Foundations of Cryptography

Similar documents
MATRICES AND MATRIX OPERATIONS

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices

Matrices and Linear Algebra

Linear Algebra and Matrix Inversion

Math 4377/6308 Advanced Linear Algebra

Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat

ICS 6N Computational Linear Algebra Matrix Algebra

CS 246 Review of Linear Algebra 01/17/19

Introduction. Vectors and Matrices. Vectors [1] Vectors [2]

Linear Systems and Matrices

Matrix Algebra 2.1 MATRIX OPERATIONS Pearson Education, Inc.

Elementary maths for GMT

[ Here 21 is the dot product of (3, 1, 2, 5) with (2, 3, 1, 2), and 31 is the dot product of

Graduate Mathematical Economics Lecture 1

Undergraduate Mathematical Economics Lecture 1

Section 9.2: Matrices.. a m1 a m2 a mn

MATH2210 Notebook 2 Spring 2018

Matrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices

Jim Lambers MAT 610 Summer Session Lecture 1 Notes

Phys 201. Matrices and Determinants

Math Bootcamp An p-dimensional vector is p numbers put together. Written as. x 1 x =. x p

Kevin James. MTHSC 3110 Section 2.1 Matrix Operations

Chapter 4 - MATRIX ALGEBRA. ... a 2j... a 2n. a i1 a i2... a ij... a in

n n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full

. a m1 a mn. a 1 a 2 a = a n

Math 240 Calculus III

Introduction to Matrix Algebra

Section 9.2: Matrices. Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns.

Chapter 2:Determinants. Section 2.1: Determinants by cofactor expansion

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations

Linear Algebra V = T = ( 4 3 ).

CLASS 12 ALGEBRA OF MATRICES

Matrix representation of a linear map

Prepared by: M. S. KumarSwamy, TGT(Maths) Page

Matrices BUSINESS MATHEMATICS

Matrices. In this chapter: matrices, determinants. inverse matrix

Matrices. Chapter Definitions and Notations

Math Linear Algebra Final Exam Review Sheet

Matrices. Math 240 Calculus III. Wednesday, July 10, Summer 2013, Session II. Matrices. Math 240. Definitions and Notation.

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections )

Matrix representation of a linear map

Matrix Arithmetic. j=1

Chapter 4. Determinants

MATH 1210 Assignment 4 Solutions 16R-T1

Matrix operations Linear Algebra with Computer Science Application

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same.

Linear Equations in Linear Algebra

Matrix Algebra. Matrix Algebra. Chapter 8 - S&B

Elementary Row Operations on Matrices

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS

Linear Algebra: Lecture notes from Kolman and Hill 9th edition.

Mathematics 13: Lecture 10

Lecture Notes in Linear Algebra

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product.

Linear Algebra. Linear Equations and Matrices. Copyright 2005, W.R. Winfrey

Announcements Monday, October 02

Announcements Wednesday, October 10

Matrix Multiplication

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions

Graphics (INFOGR), , Block IV, lecture 8 Deb Panja. Today: Matrices. Welcome

Stage-structured Populations

Matrix Arithmetic. a 11 a. A + B = + a m1 a mn. + b. a 11 + b 11 a 1n + b 1n = a m1. b m1 b mn. and scalar multiplication for matrices via.

Linear Equations and Matrix

William Stallings Copyright 2010

2.1 Matrices. 3 5 Solve for the variables in the following matrix equation.

Linear Algebra M1 - FIB. Contents: 5. Matrices, systems of linear equations and determinants 6. Vector space 7. Linear maps 8.

Lecture 3: Matrix and Matrix Operations

Linear Algebra Tutorial for Math3315/CSE3365 Daniel R. Reynolds

Lecture 3 Linear Algebra Background

CS100: DISCRETE STRUCTURES. Lecture 3 Matrices Ch 3 Pages:

II. Determinant Functions

Finite Mathematics Chapter 2. where a, b, c, d, h, and k are real numbers and neither a and b nor c and d are both zero.

Computational Foundations of Cognitive Science. Definition of the Inverse. Definition of the Inverse. Definition Computation Properties

Fundamentals of Engineering Analysis (650163)

Vectors and matrices: matrices (Version 2) This is a very brief summary of my lecture notes.

CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1. Prof. N. Harnew University of Oxford TT 2013

Matrices: 2.1 Operations with Matrices

Introduction to Matrices and Linear Systems Ch. 3

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij

1 Matrices and Systems of Linear Equations. a 1n a 2n

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i )

TOPIC III LINEAR ALGEBRA

Fall Inverse of a matrix. Institute: UC San Diego. Authors: Alexander Knop

Determinants Chapter 3 of Lay

Math 320, spring 2011 before the first midterm

I = i 0,

The determinant. Motivation: area of parallelograms, volume of parallepipeds. Two vectors in R 2 : oriented area of a parallelogram

Matrices A brief introduction

Chapter 2 Notes, Linear Algebra 5e Lay

Chapter 1 Matrices and Systems of Equations

MAT 2037 LINEAR ALGEBRA I web:

Matrix & Linear Algebra

Chapter 2: Matrices and Linear Systems

Knowledge Discovery and Data Mining 1 (VO) ( )

INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRICES

Review of Linear Algebra

Kevin James. MTHSC 3110 Section 2.2 Inverses of Matrices

Transcription:

Foundations of Cryptography Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Department of Mathematics and Statistics University of Turku 2017 Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 1 of 26

Matrices Definition Matrix A is an entity A = A 11 A 12... A 1n A 21 A 22... A 2n...... A m1 A m2... A mn. Type m n: m rows, n columns. A ij : elements of matrix A ij R: real matrix A ij C: complex matrix Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 2 of 26

Matrices Definition 1 n-matrix A = (A 11 A 12... A 1n ) is called horizontal vector or row vector. A 11 A 21 m 1-matrix A = is called vertical vector or. column vector. A m1 Remark Both horizontal and vertical vectors can be interpreted as elements in space R n (or C n ). Usually indexes used in such cases are simple. Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 3 of 26

Matrices Definition Zero matrix O is matrix with all elements as zero. Square matrix is a matrix having the same number of rows and columns. Diagonal matrix is a square matrix D such that i j D ij = 0. Identity matrix I n is a diagonal matrix where all diagonal elements as ones. Definition Transpose (A T ) ij = A ji. A square matrix A is symmetric if A T = A. Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 4 of 26

Matrices Scalar product If A is a m n-matrix and c is complex or real number, then ca is m n-matrix where (ca) ij = ca ij (elementwise product). Sum of matrices If A is a m n-matrix and B a r s-matrix, sum A+B is defined only if m = r and n = s. Then (A+B) ij = A ij +B ij Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 5 of 26

Matrices Product of matrices If A is a m n-matrix and B a r s-matrix, sum A+B is defined only if n = r. Then product is a m s-matrix AB having (AB) ij = s A ik B kj. k=1 Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 6 of 26

Matrices Example = = ( 2 1 1 1 2 3 ( ) 1 0 0 2 1 1 1 2 2 2 1+1 2+1 1 2 0+1 1+1 2 2 0+1 1+1 2 1 1+2 2+3 1 1 0+2 1+3 2 1 0+2 1+3 2 ( 5 3 3 6 8 8 ) ) Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 7 of 26

Matrices Example (noncommutative) ( )( ) ( 2 1 1 3 4 8 = 1 1 2 2 3 5 ( )( ) ( 1 3 2 1 5 4 = 2 2 1 1 6 4 Remark Product of matrices is not commutative, i.e. AB BA, in general. ), ). Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 8 of 26

Matrices Example ( 1 1 1 1 )( 1 1 1 1 ) = ( 0 0 0 0 ). Remark For the product of matrices the rule AB = O = A = O or B = O does not hold in general. Thus, a product of two nonzero matrix can be zero matrix, i.e. AB = O is possible even if A O and B O. Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 9 of 26

Matrices Theorem A(BC) = (AB)C A(B +C) = AB +AC (A+B)C = AC +BC a(ab) = (aa)b = A(aB) AO = OA = O AI = IA = A (AB) T = B T A T Assuming that right sides are defined. Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 10 of 26

Matrices Remark Product of matrices can be computed with blocks: ( )( ) ( A1 A 2 B1 B 2 A1 B = 1 +A 2 B 3 A 1 B 2 +A 2 B 4 A 3 A 4 B 3 B 4 A 3 B 1 +A 4 B 3 A 3 B 2 +A 4 B 4 ) Definition For a square matrix A and n Z +, we define { A 0 = I A n = A A... A (n times). Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 11 of 26

Inverse matrix Definition Let A be a n n-matrix. If there exists such a n n-matrix B such that AB = I n = BA, we call B as inverse matrix of A and denote it by B = A 1. If a matrix A has an inverse matrix, we call matrix A regular. Otherwise matrix A is singular. Remark It can be shown that inverse matrix for a matrix A is unique if it exists. Also, it can be proved that for square matrices it holds AB = I BA = I, i.e, in the definition of the inverse matrix the condition AB = I is enough. Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 12 of 26

Inverse matrix Example Let Then 1 2 1 A = 2 0 3. 1 3 2 1 2 1 9 7 6 1 0 0 2 0 3 1 1 1 = 0 1 0 1 3 2 6 5 4 0 0 1 and 9 7 6 1 2 1 1 0 0 1 1 1 2 0 3 = 0 1 0 6 5 4 1 3 2 0 0 1 Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 13 of 26

Inverse matrix Example (continued) Thus, the matrix 1 2 1 A = 2 0 3. 1 3 2 has the inverse matrix 9 7 6 A 1 = 1 1 1. 6 5 4 Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 14 of 26

Determinants Definition Let A = (a 11 ) be a 1 1-matrix. Then determinant of matrix A is det(a) = A = a 11. Definition Let A = (a ij ) be a n n-matrix. For i,j {1,...,n}, we denote by A ij a submatrix of A which is obtained from A by removing the ith row and jth column. Then, with any r,s {1,...,n} we can compute the determinant of matrix A with a recursive equation A = n k=1 [ ] ( 1) r+k a rk A rk = n k=1 [ ] ( 1) k+s a ks A ks. Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 15 of 26

Determinants examples Remark The previous definition formulate determinants of n n-matrices as linear combinations of determinants of (n 1) (n 1)-matrices. Therefore, that deffinition has to be applied recursively in order to compute value for a determinant. Determinant of 2 2-matrix Let Then A = ( ) a b. c d det(a) = a b c d = ad bc Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 16 of 26

Determinants (examples) Determinant of 3 3-matrix Let a b c A = d e f. g h i Then det(a) = a b c d e f g h i = a e f h i b d f g i +c d e g h. Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 17 of 26

Determinants (examples) Determinant of 4 4-matrix Let a b c d A = e f g h i j k l. m n o p Then det(a) = +c a b c d e f g h i j k l m n o p e f h i j l m n p = a d f g h j k l n o p e f g i j k m n o b e g h i k l m o p Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 18 of 26

Determinants Example Matrix A = ( a b c d has an inverse matrix if and only if ad bc 0. In that case, ( ) A 1 1 d b =. ad bc c a ) Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 19 of 26

Determinants Properties Let n Z +, c C and A be a n n-matrix. Then det(a) 0 if and only if A 1 exists (i.e., A is regular matrix); det(a) = 0 if and only if A is singular matrix; If det(a) 0, then det(a 1 ) = (det(a)) 1 ; det(a T ) = det(a); det(ab) = det(a) det(b); det(ca) = c n det(a). Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 20 of 26

Sets M n (R) and M n (C) Definition Let M n (R) and M n (C) denote the set of all n n-matrices with real and complex number entries, respectively. Theorem The sets M n (R) and M n (C) are abelian groups under matrix addition with the zero matrix O (O ij = 0) as the neutral element and A = ( 1)A, where ( A) ij = 1 A ij, as the opposite element in the group. Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 21 of 26

Sets M n (R) and M n (C) Checking group criterias Let A,B,C M n (R). Then R0 (A+B) ij = A ij +B ij R; R1 ((A+B)+C) ij = (A ij +B ij )+C ij = A ij +(B ij +C ij ) = (A+(B +C)) ij ; R2 (A+O) ij = A ij +O ij = A ij +0 = A ij = 0+A ij = O ij +A ij = (O +A) ij ; R3 (A+( 1)A) ij = A ij +( 1)A ij = 0 = O ij = ( 1)A ij +A ij = (( 1)A+A) ij ; R4 (A+B) ij = A ij +B ij = B ij +A ij = (B +A) ij. For the complex matrices the considerations are very similar. Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 22 of 26

Set GL(n,R) Definition The set GL(n,R) = {A M n (R) det(a) 0} is called the general linear group (of degree n over field R). Theorem The set GL(n,R) = {A M n (R) det(a) 0} is a group under matrix multiplication where the neutral element is the identity matrix I and the inverse element is the inverse matrix A 1 of matrix A. The inverse matrix of A exists when det(a) 0. The group is not abelian as the matrix multiplication is not commutative. Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 23 of 26

Set GL(n,R) Checking group criterias Let A,B,C GL(n,R). Then R0 (AB) ij = n k=1 A ikb kj R and AB = A B 0, i.e., AB GL(n,R); R1 ((AB)C) ij = n m=1 [( n k=1 A ikb km )C mj ] = n k=1 [A ik ( n m=1 B kmc mj )] = (A(BC)) ij ; R2 (AI) ij = n k=1 A iki kj = A ij I jj = A ij = I ii A ij = n k=1 I ika kj = (IA) ij (I ii = 1 and I ij = 0 for i j); R3 A 1 exist (det(a) 0) and AA 1 = I = A 1 A (by definition); R4 This criteria does ( not hold )( in general ) in ( GL(n,R), ) i.e., group 2 1 1 3 4 8 is not abelian. = 1 1 2 2 3 5 ( ) ( )( ) 5 4 1 3 2 1 =. 6 4 2 2 1 1 Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 24 of 26

Set SL(n,R) Definition The set SL(n,R) = {A GL(n,R) det(a) = 1} is called the special linear group (of degree n over field R). Theorem The set SL(n,R) = {A GL(n,R) det(a) = 1} is a subgroup of GL(n, R) under matrix multiplication. Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 25 of 26

Set SL(n,R) Checking subgroup criteria Let A,B SL(n,R). Clearly, I SL(n,R), i.e., SL(n,R). Also, we have det(a) = 1 and det(b) = 1 yielding det(a 1 B) = det(a) 1 det(b) = det(b) det(a) = 1 SL(n,R). Therefore, by subgroup criteria, SL(n, R) is a subgroup of GL(n,R), i.e., SL(n,R) GL(n,R). Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Matrices 26 of 26