INTERSECTION THEORY CLASS 19

Similar documents
INTERSECTION THEORY CLASS 16

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 24

INTERSECTION THEORY CLASS 7

INTERSECTION THEORY CLASS 12

COMPLEX ALGEBRAIC SURFACES CLASS 9

INTERSECTION THEORY CLASS 6

Chern classes à la Grothendieck

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 26

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASSES 47 AND 48

INTERSECTION THEORY CLASS 2

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43

DESCENT THEORY (JOE RABINOFF S EXPOSITION)

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 24

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37

Math 248B. Applications of base change for coherent cohomology

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 41

THE GROTHENDIECK-RIEMANN-ROCH THEOREM FOR VARIETIES

Algebraic Geometry Spring 2009

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 48

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASSES 43 AND 44

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 2

Algebraic Geometry Spring 2009

INTERSECTION THEORY CLASS 1

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 27

Porteous s Formula for Maps between Coherent Sheaves

COMPLEX ALGEBRAIC SURFACES CLASS 6

12. Linear systems Theorem Let X be a scheme over a ring A. (1) If φ: X P n A is an A-morphism then L = φ O P n

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 18

the complete linear series of D. Notice that D = PH 0 (X; O X (D)). Given any subvectorspace V H 0 (X; O X (D)) there is a rational map given by V : X

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 23

NOTES ON FLAT MORPHISMS AND THE FPQC TOPOLOGY

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 5

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37

MATH 233B, FLATNESS AND SMOOTHNESS.

APPENDIX 3: AN OVERVIEW OF CHOW GROUPS

DEFINITION OF ABELIAN VARIETIES AND THE THEOREM OF THE CUBE

3. The Sheaf of Regular Functions

The Riemann-Roch Theorem

Lecture 7: Etale Fundamental Group - Examples

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 14

HARTSHORNE EXERCISES

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 2

Recall for an n n matrix A = (a ij ), its trace is defined by. a jj. It has properties: In particular, if B is non-singular n n matrix,

COMPLEX ALGEBRAIC SURFACES CLASS 15

Factorization of birational maps for qe schemes in characteristic 0

Factorization of birational maps on steroids

Lecture 21: Crystalline cohomology and the de Rham-Witt complex

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 25

COMPLEX VARIETIES AND THE ANALYTIC TOPOLOGY

Algebraic Geometry Spring 2009

Fourier Mukai transforms II Orlov s criterion

Algebraic varieties and schemes over any scheme. Non singular varieties

Theta divisors and the Frobenius morphism

CHEAT SHEET: PROPERTIES OF MORPHISMS OF SCHEMES

Special cubic fourfolds

LECTURES ON SINGULARITIES AND ADJOINT LINEAR SYSTEMS

Algebraic Geometry Spring 2009

Topology of Toric Varieties, Part II

(1) is an invertible sheaf on X, which is generated by the global sections

Hodge Theory of Maps

Algebraic Geometry Spring 2009

18.727, Topics in Algebraic Geometry (rigid analytic geometry) Kiran S. Kedlaya, fall 2004 Kiehl s finiteness theorems

Smooth morphisms. Peter Bruin 21 February 2007

Summer Algebraic Geometry Seminar

Cohomology and Base Change

MODULI SPACES AND DEFORMATION THEORY, CLASS 1. Contents 1. Preliminaries 1 2. Motivation for moduli spaces Deeper into that example 4

where Σ is a finite discrete Gal(K sep /K)-set unramified along U and F s is a finite Gal(k(s) sep /k(s))-subset

Chapter 17 Computation of Some Hodge Numbers

K-theory, Chow groups and Riemann-Roch

CHAPTER 0 PRELIMINARY MATERIAL. Paul Vojta. University of California, Berkeley. 18 February 1998

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 21

BEZOUT S THEOREM CHRISTIAN KLEVDAL

Algebraic Geometry Spring 2009

p,q H (X), H (Y ) ), where the index p has the same meaning as the

ON A THEOREM OF CAMPANA AND PĂUN

Preliminary Exam Topics Sarah Mayes

Algebraic Cobordism Lecture 1: Complex cobordism and algebraic cobordism

Math 418 Algebraic Geometry Notes

10. Smooth Varieties. 82 Andreas Gathmann

Synopsis of material from EGA Chapter II, 4. Proposition (4.1.6). The canonical homomorphism ( ) is surjective [(3.2.4)].

NOTES ON THE DEGREE FORMULA

AN INTRODUCTION TO AFFINE SCHEMES

Reid 5.2. Describe the irreducible components of V (J) for J = (y 2 x 4, x 2 2x 3 x 2 y + 2xy + y 2 y) in k[x, y, z]. Here k is algebraically closed.

1 Flat, Smooth, Unramified, and Étale Morphisms

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASSES 51 AND 52

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 27

Vector Bundles on Algebraic Varieties

BRIAN OSSERMAN. , let t be a coordinate for the line, and take θ = d. A differential form ω may be written as g(t)dt,

Matrix factorizations over projective schemes

Equivariant Algebraic K-Theory

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37

COMPLEX ALGEBRAIC SURFACES CLASS 4

mult V f, where the sum ranges over prime divisor V X. We say that two divisors D 1 and D 2 are linearly equivalent, denoted by sending

Introduction and preliminaries Wouter Zomervrucht, Februari 26, 2014

The Grothendieck Ring of Varieties

Dot Products, Transposes, and Orthogonal Projections

Lecture 3: Flat Morphisms

Algebraic Cobordism. 2nd German-Chinese Conference on Complex Geometry East China Normal University Shanghai-September 11-16, 2006.

PERVERSE SHEAVES. Contents

ALGEBRAIC K-THEORY HANDOUT 5: K 0 OF SCHEMES, THE LOCALIZATION SEQUENCE FOR G 0.

Transcription:

INTERSECTION THEORY CLASS 19 RAVI VAKIL CONTENTS 1. Recap of Last day 1 1.1. New facts 2 2. Statement of the theorem 3 2.1. GRR for a special case of closed immersions f : X Y = P(N 1) 4 2.2. GRR for closed immersions in general 6 Today I m going to try to finish the proof of Grothendieck-Riemann-Roch in the case of projective morphisms from smooth varieties to smooth varieties. We ll see that we re essentially going to prove it more generally for projective lci morphisms. 1. RECAP OF LAST DAY Recall the definition of the Chern character and Todd class. Suppose F is a coherent sheaf. Let α 1,..., α n be the Chern roots of the vector bundle, so α 1 + + α n = c 1 (F), etc. Define ch(f) = r i=1 exp(α i) This is additive on exact sequences. For vector bundles, we have ch(e E ) = ch(e) ch(e ). The Todd class td(e) of a vector bundle is defined by td(e) = r i=1 Q(α i) where x Q(x) = 1 e = 1 + 1 x 2 x + ( 1) k 1 B k (2k)! x2k. It is multiplicative in exact sequences. We defined the Grothendieck groups K 0 X and K 0 X. They are vector bundles, respectively coherent sheaves, modulo the relation [E] = [E ] + [E ]. We have a pullback on K 0 : f : K 0 X K 0 Y. K 0 X is a ring: [E] [F] = [E F]. We have a pushforward on K 0 : f [F] = i 0 ( 1)i [R i f F]. We obviously have a homomorphism K 0 X K 0 X. K 0 X is a K 0 X-module: K 0 X K 0 X X is given by [E] [F] = [E F]. Unproved fact: If X is nonsingular and projective, the map K 0 X K 0 X is an isomorphism. (Reason: If X is nonsingular, then F has a finite resolution by locally free sheaves.) Date: Wednesday, November 24, 2004. 1 k=1

The Chern character map descends to K(X): ch : K(X) A(X) Q. This does not commute with proper pushforward; Grothendieck-Riemann-Roch explains how to fix this. 1.1. New facts. Here are some useful facts, that I didn t mention last time. We have an excision exact sequence for K 0 : If Z X is a closed immersion, and U is the open complement, we have an excision exact sequence K 0 (Z) K 0 (X) K 0 (U) 0. The proof is similar to our proof for Chow; this is Hartshorne Exercise II.6.10(c). Similarly, we have K 0 (A 1 Y) = K(Y). Last time I showed: Lemma. The group K 0 (P m ) is generated by the classes [O P m(n)], with 0 n m. (Incidentally, I mentioned an interesting algebraic problem coming out of my previous proof. Joe gave a nice proof of it. If I have time, I ll type it up and put it in the posted notes.) I d like to do it differently today. [O P m( n)], with 0 n m. Instead, I ll show it is generated by the classes Using the excision exact sequence for K-theory, and P m = A 0 A 1 A m, we get inductively: K 0 (P m ) is generated by n + 1 things: [O P 0], [O P 1],..., [O P m]. I ll now express these in terms of O P m(n) s. From 0 O P m( 1) O P m O P m 1 0 shows [O P m 1] = [O P m] [O P m( 1)]. Similarly, [O P m 2] = [O P m 1] [O P m 1( 1)] = ([O P m] [O P m( 1)]) ([O P m( 1)] [O P m( 2)]) = [O P m] 2[O P m( 1)] [O P m( 2)] and you see the pattern (established by the obvious induction). Important philosophy behind Riemann-Roch: K(P m ) and A (P m ) are both m-dimensional vector spaces; Chern character provides an isomorphism between them. Multiplying by the Todd class provides a better isomorphism between them. More generally, the identical proof shows that for any Y, K(Y) K(P m ) K(P m Y) is surjective: cut up P m Y into Y A 1 Y A m Y, and proceed as before. 2

2. STATEMENT OF THE THEOREM Grothendieck-Riemann-Roch Theorem. Suppose f : X Y is a proper morphism of smooth varieties. Then for any α K(X), ch(f α) td(t Y ) = f (ch(α) td(t X )). Interesting exercise: how do you make sense of this when X and Y are singular? For example, what if X Y is a smooth morphism, we get ch(f α) = f (ch(α) td(t X/Y )) where X/Y is the relative tangent bundle. As another example, what if X Y is a complete intersection? Then T X and T Y don t make sense, but N X/Y is a vector bundle, and then ch(f α) td(n X/Y ) = f (ch(α)). Combining these two, you can now make sense of GRR in the case when f is an lci morphism (i.e. closed immersion followed by a smooth morphism). The theorem may be interpreted to say that the homomorphism τ X : K(X) A(X) Q given by τ X (α) = ch(α) td(t X ) commutes with proper pushforward: f τ X = τ Y f. Last time we showed that this implies Lemma. Given X f Z g Y. Suppose GRR holds for f and g. Then it holds for g f. Hence the strategy is now to show GRR for Y P m Y, and for closed immersions. We ll use this interpretation of the theorem to show Theorem. GRR is true for P m Y Y. Proof. We showed last time that this is true in the case where Y is a point. Consider the following diagram. K(Y) K(P m ) τ Y τ P m A(Y) Q A(P m ) Q K(Y P m ) τ Y τ P m A(Y P m ) Q f K(Y) τ Y f A(Y) Q (I won t be using anything special about P m now.) We want to show that the bottom square commutes. Note that the top square commutes. Reason: T Y P m = p 1 T Y p 2 T P m (where p 1 and p 2 are the projections) from which td(t Y P m) = td(p 1 T Y) td(p 2 T P m). Moreover the upper left vertical arrow is surjective. So it suffices to show that the big rectangle commutes. But it does because we ve already shown that GRR holds for P m pt. 3

2.1. GRR for a special case of closed immersions f : X Y = P(N 1). Suppose f is a closed immersion into a projective completion of a normal bundle. Let d = rankn. We want to prove GRR for a vector bundle E. As the vector bundles generate K(X), this will suffice. This example comes the closest to telling me why the Todd class wants to be what it is. Let p : Y = P(N 1) X be the projection. Let O Y ( 1) be the tautological line bundle on Y = P ( N 1). Then as in previous lectures we have a tautological exact sequence of vector bundles on Y: 0 O Y ( 1) p (N 1) Q 0 where Q is the universal quotient bundle. (Recall that f Q = N X/Y.) Here is something you have to think through, although we ve implicitly used it before. We have a natural section of p (Q 1), the 1. This gives a section s of Q. This section vanishes precisely (scheme-theoretically) along X. In particular, for any α A(Y), f (f α) = c d (Q) α. (This was one of our results about the top Chern class. f f will knock the degree down by d, and we found that this operator was the same as capping with the top Chern class.) Lemma. We can resolve the sheaf f O X on Y by (1) 0 d Q 2 Q Q s O Y f O X 0. Note that everything except f O X is a vector bundle on Y. Proof. Rather than proving this precisely, I ll do a special case, to get across the main idea. This in fact becomes a proof, once the naturality of my argument is established. Suppose Y = Spec k[x 1,..., x n ], so O Y = k[x 1,..., x n ] (a bit sloppily) and X = 0 Y. Then let s build a resolution of O X. We start with O Y O X 0. We have a big kernel obviously: the ideal sheaf of O X. So our next step is: O Y x 1 O Y x 2 O Y x n O Y O X 0. We still have a kernel; ( x 2 x 1, x 1 x 2, 0,, 0) is in the kernel, for example. So our next step is: O Y x 1 x 2 O Y x n 1 x n (We need to check that we ve surjected onto the kernel! But that s not hard; you can try to prove that yourself.) And the pattern continues. We get: 0 O Y x 1 x n n i=1o Y x 1 ^x i x n n i=1o Y x i O Y O X 0. And this is what we wanted (in this special case). (All that is missing for this to be a proof is to realize that n i=1 O Yx i O Y is canonically Q.) 4

If E is a vector bundle on X, then we have an explicit resolution of f E, by tensoring (1) with p E: 0 d Q p E Q p E s p E f E 0. (Tensoring with a vector bundle is exact, and (p E) O X = f E.) Therefore ch f [E] = ( 1) p ch( p Q ) ch(p E). Lemma. ( 1) p ch( p Q ) = c d (Q) td(q) 1. This tells you why the Todd class is what it is! Proof. This is remarkably easy. Let α 1,..., α d be the Chern roots of Q. Then the Chern roots of p Q are α i1 α ip. Hence ch( p Q ) = e α i1 α ip from which ( 1) p ch( p Q ) = ( 1) p e α i 1 e α ip d = (1 e α i ) i=1 = (α 1 α d ) d 1 e α i α i i=1 = c d (Q) td(q) 1. Hence ch f [E] = c d (Q) td(q) 1 ch(p E) as desired! = f (f td(q) 1 f ch(p E)) (using c d (Q) β = f (f β), see 1st par of Section 2) = f (td(n X/Y ) 1 ch(e)) (using f Q = N X/Y, f p E = E) = f (td(t X )f td(t Y ) 1 ch(e)) = td(t Y )f (td(t X ) ch(e)) (projection formula) This ends the proof of GRR for a closed immersion of X into the projective completion of a normal bundle. 5

2.2. GRR for closed immersions in general. Suppose f : X Y is a closed immersion. We ll prove GRR in this case; again, we need only to consider a generator of K(X), a vector bundle E on X. We ll show GRR by deformation to the normal cone. Let M = Bl X { } Y P 1. (Draw picture.) Recall that the fiber over is M = Bl X Y P(N 1). X f Y = M 0 X P 1 F M = Bl X 0 Y P 1 X M = Bl X Y P(N 1) {0} P 1 { } Define F (above), p : X P 1 X. Resolve p E on M: 0 G n G n 1 G 0 F (p E) 0. Both X P 1 and M are flat over P 1 (recall that dominant morphisms from irreducible varieties to a smooth curve are always flat), so restriction of these exact sequences to the fibers M 0 and M (also known as tensoring with the structure sheaves of the fibers) preserves exactness. Let j 0 : Y = M 0 M, j : Bl X Y P(N 1) = M M, k : P(N 1) M, l : Bl X Y M. Now j 0 G resolves f on Y = M 0. So j 0 (ch(f E)) = j 0 ch(j 0 G ) = ch(g ) j 0 [Y] (proj. formula) = ch(g ) j [M ] (pulling back rat l equivalence 0 P 1 ) = ch(g ) (k [P(N 1)] + l [Bl X Y]) Now G is exact away from X P 1, so it is exact on Bl X Y, so the Chern character of the complex (the alternating sums of the Chern characters of the terms) is 0. Hence: Using the projection formula again: = ch(g ) (k [P(N 1)]) = k (ch(f E) [P(N 1)]) (where f is the map X P(N 1)). (We re writing this as k (ch(f E).) So now we re dealing with the case X P(N 1)! We ve already calculated that this is f (td(n) 1 ch(e)). As [N] = [f T Y ] [T X ]: and we re done! E-mail address: vakil@math.stanford.edu ch(f E) td(t Y ) = f (ch(e) td(t X )) 6