Appendix A Supplementary data

Similar documents
Modelling Bluetongue vectors occurence using GIS and Remote Sensing techniques. Martins H., Nunes T., Boinas F.

Historical contingency, niche conservatism and the tendency for some taxa to be more diverse towards the poles

Resilience potential of the Ethiopian coffee sector under climate change

PYROGEOGRAPHY OF THE IBERIAN PENINSULA

Effects of fishing, market price, and climate on two South American clam species

Managing Uncertainty in Habitat Suitability Models. Jim Graham and Jake Nelson Oregon State University

SUPPLEMENTARY MATERIAL

Using GIS: to analyze vector borne disease. David Attaway Esri

Multivariate Analysis of Ecological Data using CANOCO

Drought News August 2014

Yuri P. Springer,* Catherine S. Jarnevich, David T. Barnett, Andrew J. Monaghan, and Rebecca J. Eisen

Colorado State University, Fort Collins, CO Weather Station Monthly Summary Report

Explicitly integrating a third dimension in marine species distribution modelling

Manuel António Pinto Sapage

Climate Dataset: Aitik Closure Project. November 28 th & 29 th, 2018

Conquering the Cold: Climate suitability predictions for the Asian clam in cold temperate North America

Species Distribution Modeling

Spatial differences in biological characteristics of Loligo forbesi (Cephalopoda: Loliginidae) in the Northeast Atlantic

Anatrytone logan. Species Distribution Model (SDM) assessment metrics and metadata Common name: Delaware Skipper Date: 17 Nov 2017 Code: anatloga

Earth s Climates. Understanding Weather and Climate. Chapter 15 Lecture. Seventh Edition

Trait-based Australian mammal distribution patterns and extinction risks

BIOMOD optimizing predictions of species distributions and projecting potential future shifts under global change

Precipitation variability in the Peninsular Spain and its relationship with large scale oceanic and atmospheric variability

Colorado State University, Fort Collins, CO Weather Station Monthly Summary Report

Manuel António Pinto Sapage

Novel methods improve prediction of species distributions from occurrence data

Some preliminary results from Climex and Maxent distribution modelling of Drosophila suzukii. Version 2.

Supplementary Figure 1 Current and future distribution of temperate drylands. (a b-f b-f

Supplementary Material

thesis_kokshoorn:thesis :47 Pagina 65 5 the sierra del Cadí

SOUTHERN CLIMATE MONITOR

Nitrogen limitation as a driver of genome size evolution in a group of karst plants

Ecological Modelling

A SUMMARY OF RAINFALL AT THE CARNARVON EXPERIMENT STATION,

Why Forecast Recruitment?

Supplementary Information: Good Agreements Make Good Friends

Universidade de São Paulo, Centro de Energia Nuclear na Agricultura, Laboratório de Ecologia Isotópica, Piracicaba, São Paulo, Brazil.

Climate Projections and Energy Security

Morgane Urli. Tours Sylvain Delzon Audrey Eyermann Vincent Couallier Raul Garcia-Valdés Miguel A. Zavala Annabel J. Porté

Through their research, geographers gather a great deal of data about Canada.

Modelling Survival Data using Generalized Additive Models with Flexible Link

FROM DROUGHT TO WET CYCLES: THE CHANGING CLIMATE OF THE CANADIAN PRAIRIES BY RAY GARNETT AND MADHAV KHANDEKAR

Niall McGinty, Pedro Afonso, Frederic Vandeperre 1. 1 IMAR, University of the Azores, Horta

More extreme precipitation in the world s dry and wet regions

Exploring Climate Patterns Embedded in Global Climate Change Datasets

Flexible Spatio-temporal smoothing with array methods

Using systematic diffusive sampling campaigns and geostatistics to map air pollution in Portugal

RECENT CLIMATE CHANGE TRENDS

Climatic Classification of an Industrial Area of Eastern Mediterranean (Thriassio Plain: Greece)

Discovery Through Situational Awareness

Using a library of downscaled climate projections to teach climate change analysis

Prentice Hall EARTH SCIENCE

SIS Meeting Oct AgriCLASS Agriculture CLimate Advisory ServiceS. Phil Beavis - Telespazio VEGA UK Indicators, Models and System Design

Monthly Long Range Weather Commentary Issued: July 18, 2014 Steven A. Root, CCM, President/CEO

October Precipitation Statistics (124 Years) Rank: Figure 2: Historical October precipitation time series for Maryland.

4. PREDICTING DUNG BEETLE DISTRIBUTIONS IN SOUTHEAST AUSTRALIA

Supplementary material. Pablo Pita A,D, Diana Fernández-Márquez B and Juan Freire C

NON-STATIONARY & NON-LINEAR ANALYSIS, & PREDICTION OF HYDROCLIMATIC VARIABLES OF AFRICA

Size scaling deviation in phytoplankton photosynthesis and the energy flow through a

Artificial Neural Network Prediction of Future Rainfall Intensity

Champaign-Urbana 2001 Annual Weather Summary

Probability distributions of monthly-to-annual mean temperature and precipitation in a changing climate

Monthly Long Range Weather Commentary Issued: APRIL 1, 2015 Steven A. Root, CCM, President/CEO

Global Climates. Name Date

Fire frequency in the Western Cape

An integrated assessment of the potential for change in storm activity over Europe: implications for forestry in the UK

Climate Classification

SEPTEMBER 2013 REVIEW

La circulation atmosphérique dans le sud du Portugal et l'effet du réservoir d'alqueva. Cas d étude ALEX 2014

Classification: Linear Discriminant Analysis

Air Quality Modelling under a Future Climate

Prentice Hall EARTH SCIENCE

Gridded monthly temperature fields for Croatia for the period

Supplementary material: Methodological annex

The Pennsylvania Observer

Past climate change on Sky Islands drives novelty in a core developmental gene network and its phenotype

The Weather Wire. Current Colorado Snowpack. Contents:

Annual Ambient Dust Monitoring Report 2016

Our climate system is based on the location of hot and cold air mass regions and the atmospheric circulation created by trade winds and westerlies.

Chiang Rai Province CC Threat overview AAS1109 Mekong ARCC

Modelling the spatial distribution of aquatic insects (Order Hemiptera) potentially involved in the transmission of Mycobacterium ulcerans in Africa

Climate Trends and Variations Bulletin Winter

The Atlas Aspect of the Atlas of Living Australia

Communicating Climate Change Consequences for Land Use

Monthly Long Range Weather Commentary Issued: APRIL 18, 2017 Steven A. Root, CCM, Chief Analytics Officer, Sr. VP,

Historical and Projected Future Climate Changes in the Great Lakes Region

Increased frequency and intensity of atmospheric rivers affecting Europe during the XXI Century

The Thirteen Colonies

1 Chapter 2, Problem Set 1

Spatial Effects on Current and Future Climate of Ipomopsis aggregata Populations in Colorado Patterns of Precipitation and Maximum Temperature

Part I Week 7 Based in part on slides from textbook, slides of Susan Holmes

Local Prediction of Precipitation Based on Neural Network

ZUMWALT WEATHER AND CLIMATE ANNUAL REPORT ( )

Alaska Center for Climate Assessment and Policy

Climatographs. Suggested Activity. Conduct an Investigation 1-1C on page 30. Climatograph Tofino, British Columbia, 49ºN. Average Precipitation (mm)

METADATA MANAGEMENT TOOL (LIO)

Additive Terms. Flexible Regression and Smoothing. Mikis Stasinopoulos 1 Bob Rigby 1

Total 35 (24) 11 (8) 52 (39) 36 (34) 2961 (2527) 3095 (2632)

The Potentiality of Remote Sensing in Biogeographical Research

Global climate model scenarios downscaled for Canada. David Price Northern Forestry Centre, Edmonton CIF e-lecture, 14 March 2012

Transcription:

Appendix A Supplementary data Table A1 Data sources used to document Cabrera vole occurrences (1970-2011) in UTM 10 km x 10 km grid squares across the Iberian Peninsula. Species occurrence in some squares were recorded by more than one study, and so the number of grid squares summed across studies is larger than the total number of grid squares with confirmed occurrences. Source Published Inventario Nacional de Biodiversidad. Vertebrados. url: http://www.marm.es/es/biodiversidad/temas/inventarios-nacionales/inventario-nacionaldebiodiversidad/mamiferos_m.aspx. Conservation Biology Unit Database (Universidade de Évora, ) Mira, A.; Marques, C.C.; Santos, S.; Rosário, I.T.; & Mathias, M.L. (2008). Environmental determinants of the distribution of the Cabrera vole (Microtus cabrerae) in : Implications for conservation. Mammalian Biology - Zeitschrift für Säugetierkunde, 73(2), pp.: 102-110. Santos, S. M., Mathias, M., Mira, A., & Simões, M. P. (2007). Vegetation structure and composition of road verge and meadow sites colonized by Cabrera vole (Microtus cabrerae Thomas). Polish Journal of Ecology, 55(3), 481. Santos, S. M., Simões, M. P., Mathias, M. D. L., & Mira, A. (2006). Vegetation analysis in colonies of an endangered rodent. Ecological Research, 21(2): 197-207. Rosário, I. T., Cardoso, P. E., & Mathias, M. D. L. (2008). Is habitat selection by the Cabrera vole (Microtus cabrerae) related to food preferences? Mammalian Biology-Zeitschrift für Säugetierkunde, 73(6), 423-429. Rosário. I.T. Towards a conservation strategy for na endangered rodent, the Cabrera vole (Microtus cabrerae Thomas) insights from ecological data. PhD Thesis. Faculdade de Ciências, Departamento de Biologia Animal, Universidade de Lisboa. Lisboa,. Pita, R. (2010). Persistence and coexistence of spatially structured populations in heterogeneous environments: The case of Cabrera and water voles in Mediterranean farmland. PhD Thesis, Universidade de Évora. Évora,. Mira, A.; Ascensão, F. & Alcobia, S. (2003). Distribuição das espécies de roedores e insectívoros Relatório final, Unidade de Biologia da Conservação, Universidade de Évora. Gonçalves P., Alcobia S. & Santos-Reis M., Eds. (2013). Atlas dos Mamíferos na Charneca do Infantado. Companhia das Lezírias S.A. / Centro de Biologia Ambiental (FCUL), Benavente e Lisboa, 92 pp. Ortuño, A. (2009). Nuevos datos sobre la distribución del Topillo de Cabrera Microtus cabrerae Thomas, 1906 en Murcia. Galemys, 21(2): 71-72. Profico Ambiente (2009). RECAPE do Aproveitamento Hidroeléctrico de Foz Tua; Anexo Y - Estudo Complementar Sobre o Rato-de-Cabrera; Relatório de Conformidade Ambiental do Projecto de Execução do Aproveitamento Hidroeléctrico de Foz Tua. Mathias, M.L.; Mira, A.; Pereira, M.; Pereira, P.; Nunes, A.C.; Marques, C.C.; Figueiredo, C.; Carvalho, F.N.; Sousa, I.; Perestrello, M.; Santos, M.J.; Santos, S. & Oliveira, V. (2004). Programa de monitorização do património natural (Área do regolfo de Alqueva e Pedrógão) - Projecto Pmo 6.2 - Monitorização de roedores - Relatório Final, Centro de Biologia Ambiental (Faculdade de Ciências da Universidade de Lisboa) e Centro de Ecologia Aplicada (Universidade de Évora). Anonym (2008).Estudo de Impacte Ambiental do Estudo Prévio da Ocupação Turística da UNOP 4 DE Tróia, Resumo Não Técnico. Unpublished Frederico Mestre (presonal observations). Célia Gomes unpublished data. Geographical range covered Continental Spain Continental Continental Nr. grid squares 276 51 35 Central 25 15 10 6 Central 3 South-eastern Spain North-eastern North-eastern 3 2 1 1 3 3

Table A2 - Summary results of non-invasive genetic analysis. Grid square location: RE Rear edge, out of the predicted potential niche; RI - Rear edge, inside the predicted potential niche; FE Front edge, out of the predicted potential niche; FI - Front edge, inside the predicted potential niche. See the main text for details. UTM code Grid square location Sample collection Genetic analysis Cabrera vole Other species Genetic ID failed Sites Samples Sites Samples Sites Samples Sites Samples 29SNB11 RE 0 0 - - - - - - - 29SNB46 RI 1 1 1 1 1 1 0 0 0 29SNB62 RI 1 2 1 1 1 1 0 0 0 29SNB65 RE 0 0 - - - - - - - 29SNB78 RE 0 0 - - - - - - - 29SNB81 RE 0 0 - - - - - - - 29SNB90 RI 0 0 - - - - - - - 29SNC55 RI 1 1 1 1 0 0 0 0 1 29SNC75 RE 1 1 1 1 0 0 1 1 0 29SNC76 RI 1 1 1 1 0 0 0 0 1 29SNC80 RE 0 0 - - - - - - - 29SNC93 RE 1 1 1 1 0 0 1 1 0 29SND01 FE 2 6 2 6 0 0 2 6 0 29SND24 FE 5 12 5 10 0 0 5 10 0 29SND44 FI 2 10 2 6 1 3 1 2 1 29SND79 FE 9 27 6 8 3 3 4 5 0 29SND84 FI 1 2 1 2 1 2 0 0 0 29SPC08 RI 1 1 1 1 1 1 0 0 0 29SPC27 RE 0 0 - - - - - - - 29SPC29 RI 1 2 1 2 1 2 0 0 0 29SPC46 RE 0 0 - - - - - - - 29SPD00 RI 1 2 1 2 1 2 0 0 0 29SPD05 FI 1 3 1 2 1 2 0 0 0 29SPD23 RI 0 0 - - - - - - - 29SPD24 FI 1 3 1 3 0 0 1 3 0 29SPD29 FE 8 22 2 2 2 2 0 0 0 29SPD32 RI 0 0 - - - - - - - 29SPD36 FE 2 5 1 2 1 2 0 0 0 29SPD40 RE 1 1 1 1 0 0 1 1 0 29SPE42 FI 2 11 1 3 1 3 0 0 0 29SPE50 FI 4 12 1 2 1 2 0 0 0 29TPE24 FE 6 18 5 8 2 2 3 5 1 29TPE58 FE 10 46 10 12 0 0 9 10 2 29TPF33 FE 9 44 2 3 1 1 1 1 1 29TPF61 FI 5 20 1 3 1 3 0 0 0 29TPF65 FI 3 12 1 2 1 2 0 0 0 29TPF77 FI 7 13 2 2 2 2 0 0 0 29TPG43 FE 8 33 7 12 0 0 7 11 1 29TPG70 FI 7 20 1 2 1 1 1 1 0 29TPG71 FE 8 19 7 13 0 0 6 10 3

Table A3 Summary results of pairwise Spearman correlation analysis between climatic variables. Large ( r > 0.7) pairwise correlations are highlighted in dark grey, and variables retained for subsequent distribution modelling are highlighted in light grey. bio1 - Annual Mean Temperature, bio2 - Mean Diurnal Range (Mean of monthly (max temp - min temp)), bio3 - Isothermality (bio2/bio7) (* 100), bio4 - Temperature Seasonality (standard deviation *100), bio5 - Max Temperature of Warmest Month, bio6 - Min Temperature of Coldest Month, bio7 - Temperature Annual Range (bio5-bio6), bio8 - Mean Temperature of Wettest Quarter, bio9 - Mean Temperature of Driest Quarter, bio10 - Mean Temperature of Warmest Quarter, bio11 - Mean Temperature of Coldest Quarter, bio12 - Annual Precipitation, bio13 - Precipitation of Wettest Month, bio14 - Precipitation of Driest Month, bio15 - Precipitation Seasonality (Coefficient of Variation), bio16 - Precipitation of Wettest Quarter, bio17 - Precipitation of Driest Quarter, bio18 - Precipitation of Warmest Quarter, bio19 - Precipitation of Coldest Quarter. bio2 bio3 bio4 bio5 bio6 bio7 bio8 bio9 bio10 bio11 bio12 bio13 bio14 bio15 bio16 bio17 bio18 bio19 bio1 0.068 0.162-0.050 0.695 0.881 0.008 0.426 0.814 0.894 0.938-0.222-0.037-0.833 0.785-0.004-0.798-0.756 0.066 bio2-0.042 0.848 0.715-0.334 0.954-0.043 0.478 0.431-0.207-0.594-0.631-0.377 0.066-0.588-0.427-0.467-0.427 bio3-0.515-0.101 0.307-0.316-0.100 0.048-0.084 0.323 0.208 0.284-0.123 0.276 0.306-0.094-0.097 0.353 bio4 0.627-0.447 0.962 0.026 0.343 0.375-0.355-0.606-0.674-0.233-0.100-0.650-0.291-0.324-0.544 bio5 0.323 0.699 0.211 0.886 0.923 0.434-0.571-0.488-0.822 0.557-0.429-0.834-0.839-0.264 bio6-0.407 0.304 0.552 0.601 0.982 0.130 0.308-0.600 0.743 0.333-0.538-0.497 0.361 bio7-0.030 0.432 0.419-0.295-0.617-0.676-0.317-0.015-0.638-0.375-0.414-0.492 bio8 0.165 0.382 0.382-0.499-0.398-0.206 0.008-0.458-0.216-0.137-0.571 bio9 0.914 0.637-0.375-0.250-0.867 0.699-0.193-0.854-0.852-0.021 bio10 0.694-0.476-0.336-0.869 0.671-0.295-0.861-0.835-0.187 bio11 0.004 0.194-0.679 0.765 0.219-0.626-0.579 0.254 bio12 0.953 0.370 0.045 0.952 0.448 0.418 0.875 bio13 0.210 0.241 0.986 0.291 0.281 0.892 bio14-0.862 0.143 0.987 0.978-0.018 bio15 0.301-0.816-0.806 0.412 bio16 0.227 0.208 0.939 bio17 0.988 0.059 bio18 0.011

Table A4 Summary of BIOMOD modelling options used for running each of the eight algorithms considered in the ensemble to predict current and future distribution range of the Cabrera vole Model algorithm Code Description of modelling options adopted in BIOMOD Generalised linear model Generalised boosting model Generalised additive model Classification tree analysis Artificial neural networks Flexible discriminant analysis Multivariate adaptive regression spline GLM GBM GAM CTA ANN FDA MARS TypeGLM = "poly", Test = "AIC" - ordinary polynomial terms (second and third order) were used, with AIC as the stepwise selection procedure for the selection of the most significant variables to be included in the model (Akaike, 1974). No.trees = 4000 - GBM was run with 4000 trees, which can be considered a good compromise value (Thuiller et al. 2009a), and with 5 cross validations to select the optimal number of trees (by default). Spline = 4 - GAM in BIOMOD uses a cubic spline smoother, which is set of polynomials of degree less than or equal to 3 (Thuiller et al. 2009a). It was run with 4 degrees of freedom (by default). CV.tree = 30 - CTA was run with a 30-fold cross-validation to select the optimal length of the tree (which represents a trade-off between number of leaves and the explained deviance). CV.ann = 3 - ANN was run with the default option of 3 cross validations to select the best amount of weigh decay and the number of units in the hidden layer. BIOMOD s default options. BIOMOD s default options. Random forest RF BIOMOD s default options.

Figure A1 Sampled 10km x10km UTM grid squares. Inside the potential niche (black) and outside the potential niche (white), as given by ENM1.

Figure A2 Maps of predicted distribution of the Cabrera vole in 2020, 2050, and 2080 (IPCC Scenarios B2 and A1b), based on the projecti on of models developed considering the original dataset (ENM1) and the dataset including additional field data (ENM2).