C HA R AC T E RIZ AT IO N O F INK J E T P RINT E R C A RT RIDG E INK S USING A CHEMOMETRIC APPROACH

Similar documents
A Workflow Approach for the Identification and Structural Elucidation of Impurities of Quetiapine Hemifumarate Drug Substance

Simplified Approaches to Impurity Identification using Accurate Mass UPLC/MS

Identification and Characterization of an Isolated Impurity Fraction: Analysis of an Unknown Degradant Found in Quetiapine Fumarate

Lirui Qiao, 1 Rob Lewis, 2 Alex Hooper, 2 James Morphet, 2 Xiaojie Tan, 1 Kate Yu 3

Yun W. Alelyunas, Mark D. Wrona, Russell J. Mortishire-Smith, Nick Tomczyk, and Paul D. Rainville Waters Corporation, Milford, MA, USA INTRODUCTION

Q-TOF PREMIER DYNAMIC RANGE ENHANCEMENT AND ACCURATE MASS MEASUREMENT PERFORMANCE

The Use of the ACQUITY QDa Detector for a Selective, Sensitive, and Robust Quantitative Method for a Potential Genotoxic Impurity

Quantitation of High Resolution MS Data Using UNIFI: Acquiring and Processing Full Scan or Tof-MRM (Targeted HRMS) Datasets for Quantitative Assays

A Case of Pesticide Poisoning: The Use of a Broad-Scope Tof Screening Approach in Wildlife Protection

[application note] ACQUITY UPLC/SQD ANALYSIS OF POLYMER ADDITIVES. Peter J. Lee, and Alice J. Di Gioia, Waters Corporation, Milford, MA, U.S.A.

A Rapid Approach to the Confirmation of Drug Metabolites in Preclinical and Clinical Bioanalysis Studies

Traditional Herbal Medicine Structural Elucidation using SYNAPT HDMS

UPLC Intact MASS Analysis Application Kit

FORENSIC TOXICOLOGY SCREENING APPLICATION SOLUTION

Online Reaction Monitoring of In-Process Manufacturing Samples by UPLC

Rapid, Reliable Metabolite Ratio Evaluation for MIST Assessments in Drug Discovery and Preclinical Studies

Jonathan P. Danaceau, Erin E. Chambers, and Kenneth J. Fountain Waters Corporation, Milford, MA USA APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS

Implementation of Methods Translation between Liquid Chromatography Instrumentation

IN QUALITATIVE ANALYSIS,

Routine MS Detection for USP Chromatographic Methods

OVERVIEW INTRODUCTION. Michael O Leary, Jennifer Gough, Tanya Tollifson Waters Corporation, Milford, MA USA

Improved Extraction of THC and its Metabolites from Oral Fluid Using Oasis PRiME HLB Solid Phase Extraction (SPE) and a UPLC CORTECS C 18

PosterREPRINT AN INTERACTIVE PHYSICOCHEMICAL PROPERTY PROFILING SOFTWARE FOR EARLY CANDIDATE ANALYSIS IN DRUG DISCOVERY INTRODUCTION

[ a ppl ic at ion no t e ]

Basic Principles for Purification Using Supercritical Fluid Chromatography

Analysis of Organic Light Emitting Diode Materials by UltraPerformance Convergence Chromatography Coupled with Mass Spectrometry (UPC 2 /MS)

SEAMLESS INTEGRATION OF MASS DETECTION INTO THE UV CHROMATOGRAPHIC WORKFLOW

Analysis of Labeled and Non-Labeled Proteomic Data Using Progenesis QI for Proteomics

USP Method Transfer and Routine Use Analysis of Irbesartan Tablets from HPLC to UPLC

DETERMINATION OF PESTICIDES IN FOOD USING UPLC WITH POLARITY SWITCHING TANDEM QUADRUPOLE LC/MS/MS

Analysis of Serum 17-Hydroxyprogesterone, Androstenedione, and Cortisol by UPLC-MS/MS for Clinical Research

Prep 150 LC System: Considerations for Analytical to Preparative Scaling

A Quality by Design (QbD) Based Method Development for the Determination of Impurities in a Peroxide Degraded Sample of Ziprasidone

Performing Peptide Bioanalysis Using High Resolution Mass Spectrometry with Target Enhancement MRM Acquisition

Conformational Characterization of Calmodulin by Hydrogen Deuterium Exchange Mass Spectrometry

Streamlining the Analysis of Oral Contraceptives Using the ACQUITY UPLC H-Class System

APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEY WORDS. Simultaneous high-throughput screening of melamine (MEL) and cyanuric acid (CYA).

ImprovIng ADmE ScrEEnIng productivity In Drug DIScovEry

UPC 2 Strategy for Scaling from Analytical to Preparative SFC Separations

MALDI-HDMS E : A Novel Data Independent Acquisition Method for the Enhanced Analysis of 2D-Gel Tryptic Peptide Digests

Analysis of Pharmaceuticals and Personal Care Products in River Water Samples by UHPLC-TOF

Identifying Disinfection Byproducts in Treated Water

All Ions MS/MS: Targeted Screening and Quantitation Using Agilent TOF and Q-TOF LC/MS Systems

Agilent MassHunter Profinder: Solving the Challenge of Isotopologue Extraction for Qualitative Flux Analysis

Electron Transfer Dissociation of N-linked Glycopeptides from a Recombinant mab Using SYNAPT G2-S HDMS

Stephen McDonald, Mark D. Wrona, Jeff Goshawk Waters Corporation, Milford, MA, USA INTRODUCTION

Rapid and Accurate Forensics Analysis using High Resolution All Ions MS/MS

Sensitive and Repeatable Analysis of Pesticides in QuEChERS Extracts with APGC-MS/MS

[ instrument specifications ]

ADVANCED MULTI-RESIDUE SCREENING IN VETERINARY DRUG ANALYSIS USING UPLC -ToF MS

Optimization of the sample preparation and extraction methodology

DEMONSTRATING SUPERIOR LINEARITY: THE ACQUITY UPLC PHOTODIODE ARRAY DETECTOR

Effects of Aqueous Sample Content and Aqueous Co-Solvent Composition on UPC 2 Separation Performance

Live Webinar : How to be more Successful with your ACQUITY QDa Detector?

Improved Throughput and Reproducibility for Targeted Protein Quantification Using a New High-Performance Triple Quadrupole Mass Spectrometer

Metabolic Phenotyping Using Atmospheric Pressure Gas Chromatography-MS

Stephen McDonald and Mark D. Wrona Waters Corporation, Milford, MA, USA INT RO DU C T ION. Batch-from-Structure Analysis WAT E R S SO LU T IONS

Application Note LCMS-112 A Fully Automated Two-Step Procedure for Quality Control of Synthetic Peptides

LC-MS/MS Method for the Determination of Diclofenac in Human Plasma

Making Sense of Differences in LCMS Data: Integrated Tools

Peptide Isolation Using the Prep 150 LC System

Extraction of Methylmalonic Acid from Serum Using ISOLUTE. SAX Prior to LC-MS/MS Analysis

PosterREPRINT COMPARISON OF PEAK PARKING VERSUS AUTOMATED FRACTION ANALYSIS OF A COMPLEX PROTEIN MIXTURE. Introduction

IDENTIFICATION OF ORGANOMETALLIC COMPOUNDS USING FIELD DESORPTION IONIZATION ON THE GCT

Determination of Pharmaceuticals in Environmental Samples

Agilent All Ions MS/MS

Analysis of Illegal Dyes in Food Matrices using Automated Online Sample Preparation with LC/MS

Extraction of Cocaine and Metabolites From Urine Using ISOLUTE SLE+ prior to LC-MS/MS Analysis

Application Note. Edgar Naegele. Abstract

Definitive EtG/EtS LC-MS/MS Analysis:

Luna 2.5 µm C18(2)-HST. Advantages of 2.5 µm for increasing the speed of analysis while maintaining high efficiency

T H E ANA LYSIS O F DIOX INS AND F U R A NS USING H RG C- H IG H R E SO LU T IO N MS W IT H T H E AU T OS P EC- ULTIMA NT

MassHunter METLIN Metabolite PCD/PCDL Quick Start Guide

ASAP APPLICATION NOTEBOOK: Atmospheric Solids Analysis Probe FINE AND SPECIALTY CHEMICALS ENERGY SYNTHETIC POLYMERS FOOD TESTING

Quadrupole Time-of-Flight Liquid Chromatograph Mass Spectrometer LCMS-9030 C146-E365

LC Technical Information

Structural Analysis by In-Depth Impurity Search Using MetID Solution and High Accuracy MS/MS

[ xevo G2 tof ] Your Quantitative and Qualitative Questions Answered. Exactly.

MS n Analysis With Fast Polarity Switching in the Agilent 1100 Series LC/MSD Trap SL. Application Note. Christine Miller Agilent Technologies

High-Throughput Protein Quantitation Using Multiple Reaction Monitoring

EXPRESSION MORE PEPTIDES. MORE PROTEINS. MORE REPRODUCIBILITY. MORE QUANTIFICATION.

Accurate Mass Measurement for Intact Proteins using ESI-oa-TOF. Application Note. Donghui Yi and Christine Miller Agilent Technologies

Successfully Scaling and Transferring HPLC and UPLC Methods

Key Words Q Exactive, Accela, MetQuest, Mass Frontier, Drug Discovery

A S ENSIT IV E M E T HO D FO R T H E D E T E RM INAT IO N O F ENDO C RIN E- D IS RU P T ING COM P OUNDS IN RIV E R WAT E R BY L C / MS/MS

Analysis of a Verapamil Microsomal Incubation using Metabolite ID and Mass Frontier TM

Applying MRM Spectrum Mode and Library Searching for Enhanced Reporting Confidence in Routine Pesticide Residue Analysis

Overview. Introduction. André Schreiber 1 and Yun Yun Zou 1 1 AB SCIEX, Concord, Ontario, Canada

Maximizing Triple Quadrupole Mass Spectrometry Productivity with the Agilent StreamSelect LC/MS System

Toxicity, Teratogenic and Estrogenic Effects of Bisphenol A and its Alternative. Replacements Bisphenol S, Bisphenol F and Bisphenol AF in Zebrafish.

Analytical determination of testosterone in human serum using an Agilent Ultivo Triple Quadrupole LC/MS

LC-HRMS: Challenges for Routine Implementation

THE IMPLEMENTATION OF A SCREENING WORKFLOW FOR ION MOBILITY QUADRUOPOLE TIME-OF-FLIGHT MASS SPECTROMETRIC ANALYSIS OF PFOS ISOMERS

Profiling of Diferulates (Plant Cell Wall Cross- Linkers) Using Ultrahigh-performance Liquid. Chromatography-Tandem Mass Spectrometry

MassHunter TOF/QTOF Users Meeting

Accurate Mass Analysis of Hydraulic Fracturing Waters: Identification of Polyethylene Glycol Surfactants by LC/Q-TOF-MS

Accurate Mass Analysis of Hydraulic Fracturing Waters

ApplicationNOTE THE ANALYSIS OF POLYCHLORINATED BIPHENYLS (PCBS) BY GC-HIGH RESOLUTION MASS SPECTROMETRY USING THE MICROMASS AUTOSPEC ULTIMA NT

Identification of Human Hemoglobin Protein Variants Using Electrospray Ionization-Electron Transfer Dissociation Mass Spectrometry

Frankincense and myrrh suppress inflammation via regulation of the. metabolic profiling and the MAPK signaling pathway

Transcription:

C HA R AC T E RIZ AT I N F INK J E T P RINT E R C A RT RIDG E INK S USING A CHEMMETRIC APPRACH Diana Uría and Paul Silcock Waters Corporation, Manchester, UK AIM To evaluate the potential of UPLC -ToF-MS combined with a multivariate approach (MVA) to data analysis for the identification of characteristic markers for inks from different manufacturers. EXPERIMENTAL Sample preparation Six different inkjet cartridges were selected for this analysis. Samples were taken from five leading manufacturers and one generic equivalent. Sample preparation was carried out as follows: INTRDUCTIN The printer cartridge market is a multi-billion dollar industry with inkjet printer cartridges being used in almost every household within the developed world. Cartridges are generally either genuine manufacturer branded or a generic equivalent. Differences are said to be in the quality and performance of both the cartridge and the ink itself. However, generic versions can be five to six times more cost effective. Research and development plays an important role in maintaining a competitive advantage within the printer cartridge market. Major manufacturers spend millions of dollars in research, making continual advancements in ink pigments, qualities of light fastness and water fastness, and suitability for printing on a wide variety of media. Therefore, companies rely on copyright and patent protection to prevent unauthorized copying and refilling of cartridges in an effort to prevent the development and sales of less expensive generic versions from competitors. Inkjet inks are complex mixtures that require the speed, sensitivity, and resolution of UltraPerformance LC, combined with the power of exact mass ToF-MS for effective analysis. A chemometric approach to data analysis makes use of advanced statistical tools to help characterize ink samples. n Extract ink from cartridges n Dilute twice : in a mixture of 0 mm NH HC /Acetonitrile (9:) n Filter with mm GHP Acrodisks filters n Inject μl LC conditions LC system: Waters ACQUITY UPLC System Column: ACQUITY UPLC BEH C 8 Column. x mm,.7 µm Solvents: A: 0 mm NH HC, ph 9.8, B: CH CN Flow rate: 0. ml/min Temperature: 0 C Run time:. min Gradient: Time (min) % B 0.0 0.0.0 90.0 90. 0 This application note describes a novel UPLC-ToF-MS-MS method to identify markers that can differentiate five black inkjet ink samples from top manufacturers and compare them to a generic equivalent ink sample.

MS conditions MS system: Waters LCT Premier XE Mass Spectrometer Ionization mode: ESI positive and negative Capillary voltage: 000 V (+ESI) / 800 V (-ESI) Cone voltage: 0 V Aperture : V Source temp: 80 C Desolvation temp: 00 C Desolvation gas: 00 L/Hr DRE lens: Enabled W-optics: Enabled LockMass: Leucine enkephanline (00 pg/ul) Scan rate: 0. s / scan Mass: -0 m/z.....8.00... 8.98 9.8 8.98 8.97.9.7...8..0.. 9.7 8.97.9.7.97..7.7;.. 9.8 8.97.9.7.97..8. 9.8 90.98.98.8.0.. 0.89 78..7 9.0..9. 8.09. 77.8 8.97.0.98.7.. 0.8.7..0 8.97 9.8 8.97 Figure. Negative ESI / ToF chromatograms for six different ink samples. Time Acquisition and processing methods The data were acquired using Waters MassLynx TM Software, v.. and processed using MarkerLynx TM XS Application Manager. This software package is designed to interpret multivariate data, such as the complex datasets obtained from mass spectrometers. For this complex task, MarkerLynx XS produced a table of EMRT (exact mass, retention time) pairs associated to the intensity of the EMRT. This resultant table represents a fingerprint for each sample, which can then be used for advanced MVA analysis. These powerful statistical modelling tools, combined with a complete graphical display suite, allow researchers to visualize their data and extract more meaningful information from experimental results. RESULTS AND DISCUSSIN ACQUITY UPLC enabled rapid run times while maintaining an excellent chromatographic separation of the six ink samples. The LCT Premier XE provided the excellent full-scan sensitivity that was required. Exact mass information is paramount for this type of analysis as it enables the proposal of elemental compositions, and facilitates marker characterization utilizing the database search capabilities integrated into the MarkerLynx XS Application Manager. Multivariate analysis using MarkerLynx XS MarkerLynx XS features Partial Least Squares Discriminate Analysis (PLS-DA). This model sharpens the separation between groups and facilitates the identification of the EMRT pairs or markers responsible for differences between groups. Through MarkerLynx XS, characteristic markers can be identified through distinct clustering of the data when analyzing in both positive and negative ESI mode. Qualitatively, differences between the different inks can be observed by visual inspection of the UPLC-ToF-MS chromatograms, as shown in Figure. However, manual chromatogram-by-chromatogram inspection of multiple samples is very labor-intensive and can be inaccurate.

Figure shows the PLS-DA plot of negative ESI data for the six different inks. The tight clustering of each ink sample demonstrates the stability of the analytical system and allows the assessment of the significance of the grouping. In this case, the PLS-DA plot shows the similarity between ink samples,,, and, as well as the difference between ink samples and. Identification of unknowns The EMRT pairs, which contribute to the clustering, are easily identified on the bi-plot, as shown in Figure. Loadings Bi Plot Comp[] vs. Comp[] colored by Group.0 0.8 0. Brand Brand Brand Brand Brand 0. Generic Generic Generic Brand Brand Brand pc(corr)[]t(corr)[] 0. -0.0-0. Generic Brand Brand Brand Brand Brand Brand Brand Brand Generic Brand Brand Brand X variables Responses -0. -0. Brand Brand Brand Brand Brand Brand Brand Brand -0.8 -.0 -. -.0-0.9-0.8-0.7-0. -0. -0. -0. -0. -0. 0.0 0. 0. 0. 0. 0. 0. 0.7 0.8 0.9.0 pc(corr)[]t(corr)[] EZinfo - EZ_neg (M: PLS-DA) - 008-0- 8:7:8 (UTC+0) Figure. Bi-plot of sample data from all six inks. Figure. PLS-DA scores plot showing clear grouping for the different inks. In order to identify these unknown markers, elemental compositions proposals were automatically generated by MarkerLynx XS. The excellent mass accuracy and isotopic pattern measurements acquired from the LCT Premier XE minimized the proposal of false candidates. MarkerLynx XS uses both local and online databases to propose chemical structures based on the suggested elemental compositions to facilitate the identification of unknowns.

Figure shows the trend plot (normalized ion intensity versus sample) for several compounds present in the samples at different concentrations. By looking at the plot, it is obvious that these compounds are characteristic markers for ink Sample. Variables colored by Group 0 0 0 80 0 0 0 0 Group EZinfo - EZ_neg (M: PLS-DA) - 008-0-0 :0:07 (UTC+0) Figure. Trendplot for some of the characteristic EMRTs, or markers, for ink Brand. These markers were then used in a database search based on the suggested possible elemental composition as shown in Figure. Figure. Elemental composition and database search results for the markers identified in Figure. As an example of the power of elemental composition information proposed, based on both exact mass and isotopic pattern, we identified the marker as sulforhodamine B (Figure ), a well known component of inks. H S - S N + N Figure. Structure of the proposed marker sulforhodamine B.

Ink cartridge comparisons Ink Sample was from a top brand manufacturer s cartridge and ink Sample was a generic equivalent for the same printer. The data from these two samples was analyzed using rthogonal Partial East Squarer Discriminate Analysis (PLS-DA), a data model specialized in finding out what makes two groups different. In this case, the EMRT differences between the genuine and the generic ink samples were observed. The scores plot in Figure 7 shows the distinctive separation for both groups. Figure 8. S-plot identifying eight potential markers to differentiate ink Samples and. The eight most relevant markers were exported to MarkerLynx XS for elemental composition proposal as shown in Figure 9. Figure 7. PLS-DA scores plot showing clear grouping of the two separate ink samples. The S-plot in Figure 8 represents the weight of each observation (EMRT) when describing the difference across groups. This is used for easy information extraction of the relevant EMRTs. Figure 9. MarkerLynx XS results for elemental composition proposal for the eight identified markers.

The success of a database search critically depends on the quality of data that populates it. In the case of inkjet cartridges, high quality entries are lacking as most companies will try to maintain a competitive advantage by being secretive about the components of their products. This explains the lack of meaningful database search results in this case, in spite of the specific elemental composition information that was identified through the analysis. CNCLUSINS Using ACQUITY UPLC with LCT Premier XE combined with MarkerLynx XS, it was possible to differentiate between samples that look virtually identical. Using this system solution, it was possible to identify the differences between all ink samples through clear cluster grouping. The exact mass and isotopic information obtained was then used for database searching. The power of UPLC enabled rapid analysis times, which allowed for many samples to be compared in a very short amount of time. Also, retention times were reproducible from sample to sample an important factor when looking at this type of comparison technique as it is sensitive to changes between chromatograms. The ability to quickly characterize complex ink formulas can facilitate increases in production workflow and it is a useful approach for R&D applications, as well as for evaluating competitive products. The Waters UPLC-ToF-MS solution provides: n UPLC Rapid throughput with improved sensitivity. Flexible analyses of multiple compounds in complex matrices. Improved lab efficiency and excellent return on investment. n LCT Premier XE Maximum full scan sensitivity. Full UPLC compatibility. Exact mass and isotopic pattern information enabling the successful identification of unknowns. n MarkerLynx XS Automatic extraction of relevant marker information. and processing of complex multivariate data from LC/MS analyses. Data reduction and statistical analyses via an interactive browser to identify characteristic markers of specific compounds within similar products, which can then be used to distinguish differences in the properties of final commodities. Waters, UPLC, UltraPerformance LC, and ACQUITY UPLC are registered trademarks of Waters Corporation. LCT Premier, MassLynx, MarkerLynx, and The Science of What s Possible are trademarks of Waters Corporation. All other trademarks are the property of their respective owners. 008 Waters Corporation. Produced in the U.S.A. July 008 700070en AG-PDF Waters Corporation Maple Street Milford, MA 077 U.S.A. T: 08 78 000 F: 08 87 990 www.waters.com