + C 1 (u)u 1 + C (u)u 1 D (t,u)y )))) + m 1 M W s s 4 t 1 u 1 (C 1 (u)m W t 1 (7s 3 + s (t u) + 4s (3t + 4u) + s (3t + 18tu + 11u )) + u 1 (C 1 (t)m W (7s 3 + s (t u) + 4s (4t + 3u) + s (11t + 18tu + 3u )) + 4t 1 (C 0 (s)s(s ss + s ) + M W (D 1 (s,u)m W s s + D 1 (s,t)m W s s + C (t)s 4 t 1 + C (u)s 4 u 1 + 3D (t,u)sy 4D (t,u)s Y )))) M + +0 M + +0 = 4(D 1(s,u) + D 1 (s,t) + D 3 (s,t) + D 3 (s,u) + D (t,u)) m 1 8 s (β s + t u) β Y + M W β t 1 u 1 Y (B 1(M W)M W ( (β (s 4 s 3 s s s (t u) + (t u) 4 )) (s s s(t u) + s (t u) )(t u))(s ss + (t u) ) + B 1 (u)t 1 (s ss + (t u) )((1 + β)s 3 + s (3(1 + β)t + u + 5β u) + s (3(1 + β)t + ( 1 + 3β)tu (1 + β)u ) + (t u)((1 + β)t + ( 1 + β)tu (7 + 3β)u )) β s t 1 (s ss + (t u) ) u 1 + t 1 (s ss + (t u) ) (t u)u 1 + 4B 0 (s)t 1 (s ss + (t u) )( is + is + t + β (s + i(t u)) u)u 1 + D 3 (s,t)stt 1 (( 1 + i)( 1 + β)s 3 + (7 + 17i (3 + 5i)β)t 3 + ( 5 + 13i + (5 + 3i)β)t u (1 i)(3 + β)tu (1 i)( 1 + β)u 3 (1 i)s (( 1 + 5β)t + 3( 1 + β)u) + s (( 1 + 9i + (1 + 7i)β)t ( i)(1 + 3β)tu (3 3i)( 1 + β)u ))u 1 13

+ D 1 (s,t)stt 1 (( 1 i)( 1 + β)s 3 + (7 17i (3 5i)β)t 3 (5 + 13i (5 3i)β)t u (1 + i)(3 + β)tu (1 + i)( 1 + β)u 3 (1 + i)s (( 1 + 5β)t + 3( 1 + β)u) s ((1 + 9i (1 7i)β)t + ( + i)(1 + 3β)tu + (3 + 3i)( 1 + β)u ))u 1 + C1 (t)t 1 3 ((1 + i)( 1 + β)s 3 + ( 7 + 17i + (3 5i)β)t 3 + (5 + 13i (5 3i)β)t u + (1 + i)(3 + β)tu + (1 + i)( 1 + β)u 3 + (1 + i)s (( 1 + 5β)t + 3( 1 + β)u) + s ((1 + 9i (1 7i)β)t + ( + i)(1 + 3β)tu + (3 + 3i)( 1 + β)u ))u 1 + C(t)t 3 1 (( 1 + i + (1 i)β)s 3 + ( 7 17i + (3 + 5i)β)t 3 ( 5 + 13i + (5 + 3i)β)t u + (1 i)(3 + β)tu + ( 1 + i + (1 i)β)u 3 + (1 i)s (( 1 + 5β)t + 3( 1 + β)u) + s ( (( 1 + 9i + (1 + 7i)β)t ) + ( i)(1 + 3β)tu + 3( 1 + i + (1 i)β)u ))u 1 + D 3 (s,u)st 1 u(( 1 i)(1 + β)s 3 (1 + i)(1 + β)t 3 (1 + i)( 3 + β)t u + (5 + 13i + (5 3i)β)tu + ( 7 + 17i (3 5i)β)u 3 (1 + i)s (3(1 + β)t + u + 5β u) + s (( 3 3i)(1 + β)t ( + i)( 1 + 3β)tu + (1 + 9i + (1 7i)β)u ))u 1 + D 1 (s,u)st 1 u(( 1 + i)(1 + β)s 3 (1 i)(1 + β)t 3 (1 i)( 3 + β)t u + (5 13i + (5 + 3i)β)tu (7 + 17i + (3 + 5i)β)u 3 (1 i)s (3(1 + β)t + u + 5β u) + s (( 3 + 3i)(1 + β)t ( i)( 1 + 3β)tu + (1 9i + (1 + 7i)β)u ))u 1 + 4B (s)t 1 (s ss + (t u) )(i(s s ) + t u + β (s + i( t + u)))u 1 + B 1 (t)(s ss + (t u) )(( 1 + β)s 3 + s (( 1 + 5β)t + 3( 1 + β)u) + (t u)(( 7 + 3β)t (1 + β)tu ( 1 + β)u ) + s ( (( 1 + β)t ) + 3( 1 + β)u + t(u + 3β u)))u 1 + C 3 (s)st 1 ((t u)(s ss 3t tu 3u ) + β (s 3 4s s s (t u) + s (t + 6tu + u )) + i(s 3 s s s (3t + tu + 3u ) + β (t u)( s + ss + 3t + tu + 3u ) 8(t 3 + t u + t u + u 3 )))u 1 + C 0 (s)st 1 ((t u)(s ss 3t tu 3u ) + β (s 3 4s s s (t u) + s (t + 6tu + u )) + i( s 3 + s s + β (t u)(s ss 3t tu 3u ) + s (3t + tu + 3u ) + 8(t 3 + t u + t u + u 3 )))u 1 + C(s)t 1 1 (β s (s 3 s s + s (t u) 4s (t u) ) + (s s )(s + ss + (t u) )(t u) + i(β s (t u)(s 6ss + 9t + 14tu + 9u ) (s s )(s 3 4s s + s (t u) + s (5t + 6tu + 5u ))))u 1 + C1 1 (s)t 1 (β s (s 3 s s + s (t u) 4s (t u) ) + (s s )(s + ss + (t u) )(t u) + i( (β s (t u)(s 6ss + 9t + 14tu + 9u )) + (s s )(s 3 4s s + s (t u) + s (5t + 6tu + 5u ))))u 1 + C (u)t 1 ((1 + i)(1 + β)s 3 + (1 + i)(1 + β)t 3 + (1 + i)( 3 + β)t u + ( 5 13i (5 3i)β)tu + (7 17i + (3 5i)β)u 3 + (1 + i)s (3(1 + β)t + u + 5β u) + s ((3 + 3i)(1 + β)t + ( + i)( 1 + 3β)tu + ( 1 9i (1 7i)β)u 3 ))u 1 14

+ C 1(u)t 1 ((1 i)(1 + β)s 3 + (1 i)(1 + β)t 3 + (1 i)( 3 + β)t u (5 13i + (5 + 3i)β)tu + (7 + 17i + (3 + 5i)β)u 3 + (1 i)s (3(1 + β)t + u + 5β u) s (( 3 + 3i)(1 + β)t ( i)( 1 + 3β)tu + (1 9i + (1 + 7i)β)u ))u 1 3 ) + m 1 4 β Y (8C1 1(s)s(β (s ss (t u) ) + (s s )(t u)) + 8C 1 (s)s(β (s ss (t u) ) + (s s )(t u)) + 8C 1 (t)t 1 ( s + (t β t 1 )(t u) s (3t 3β t 1 + u)) + 8C (t)t 1 ( s + (t β t 1 )(t u) s (3t 3β t 1 + u)) + 8C 0 (s)s( (β (s s s + (t u)(im W + t u))) + s 1 ( t + u) + i( (s s ) + t + 6tu + u )) D (t,u)(s ss + (t u) )(β (s + (t u)( is + t u) + s ( 4s + 3it 3iu)) + s (t u) i(s 6ss + 6t + 0tu + 6u )) 8C 3 (s)s(s 1 (t u) + i( (s s ) + t + 6tu + u ) + β (s s 1 + im W ( t + u))) + D 3 (s,t)s(( 1 + i)( + β)s 3 (7 19i)t 3 + (13 + 59i)t u (5 17i)tu (1 i)u 3 + s ((0 + 8i (17 + 7i)β)t + 6(4i + (1 + 3i)β)tu (1 i)(4 + 5β)u ) + s ((1 + 11i)t (5 5i)u 4β (is t + u)) β (t u)(s ( t + u) + i(5t + 6tu + u ))) + D 1 (s,t)( ((4 + i + iβ)s 4 ) + s 3 (10s + 8β t 1 i((3 + 7β)t + ( 3 + β)u)) s (( + i(9 + β))t u(16β t 1 (6 15i)u + 3iβ u) + t(4β t 1 + (6 9i)u + 9iβ u)) + s (( 18 + i( 1 + 3β))t 3 + u (8β t 1 + ( + 17i)u + 5iβ u) + t (8β t 1 + ( 13i)u + 7iβ u) t u(16β t 1 + (6 9i)u + 15iβ u)) + (t u) ((1 + iβ)s (t u) + i(3t + 10tu + 3u ))) + D 3 (s,u)s(( 1 i)( + β)s 3 + (1 + i)t 3 + (5 + 17i)t u (13 59i)tu + (7 + 19i)u 3 + s (( 1 i)( 4 + 5β)t + 6(4i + (1 3i)β)tu + ( 0 + 8i (17 7i)β)u ) + s ((5 + 5i)t (1 11i)u + 4β (is t + u)) β (t u)(s ( t + u) + i(t + 6tu + 5u ))) + 8C 1 (u)u 1 (s + (t u)(u + β u 1 ) + s (t + 3(u + β u 1 ))) + 8C (u)u 1 (s + (t u)(u + β u 1 ) + s (t + 3(u + β u 1 ))) + D 1 (s,u)((4 + i( 1 + β))s 4 + (t u) ((1 + iβ)s (t u) + i(3t + 10tu + 3u )) + s 3 ( 10s + i((3 + β)t + ( 3 + 7β)u) + 8β u 1 ) + s ((6 3i( 5 + β))t + u(( + i( 9 + β))u 8β u 1 ) + t(3( + 3i(1 + β))u + 8β u 1 )) s (( + i( 17 + 5β))t 3 + u (( 18 + i + 3iβ)u 8β u 1 ) t ((6 + 9i + 15iβ)u + 8β u 1 ) + t u(( + 13i + 7iβ)u + 16β u 1 )))) + m 1 8β s t 1 u 1 Y (D (t,u)t 1 (s ss + (t u) ) ( i(s s ) + s (t u) 15

+ β s (s s + it iu))u 1 + 16B (s)st 1 (s ss + (t u) )(β s + t u)u 1 + 16B 0 (s)st 1 (s ss + (t u) )( (β s) t + u)u 1 + D 3 (s,t)s t 1 (( 1 + i + (1 i)β)s 4 + ( 9 47i + (7 + 17i)β)t 4 + ( 6 50i (3 3i)β)t 3 u ( 9 + 1i + (4 + 8i)β)t u + ( i)( + 3β)tu 3 + ( 1 + i + (1 i)β)u 4 + ( i)s 3 (t + 4β t + ( 1 + β)u) s (( 3 + 15i + ( + 10i)β)t (1 i)(4 + 11β)tu (3 3i)( 1 + β)u ) + s(( 11 37i + (6 + i)β)t 3 ( 4 + 16i + (1 + 11i)β)t u + (5 5i)(1 + β)tu + ( 1 + i + (1 i)β)u 3 ))u 1 + D 3 (s,u)s t 1 ((1 + i)(1 + β)s 4 + (1 + i)(1 + β)t 4 + ( + i)( + 3β)t 3 u + ( 9 1i (4 8i)β)t u ( 6 + 50i + (3 + 3i)β)tu 3 + (9 47i + (7 17i)β)u 4 + ( + i)s 3 ((1 + β)t + ( 1 + 4β)u) + s ((3 + 3i)(1 + β)t + (1 + i)( 4 + 11β)tu + ( 3 15i ( 10i)β)u ) + s(( + i)(1 + β)t 3 + (5 + 5i)( 1 + β)t u + ( 4 16i (1 11i)β)tu + (11 37i + (6 i)β)u 3 ))u 1 + 4C (t)t 1 (( 4 + 3i (1 i)β)s 4 + s 3 (( 5 + 16i + (1 + 9i)β)t + ( 11 + 4i (4 7i)β)u) 4i(t u ) + s ((18 + 35i (5 + 4i)β)t + ( 4 + 9i + (5 + 14i)β)tu + ( 10 5i (5 8i)β)u ) + s ((3 + 18i)t 3 + (7 + 50i)t u (7 6i)tu (3 + 10i)u 3 β (t u)( s t + 11it + s u + 18itu + 3iu )))u 1 + 8C 0 (s)st 1 (i(s 4 s 3 s + s (t u) + 4ss (t u) + β s (t u)(s + ss 3t 10tu 3u ) 4(t u ) ) (t u)( (s s ) + s (t u) s(t + u )) + β s (s 3 s s s (t u) + s (3t tu + 3u )))u 1 + 8C 3 (s)s t 1 ((t u)(s 6ss + t + 6tu + u ) + i(s 3 4s s 4s 3 + 7st + 10stu + 7su ) β (s 3 s (t u)(4im W + t u) + s (5t tu + 5u )))u 1 + C 1(t)(β s (7s 5 6s (t u) 4 + s 4 (6t + 34u) + s (t u) (3t + 10tu + 31u ) + s 3 (33t tu + 33u ) + 4s (5t 3 + t u 11tu + 16u 3 )) + 4it 1 ((3 + β)s 4 + s 3 ((16 + 9β)t + (4 + 7β)u) 4(t u ) + s ((35 4β)t + (9 + 14β)tu + ( 5 + 8β)u ) + s ((18 11β)t 3 + (50 7β)t u + 3( + 5β)tu + ( 10 + 3β)u 3 )) + s (4s 5 + s 4 ( 5t + 1u) 4s 3 (10t + t u 11u ) (t u) 3 (1t + tu + 5u ) + s ( 6t 3 54t u + 14tu + 46u 3 ) + s ( 60t 4 + 60t 3 u 44t u + 0tu 3 + 4u 4 )))u 1 + D 1 (s,t)st 1 ((3 + i(3 + β))s 5 + s 3 ((4 + i(11 3β))t + (11 + 4i(6 + β))tu + (13 + 13i)u + β (t 1 + 7iu )) (t u) (β s (4t 1 + is (t u)) + (3t + u)(t u + is (3t + u))) + s 4 (4t + 7u + i( 7s + β (t + 3u))) + s ((11 + 4i(1 + β))t 3 (1 + 4i( 3 + β))t u + t ((11 + 3i)u 4β (t 1 iu )) + 4((3 + 3i)u 3 + β u(t 1 + iu ))) + s (( 3 + i(15 + 13β))t 4 + (3 + 4i( 4 + β))t 3 u + (10 + 40i)tu 3 + (11 + 11i)u 4 + β (0t 1 u + 9iu 4 ) + 6t (( 4 + 5i)u + β (t 1 5iu ))))u 1 + 8C 1 1 (s)st 1 ( β s (s ss (t u) ) 4s (s s )(t u) + i( (β s (t u)(3s 16

10ss + 7t + 18tu + 7u )) + (s s )(s 3 4s s + s (t u) + s (t + 14tu + u ))))u 1 + 8C 1 (s)st 1 (β s (s ss (t u) ) + 4s (s s )(t u) + i( (β s (t u)(3s 10ss + 7t + 18tu + 7u )) + (s s )(s 3 4s s + s (t u) + s (t + 14tu + u ))))u 1 + 4C (u)t 1 ( (( 4 3i + (1 + i)β)s 4 ) + s 3 ((11 + 4i (4 + 7i)β)t + (5 + 16i + (1 9i)β)u) 4i(t u ) + s ( (( 10 + 5i + (5 + 8i)β)t ) + (4 + 9i + (5 14i)β)tu + ( 18 + 35i (5 4i)β)u ) + s ((3 10i)t 3 + (7 + 6i)t u (7 50i)tu (3 18i)u 3 β (t u)( s t + 3it + s u + 18itu + 11iu )))u 1 + C 1(u)t 1 (β s (7s 5 6s (t u) 4 + s 4 (34t + 6u) + s (t u) (31t + 10tu + 3u ) + s 3 (33t tu + 33u ) + 4s (16t 3 11t u + tu + 5u 3 )) s (4s 5 + s 4 (1t 5u) + s 3 (44t 4tu 40u ) + (t u) 3 (5t + tu + 1u ) + s (3t 3 + 7t u 7tu 3u 3 ) + 4s(6t 4 + 5t 3 u 11t u + 15tu 3 15u 4 )) + 4i((3 β)s 4 + s 3 ((4 7β)t + (16 9β)u) 4(t u ) + s ( ((5 + 8β)t ) + (18 8β)tu + (35 + 4β)u ) + s ( ((10 + 3β)t 3 ) + 3( 5β)t u + (50 + 7β)tu + (18 + 11β)u 3 ))u 1 ) + D 1 (s,u)st 1 u 1 ( ((3 + i( 3 + β))s 5 ) s 4 (7t + 4u + i(7s + β (3t + u))) s 3 ((13 + i( 13 + 7β))t + (11 + 4i( 6 + β))tu + (4 11i 3iβ)u β u 1 ) (t u) ((t + 3u)(t u + is (t + 3u)) + β s (is (t u) + 4u 1 )) s (4(3 + i( 3 + β))t 3 + (11 + 4i( 8 + β))t u + (11 + 4i( 1 + β))u 3 + 4β uu 1 t((1 + 4i(3 + β))u + 4β u 1 )) + s (( 11 + i(11 9β))t 4 (10 40i)t 3 u (3 + 4i(4 + β))tu 3 + (3 + 15i 13iβ)u 4 + 1β u u 1 + t (6(4 + 5i(1 + β))u + 0β u 1 )))) + m 1 6 16β Y (18C 0(s)s(β s + t u) 18C 3 (s)s(β s + t u) + 3D (t,u)(β s (s ss + (t u)(im W + t u)) + (s ss + (t u) )(t u) + is(s s t 6tu u )) + 3D 3 (s,t)s((s + 4t)t 1 + β s (5t + t ) + i(s s + β M W t t β M W u 6tu u )) + 3D 1 (s,u)(( 1 + 3β)s 3 + (t u) 3 + s (is + 5β t 4u β u) + s (( i)t + β (t u)(im W + t u) (4 + 6i)tu + ( i)u )) + D 1 (s,t)(3β s (3s s (t 5u) + (t u) ) + 3(s 3 + 4s t s(t u) + (t u) 3 ) + i(64β M W s (t u) 3s( (s s ) + t + 6tu + u ))) + 3D 3 (s,u)s(i(s s + β M W t t β M W u 6tu u ) (s + 4u)u 1 + β s (5u + u ))) M + + M + + = m 1 8 s β s 4 Y (D 1(s,u) + D 1 (s,t) + D 3 (s,t) + D 3 (s,u) + D (t,u))(β (s ss (t u) ) + s 4 ( t + u)) 17

+ m 1 6 β s 4 Y (4C 3(s)s(β ( s + ss + (t u) ) + s 4 (t u)) + 4C 0 (s)s(β (s ss (t u) ) + s 4 ( t + u)) 4D (t,u)(β (3s (t u) s(3s + it iu)) s 4 (is + t u))y + D 3 (s,u)s( (s 4 (s ss + t + 6tu 7u )) β (s (t 5u) + (t u) (t + 3u) + s(t 4tu 5u )) + i(s 4 + β (t u))y ) + D 3 (s,t)s(s 4 (s ss 7t + 6tu + u ) + β (s (5t u) (t u) (3t + u) + s(5t + 4tu u )) + i(s 4 + β (t u))y ) + D 1 (s,u)(s 4 (s 3 3s(t u) (t u) 3 + 4s u) + β (3s 4 (t u) 4 + s 3 (7t + u) + s(t u) (3t + 5u) + s (18t + 4tu 6u )) + 4is(s 4 + β (t u))y ) + D 1 (s,t)( s 4 (s 3 + 4s t 3s(t u) + (t u) 3 ) + β (3s 4 (t u) 4 + s(t u) (5t + 3u) + s 3 (t + 7u) + s ( 6t + 4tu + 18u )) + 4is(s 4 + β (t u))y )) + m 1 4 4β s s 4 Y (8C1 1(s)ss 4 ( β s (s ss (t u) ) + ( 5s + 10ss + (t u) )(t u)) + 8C 1 (s)ss 4 ( β s (s ss (t u) ) + ( 5s + 10ss + (t u) )(t u)) + 8C 1 (t)t 1 ( s 4 t 1 (s (t u) + s (7t + u)) β s (s 3 + (t u) (3t + u) + s ( 4t + 6u) + s ( 11t 6tu + 9u ))) + 8C (t)t 1 ( s 4 t 1 (s (t u) + s (7t + u)) β s (s 3 + (t u) (3t + u) + s ( 4t + 6u) + s ( 11t 6tu + 9u ))) + 8C 1(u)u 1 ( (β s (s 3 + s (6t 4u) + (t u) (t + 3u) + s (9t 6tu 11u ))) + s 4 (s (t u) + s (t + 7u))u 1 ) + 8C (u)u 1 ( (β s (s 3 + s (6t 4u) + (t u) (t + 3u) + s (9t 6tu 11u ))) + s 4 (s (t u) + s (t + 7u))u 1 ) 8C 3 (s)s (β (3s s 6ss (t u)(3s t 3s u + 4iY )) s 4 (3s (t u) + iy )) 3D (t,u)(β s (s 3s it + iu) + s 4 ( is t + u))y + 3D 3 (s,t)s (16s 4 t t 1 (3t t ) + β (s 4 4s 3 s + 6s ( 3t + tu + u ) + ( 3t + tu + u ) + 4s( 11t 3 9t u + 3tu + u 3 )) 8i(s 4 t + β t 1 (3t t ))Y ) + 8C 0 (s)s(s 4 (s + s s + (t u) )(t u) β s (s 3 5s s 7s (t u) + 4s(t + u )) 4is(s 4 + β (t u))y ) + D 1 (s,u)s( (β (s 5 + 16s 4 (t u) 1s (t u) 4 + s (t u) (49t + 6tu 39u ) + s 3 (54t 5tu u ) + 4s (19t 3 3t u + 5tu + 15u 3 ))) + 16s 4 (s + (t u) + s (t u))u 1 (3u u ) + 4i( 4s 4 (s + (t u) + s (t u)) + β (3s 3 (t u) 3 + 4s (t + u) s (t 6tu + 5u )))Y ) + 3D 3 (s,u)s (β (s 4 4s 3 s + 6s (t + tu 3u ) + (t + tu 3u ) + 4s(t 3 + 3t u 9tu 11u 3 )) 16s 4 uu 1 (3u u ) 8i(s 4 u + β u 1 ( 3u + u ))Y ) + D 1 (s,t)s( 16s 4 (s s (t u) + (t u) )(3tt 1 t 1 t + iy ) 18

β (s 5 16s 4 (t u) 4(t u) 3 (3s (t u) iy ) s 3 (t + 6tu 7u 6iY ) s (t u)(39t 3 45t u 43tu + 49u 3 + 0itY 4iuY ) + 4s (15t 3 + 5t u 3tu + 19u 3 + 8itY + 4iuY )))) 1 + 8β s 4 t 1 u 1 Y (8B 1(MW)M W ( s 4 (t u)(s 4 s 3 s + s s 3ss (t u) + (t u) (t + u )) β ( 3s 5 s + 3s (t u) 4 4s (t u) (t + u ) + s 4 (9t + 10tu + 9u ) + 4s 3 (t 3 + t u + t u + u 3 ) + s (t u) (t 3 + 7t u + 7tu + u 3 )))Y + 4B 1 (u)t 1 ( (s 4 (s 4 + t 4 + 4t 3 u 18t u 1tu 3 + 5u 4 + 4s 3 (t + u) + s (6t + 0tu + 6u ) + 4s(t 3 + 4t u 3tu u 3 ))) + β (s 4 (t + 5u) + 4s 3 (t + 7tu + 6u ) + s (3t 3 + 5t u + 37tu + 7u 3 ) + (t u) (t 3 + 11t u + 3tu + 13u 3 ) + 4s(t 4 + 9t 3 u + 13t u t u 3 6u 4 )))Y + 4B 1 (t)(s 4 (s 4 + 5t 4 1t 3 u 18t u + 4tu 3 + u 4 + 4s 3 (t + u) + s (6t + 0tu + 6u ) 4s(t 3 + 3t u 4tu u 3 )) + β (s 4 (5t + u) + 4s 3 (6t + 7tu + u ) + (t u) (13t 3 + 3t u + 11tu + u 3 ) + s (7t 3 + 37t u + 5tu + 3u 3 ) + 4s( 6t 4 t 3 u + 13t u + 9tu 3 + u 4 )))u 1 Y + 16B 0 (s)t 1 u 1 (β s ( 3s + 6ss + (t u) ) + 4s 4 (s (t u) iy ))Y + 16B (s)t 1 u 1 (β s ( 3s + 6ss + (t u) ) + 4s 4 (s (t u) + iy ))Y + 18M W s 4 t 1 (t u)u 1 Y + 18β s t 1 u 1 Y 3 + C 1 (s)s 4 t 1 u 1 (β s (s 4 4s 3 s s (t u) + (t u) (9t + 14tu + 9u ) 4s(3t 3 + 5t u + 5tu + 3u 3 )) + (t u)(s 4 4s 3 s + (t u ) s (t + u ) 4s(3t 3 + 7t u + 7tu + 3u 3 )) + 4is ( 3s + 6ss + 4β s (t u) + (t u) )Y ) + C 3 (s)st 1 u 1 (8s s 4 (t u)( s + ss + t + u ) + β s (3s 4 1s 3 s + s (t + 18tu + u ) + (t u) (3t + tu + 3u ) 4s(5t 3 t u t u + 5u 3 )) + 4i( β (s ss s )(t u) s 4 (s ss 3t tu 3u ))Y ) + C 0 (s)st 1 u 1 (8s s 4 (t u)( s + ss + t + u ) + β s (3s 4 1s 3 s + s (t + 18tu + u ) + (t u) (3t + tu + 3u ) 4s(5t 3 t u t u + 5u 3 )) + 4i(β (s ss s )(t u) + s 4 (s ss 3t tu 3u ))Y ) + C 1 1(s)s 4 t 1 u 1 (β s (s 4 4s 3 s s (t u) + (t u) (9t + 14tu + 9u ) 4s(3t 3 + 5t u + 5tu + 3u 3 )) + (t u)(s 4 4s 3 s + (t u ) s (t + u ) 4s(3t 3 + 7t u + 7tu + 3u 3 )) + 4is (3s (t u) + s ( 6s + 4β ( t + u)))y ) + C (t)t 1 3 u 1 ( (s 4 (s 4 + β (5t + u))) + 4s 3 (s s 4 β (5t + 6tu + u )) β (t u )(5t 3 3t u u(u + 4iY ) t (u + 1iY )) + s (s 4 (5t tu 3u iy ) + β (t 3 1t u 17tu 3u 3 10itY iuy )) + 4s(s 4 (7t 3 + 9t u + t u u 3 + is Y ) β s (11t 3 + t u 3tu u 3 10itY iuy )) s 4 (17t 4 4t 3 u + u 4 t (5u + 14iY ) + 4iu Y 4t(u 3 + iuy ))) + D 1 (s,t)stt 1 u 1 (s 4 (s 4 + β (5t + u)) + 4s 3 ( (s s 4 ) + β (5t + 6tu + u )) 19

+ β (t u )(5t 3 3t u t u u 3 + 1itY + 4iuY ) + s 4 (17t 4 4t 3 u + u 4 + t ( 10u + 8iY ) 4iu Y 4t(u 3 iuy )) s (s 4 (5t tu 3u + iy ) + β (t 3 1t u 17tu 3u 3 + 10itY + iuy )) 4s(s 4 (7t 3 + 9t u + t u u 3 is Y ) β s (11t 3 + t u 3tu u 3 + 10itY + iuy ))) + C 1 (t)t 1 3 u 1 ( (s 4 (s 4 + β (5t + u))) + 4s 3 (s s 4 β (5t + 6tu + u )) β (t u )(5t 3 3t u t u u 3 + 1itY + 4iuY ) s 4 (17t 4 4t 3 u + u 4 + t ( 10u + 8iY ) 4iu Y 4t(u 3 iuy )) + s (s 4 (5t tu 3u + iy ) + β (t 3 1t u 17tu 3u 3 + 10itY + iuy )) + 4s(s 4 (7t 3 + 9t u + t u u 3 is Y ) β s (11t 3 + t u 3tu u 3 + 10itY + iuy ))) + D 3 (s,t)stt 1 u 1 (s 4 (s 4 + β (5t + u)) + 4s 3 ( (s s 4 ) + β (5t + 6tu + u )) + β (t u )(5t 3 3t u u(u + 4iY ) t (u + 1iY )) 4s(s 4 (7t 3 + 9t u + t u u 3 + is Y ) β s (11t 3 + t u 3tu u 3 10itY iuy )) + s 4 (17t 4 4t 3 u + u 4 t (5u + 14iY ) + 4iu Y 4t(u 3 + iuy )) + s (s 4 ( 10t + 4tu + 6u + 4iY ) + β ( t 3 + 1t u + 17tu + 3u 3 + 10itY + iuy ))) + C 1 (u)t 1 u 1 3 (s 4 (s 4 β (t + 5u)) 4s 3 (s s 4 + β (t + 6tu + 5u )) β (t u )(t 3 + t u + 3tu 5u 3 + 4itY + 1iuY ) + s 4 (t 4 4t 3 u + 17u 4 + t ( 10u + 4iY ) 8iu Y 4t(u 3 + iuy )) + 4s(s 4 (t 3 t u 9tu 7u 3 is Y ) + β s (t 3 + 3t u t u 11u 3 + ity + 10iuY )) + s (s 4 (3t + tu 5u + iy ) β (3t 3 + 17t u + 1tu u 3 + ity + 10iuY ))) + D 1 (s,u)st 1 uu 1 (s 4 ( s 4 + β (t + 5u)) + 4s 3 (s s 4 + β (t + 6tu + 5u )) + β (t u )(t 3 + t u + 3tu 5u 3 + 4itY + 1iuY ) + s 4 ( t 4 + 4t 3 u 17u 4 + t (5u iy ) + 8iu Y + 4t(u 3 + iuy )) + 4s(s 4 ( t 3 + t u + 9tu + 7u 3 + is Y ) β s (t 3 + 3t u t u 11u 3 + ity + 10iuY )) + s ( s 4 (3t + tu 5u + iy ) + β (3t 3 + 17t u + 1tu u 3 + ity + 10iuY ))) + D 3 (s,u)st 1 uu 1 (s 4 ( s 4 + β (t + 5u)) + 4s 3 (s s 4 + β (t + 6tu + 5u )) + β (t u )(t 3 + t u + 3tu 5u 3 4itY 1iuY ) s 4 (t 4 4t 3 u + 17u 4 t (5u + iy ) + 8iu Y 4t(u 3 iuy )) 4s(s 4 (t 3 t u 9tu 7u 3 + is Y ) + β s (t 3 + 3t u 11u 3 t (u + iy ) 10iuY )) s (s 4 (3t + tu 5u iy ) + β ( 3t 3 17t u 1tu + u 3 + ity + 10iuY ))) + C (u)t 1 u 1 3 (s 4 (s 4 β (t + 5u)) 4s 3 (s s 4 + β (t + 6tu + 5u )) β (t u )(t 3 + t u + 3tu 5u 3 4itY 1iuY ) + s 4 (t 4 4t 3 u + 17u 4 t (5u + iy ) + 8iu Y 4t(u 3 iuy )) + 4s(s 4 (t 3 t u 9tu 7u 3 + is Y ) + β s (t 3 + 3t u 11u 3 t (u + iy ) 10iuY )) + s (s 4 (3t + tu 5u iy ) + β ( 3t 3 17t u 1tu + u 3 + ity + 10iuY ))) + m 1 8β s s 4 t 1 u 1 Y (3B (s)st 1 (β ( 3s + 6ss + (t u) ) + 4s 4 (t u))u 1 Y 0

+ 3B 0 (s)st 1 (β (3s 6ss (t u) ) + 4s 4 ( t + u))u 1 Y + 64D (t,u)(β s + is 4 )t 1 u 1 Y 3 + 4C 3 (s)s t 1 u 1 ( 8s 4 (t u)(s ss (t + t u + u )) + β (3s 4 1s 3 s s (t 14tu + u ) + (t u) (7t + 10tu + 7u ) 4s(7t 3 + 5t u + 5tu + 7u 3 )) + 16is (s 4 + β (t u))y ) + 4C 0 (s)st 1 u 1 (4s 4 (t u)(s 3 5s s s (t u) s(t + u )) β s (3s 4 16s 3 s + s (7t + 30tu + 7u ) + (t u) (15t + 6tu + 15u ) 8s(t 3 3t u 3tu + u 3 )) + 8i(s 4 (s + (t u) ) + β s s (t u))y ) + 16C(s)ss 1 4 t 1 u 1 ( β s s (s ss (t u) ) + s ( 5s + 10ss + (t u) )(t u) + i( 3s + 6ss + 4β s (t u) + (t u) )Y ) + 16C1(s)ss 1 4 t 1 u 1 (β s (s 3 s s + s (t u) 6s (t u) ) + (t u)(s 3 + s s 3s (t u) s (5t + 14tu + 5u )) + i( 3s + 6ss + 4β s (t u) + (t u) )Y ) + 4C (u)t 1 u 1 (16ss 4 u(s ss + t + t u u ) + β (3s 5 13s 4 s s (t u) 4 + s 3 (t + 36tu 18u ) + s (t u) (7t + 18tu + 15u ) + s (18t 3 + 30t u 50tu 6u 3 )) + 4i(s 4 (s + s(t 3u) + (t u) ) + β s ( 3s + 6ss 3t tu + 5u ))Y ) + 4C (t)t 1 u 1 ( 16ss 4 t (s ss t + t u + u ) + β (3s 5 13s 4 s s (t u) 4 + s (t u) (15t + 18tu + 7u ) + s 3 ( 18t + 36tu + u ) + s ( 6t 3 50t u + 30tu + 18u 3 )) + 4i(β s (3s 6ss 5t + tu + 3u ) + s 4 (s + (t u) + s ( 6t + u)))y ) + C1(t)u 1 ( 4ss 4 (s 5 s 4 (t 5u) + (t u) 3 (15t + 6tu u ) + s 3 (t 6tu + 5u ) + s (13t 3 3t u 15tu + 5u 3 ) + s ( 11t 4 + 36t 3 u t u 8tu 3 + 5u 4 )) β (5s 7 + s (t u) 6 + s 6 (9t + 33u) + s (t u) 4 (3t + 30tu + 3u ) + s 5 (13t + 146tu + 89u ) s (t u) (81t 3 1t u 153tu 35u 3 ) + s 4 (1t 3 9t u + 67tu + 15u 3 ) + s 3 (119t 4 + 44t 3 u t u + 0tu 3 + 95u 4 )) + 16it 1 (β s (3s 6ss 5t + tu + 3u ) + s 4 (s + (t u) + s ( 6t + u)))y ) + D 3 (s,t)s t 1 u 1 ( (s 4 (s 4 4s 3 s + (3t + u) (9t 10tu + u ) + s ( 4t + 4tu + 6u ) 4s(3t 3 + 5t u + t u u 3 ))) β ((t u) (3t + u) 3 + s 4 (11t + u) + 4s 3 (11t + 1tu + u ) + s ( 46t 3 + 98t u + 70tu + 6u 3 ) + 4s( 45t 4 4t 3 u + 1t u + 10tu 3 + u 4 )) + 4i( (s 4 (s ss 3t tu + u )) β ( 13t 3 + 3t u + 9tu + u 3 + s (11t + u) + s(11t + 1tu + u )))Y ) + D 3 (s,u)s t 1 u 1 (s 4 (s 4 4s 3 s + s (6t + 4tu 4u ) + (t + 3u) (t 10tu + 9u ) + 4s(t 3 t u 5tu 3u 3 )) β ((t u) (t + 3u) 3 + s 4 (t + 11u) + 4s 3 (t + 1tu + 11u ) + s (3t 3 + 35t u + 49tu 3u 3 ) + 4s(t 4 + 10t 3 u + 1t u 4tu 3 45u 4 )) + 4i( (s 4 (s ss + t tu 3u )) + β (t 3 + 9t u + 3tu 13u 3 + s (t + 11u) + s(t + 1tu + 11u )))Y ) + D 1 (s,t)st 1 u 1 (s 4 (s 5 + 6s 4 (3t + u) (t u) 3 (3t + u) + s 3 (7t + 34tu + 7u ) + s (t u) (73t + 6tu + 9u ) + s ( 40t 3 + 88tu + 16u 3 )) β (4s 6 + s (t u) 4 + s 5 (13t + 3u) 18s 4 (t tu 3u ) s 3 (5t 3 + 69t u 9tu 33u 3 ) 1

s (t u) (75t 3 + 75t u 7tu 15u 3 ) + 4s (17t 4 t 3 u 5t u 6tu 3 + 11u 4 )) + 4i( (s 4 (s 3 + 4s (t + u) + (t u) (3t + u) + s ( 11t + 14tu + 5u ))) + β (4s 4 + s (t u) 3 + 5s 3 (t + 3u) 4s (t 5u ) + s (17t 3 15t u 13tu + 11u 3 )))Y ) + C1 (u)t 1 (4ss 4 (s 5 + s 4 (5t u) + (t u) 3 (t 6tu 15u ) + s 3 (5t 6tu + u ) + s (5t 3 15t u 3tu + 13u 3 ) + s (5t 4 8t 3 u t u + 36tu 3 11u 4 )) β (5s 7 + s (t u) 6 + s 6 (33t + 9u) + s 5 (89t + 146tu + 13u ) + s (t u) 4 (3t + 30tu + 3u ) + s (t u) (35t 3 + 153t u + 1tu 81u 3 ) + s 4 (15t 3 + 67t u 9tu + 1u 3 ) + s 3 (95t 4 + 0t 3 u t u + 44tu 3 + 119u 4 )) + 16i(s 4 (s + s(t 3u) + (t u) ) + β s ( 3s + 6ss 3t tu + 5u ))u 1 Y ) + D 1 (s,u)st 1 u 1 ( (s 4 (s 5 + 6s 4 (t + 3u) + s 3 (7t + 34tu + 7u + iy ) + (t u) (t + 3u)(t + tu 3u + 4iY ) + 8s (t 3 + 11t u 5u 3 + ity + 4iuY ) + s (9t 4 + 44t 3 u 4t u 84tu 3 + 73u 4 + 0it Y + 56ituY 44iu Y ))) β (4s 6 + s 5 (3t + 13u) + s (t u) 3 (s (t u) 4iY ) + s 4 (54t + 36tu 18u + 16iY ) + s 3 (33t 3 + 9t u 69tu 5u 3 + 30itY + 10iuY ) + 4s (11t 4 6t 3 u tu 3 + 17u 4 + t ( 5u + 0iY ) 4iu Y ) + s (t u)(15t 4 8t 3 u + 75u 4 + t ( 8u + 44iY ) 8ituY 68iu Y )))) M + 00 M + 00 = 4(D 1(s,u) + D 1 (s,t) + D 3 (s,t) + D 3 (s,u) + D (t,u))m 8 1 s M W s 4 Y m 1 6 s M W s 4 Y (4C 0(s)s 4C 3 (s)s + 3D 1 (s,u)s + 3D 1 (s,t)s D 3 (s,t)s D 3 (s,u)s + D (t,u)s D 3 (s,t)s D 3 (s,u)s + (3 + i)d 1 (s,u)st (1 i)d 1 (s,t)st + (1 + i)d 3 (s,t)st (3 i)d 3 (s,u)st + id (t,u)st D 1 (s,u)t D 1 (s,t)t 3D (t,u)t (1 + i)d 1 (s,u)su + (3 i)d 1 (s,t)su (3 + i)d 3 (s,t)su + (1 i)d 3 (s,u)su id (t,u)su 6D 1 (s,u)tu 6D 1 (s,t)tu 10D (t,u)tu D 1 (s,u)u D 1 (s,t)u 3D (t,u)u ) + m 1 4 M W s 4 Y ( 16C 1 (t)st 1 t 16C (t)st 1 t + 8C 0 (s)s(8m W s 1 + is(t u)) 4C 1 1 (s)s(s ss (t u) ) 4C 1 (s)s(s ss (t u) ) + D 3 (s,u)s((1 + i)s 3 4s ((1 + i)t + (5 i)u) s ((1 + i)t + (9 3i)u) + s (( 7 7i)t (4 6i)tu (3 i)u )) + D 3 (s,t)s((1 i)s 3 4s ((5 + i)t + (1 i)u) s ((9 + 3i)t + (1 i)u) s ((3 + i)t + (4 + 6i)tu + (7 7i)u )) + D 1 (s,t)((7 + i)s 4 + 4s 3 (it + (4 i)u) 4(t u ) + s ((7 + 5i)t ( 6i)tu + (7 11i)u ) + s((5 + 3i)t 3 (5 + i)t u (13 i)tu (3 + 3i)u 3 )) + D 1 (s,u)((7 i)s 4 + 4s 3 ((4 + i)t iu) 4(t u ) + s ((7 + 11i)t

( + 6i)tu + (7 5i)u ) + s(( 3 + 3i)t 3 (13 + i)t u (5 i)tu + (5 3i)u 3 )) + 8C 3 (s)s(s + s + s ( s + i( t + u))) 16C 1 (u)su 1 u 16C (u)su 1 u + 8D (t,u)(4s + s ( 3s + i( t + u)))y ) + M W s 4 t 1 u 1 Y (C1 1(s)t 1 (s ( s + ss + (t u) ) + iss 4 (t u))u 1 D 1 (s,t)stt 1 (s ss + 5t 6itt 1 + it 1 t + tu + u )u 1 + C 1 (t)t 1 3 (s ss + 5t 6itt 1 + it 1 t + tu + u )u 1 + C 0 (s)st 1 (s ss + 3t + is (t u) + tu + 3u )u 1 + C 3 (s)st 1 (s ss + 3t + tu + 3u + is ( t + u))u 1 D 3 (s,t)stt 1 (s ss + 5t it 1 t + u + t(3it 1 + u))u 1 + C (t)t 1 3 (s ss + 5t it 1 t + u + t(3it 1 + u))u 1 + C 1 (s)t 1 ( (s s ) + s (t u) + s(s + is 4 ( t + u)))u 1 D 1 (s,u)st 1 uu 1 (s ss + t + tu + 5u + 6iuu 1 iu 1 u ) + C 1(u)t 1 u 1 3 (s ss + t + tu + 5u + 6iuu 1 iu 1 u ) D 3 (s,u)st 1 uu 1 (s ss + t + tu + 5u 6iuu 1 + iu 1 u ) + C (u)t 1 u 1 3 (s ss + t + tu + 5u 6iuu 1 + iu 1 u ) 4B 1 (u)t 1 (s ss + t + tu + 5u )Y + B 1 (M W )(s4 s 3 s 6ss (t u) + 4s (t + u ) + (t u) (3t + tu + 3u ))Y 4B 1 (t)(s ss + 5t + tu + u )u 1 Y 3t 1 u 1 Y ) + m 1 4M W s s 4 t 1 u 1 Y (4C1 1 (s)st 1 ((s s s s )(s ss (t u) ) is s 4 (t u))u 1 + 4C 1 (s)st 1 ( ((s 3ss + s )(s ss (t u) )) is s 4 (t u))u 1 + 4C 0 (s)s t 1 ( 3s 3 + s s i(s 3ss + s )(t u) + 4s (t u) s (t 10tu + u ))u 1 + 4C 3 (s)s t 1 (s 3 + 6s s + 8s 3 i(s 3ss + s )(t u) s (13t + 30tu + 13u ))u 1 + D 1 (s,t)st 1 (( 1 i)s 5 + s 4 ((1 5i)t ( + i)u) s (s + i(t u))(t u) s 3 (( + i)t (5 7i)tu (1 + i)u ) s ((1 + 3i)t 3 + ( + 6i)t u (19 15i)tu (8 + 8i)u 3 ) + s s (( 11 + i)t 3 + (7 9i)t u (5 15i)tu (7 + 7i)u 3 ))u 1 + 4C (t)t 1 ((1 i)s 4 s 3 ((4 + 3i)t iu) + (t u ) s ((13 + 5i)t + (18 + i)tu + (1 7i)u ) s(3t 3 + is (t u) + 9t u + 5tu u 3 ))u 1 + D 1 (s,u)st 1 (( 1 + i)s 5 s (s + i(t u))(t u) + s 4 (( + i)t + (1 + 5i)u) + s 3 ((1 i)t + (5 + 7i)tu ( i)u ) + s s (( 7 + 7i)t 3 (5 + 15i)t u + (7 + 9i)tu (11 + i)u 3 ) + s ((8 8i)t 3 + (19 + 15i)t u 3