Autonomous Duffing-Holmes Type Chaotic Oscillator

Similar documents
The colpitts oscillator family

Analog Modeling Complex Dynamical Systems Using Simple Electrical Circuits

The Smallest Transistor-Based Nonautonomous Chaotic Circuit

The Wien Bridge Oscillator Family

Experimental and numerical realization of higher order autonomous Van der Pol-Duffing oscillator

Inhibition of spikes in an array of coupled FitzHugh Nagumo oscillators by external periodic forcing

Experimenting Chaos with Chaotic Training Boards

STABILIZATION OF UNSTABLE PERIODIC ORBIT IN CHAOTIC DUFFING HOLMES OSCILLATOR BY SECOND ORDER RESONANT NEGATIVE FEEDBACK

Accelerating interior point methods with GPUs for smart grid systems

Design of Robust AMB Controllers for Rotors Subjected to Varying and Uncertain Seal Forces

Realtime 3D stress measurement in curing epoxy packaging

A Note on Powers in Finite Fields

The dipole moment of a wall-charged void in a bulk dielectric

Reducing Uncertainty of Near-shore wind resource Estimates (RUNE) using wind lidars and mesoscale models

Determination of packaging induced 3D stress utilizing a piezocoefficient mapping device

Advantages and Challenges of Superconducting Wind Turbine Generators

SYNCHRONIZING CHAOTIC ATTRACTORS OF CHUA S CANONICAL CIRCUIT. THE CASE OF UNCERTAINTY IN CHAOS SYNCHRONIZATION

Experimental verification of the Chua s circuit designed with UGCs

Simulation Model of System Enabled to Serve n Types of Messages

Modelling Salmonella transfer during grinding of meat

Global Wind Atlas validation and uncertainty

A numerical study of vortex-induced vibrations (viv) in an elastic cantilever

Sound absorption properties of a perforated plate and membrane ceiling element Nilsson, Anders C.; Rasmussen, Birgit

Dynamic Effects of Diabatization in Distillation Columns

An Equivalent Source Method for Modelling the Lithospheric Magnetic Field Using Satellite and Airborne Magnetic Data

Controlling Chaos in a State-Dependent Nonlinear System

Matrix representation of a Neural Network

Multiple Scenario Inversion of Reflection Seismic Prestack Data

A Trust-region-based Sequential Quadratic Programming Algorithm

Controlling chaos in Colpitts oscillator

Crack Tip Flipping: A New Phenomenon yet to be Resolved in Ductile Plate Tearing

Resonant Inerter Based Absorbers for a Selected Global Mode

Introducing chaotic circuits in an undergraduate electronic course. Abstract. Introduction

A New Circuit for Generating Chaos and Complexity: Analysis of the Beats Phenomenon

Ion exchange model for phase proton exchange waveguide in LiNbO3.

Design possibilities for impact noise insulation in lightweight floors A parameter study

On the Einstein-Stern model of rotational heat capacities

A New Dynamic Phenomenon in Nonlinear Circuits: State-Space Analysis of Chaotic Beats

Validity of PEC Approximation for On-Body Propagation

A SYSTEMATIC PROCEDURE FOR SYNCHRONIZING HYPERCHAOS VIA OBSERVER DESIGN

Numerical modeling of the conduction and radiation heating in precision glass moulding

Optimizing Reliability using BECAS - an Open-Source Cross Section Analysis Tool

Benchmarking of optimization methods for topology optimization problems

A simple electronic circuit to demonstrate bifurcation and chaos

Implementing Memristor Based Chaotic Circuits

Unknown input observer based scheme for detecting faults in a wind turbine converter Odgaard, Peter Fogh; Stoustrup, Jakob

COMPLEX DYNAMICS IN HYSTERETIC NONLINEAR OSCILLATOR CIRCUIT

Kommerciel arbejde med WAsP

Steady State Comparisons HAWC2 v12.2 vs HAWCStab2 v2.12

2D PIM Simulation Based on COMSOL

Radioactivity in the Risø District January-June 2014

Radioactivity in the Risø District July-December 2013

Multi (building)physics modeling

Reflection of sound from finite-size plane and curved surfaces

Dynamics of Two Resistively Coupled Electric Circuits of 4 th Order

Room Allocation Optimisation at the Technical University of Denmark

Lidar calibration What s the problem?

Impact of the interfaces for wind and wave modeling - interpretation using COAWST, SAR and point measurements

Chaos: A Nonlinear Phenomenon in AC-DC Power-Factor- Corrected Boost Convertor

Aalborg Universitet. Lecture 14 - Introduction to experimental work Kramer, Morten Mejlhede. Publication date: 2015

CONTROLLING CHAOTIC DYNAMICS USING BACKSTEPPING DESIGN WITH APPLICATION TO THE LORENZ SYSTEM AND CHUA S CIRCUIT

The Reflection of Plane Electromagnetic Wave from Dielectric Slab with Metallic Lattice Inside

Published in: Proceedings of the 39th Annual Conference of the IEEE Industrial Electronics Society, IECON 2013

Prediction of airfoil performance at high Reynolds numbers.

A practical implementation of microphone free-field comparison calibration according to the standard IEC

Generating the optimal magnetic field for magnetic refrigeration

Validation of Boundary Layer Winds from WRF Mesoscale Forecasts over Denmark

Diffusion of sulfuric acid in protective organic coatings

De Prisco, Renato; Comunian, Michele; Grespan, Franscesco; Piscent, Andrea; Karlsson, Anders

Single Shooting and ESDIRK Methods for adjoint-based optimization of an oil reservoir

Simulating wind energy resources with mesoscale models: Intercomparison of stateof-the-art

A New Chaotic Behavior from Lorenz and Rossler Systems and Its Electronic Circuit Implementation

Plane Wave Medical Ultrasound Imaging Using Adaptive Beamforming

Elwakil, Ahmed S.; Kennedy, Michael Peter. Article (peer-reviewed)

Optimal acid digestion for multi-element analysis of different waste matrices

Solar radiation and thermal performance of solar collectors for Denmark

Introducing Chaotic Circuits in Analog Systems Course

Upper and Lower Bounds of Frequency Interval Gramians for a Class of Perturbed Linear Systems Shaker, Hamid Reza

A Two-Dimensional Chaotic Logic Gate for Improved Computer Security

Research Article Adaptive Control of Chaos in Chua s Circuit

Application of mesoscale models with wind farm parametrisations in EERA-DTOC

DOUBOCHINSKI S REVERSE-PARAMETRICAL PENDULUM AND MOTOR

A comparison study of the two-bladed partial pitch turbine during normal operation and an extreme gust conditions

Difference Resonances in a controlled van der Pol-Duffing oscillator involving time. delay

Reflection and absorption coefficients for use in room acoustic simulations

Validation and comparison of numerical wind atlas methods: the South African example

Measurements of the angular distribution of diffuse irradiance

arxiv: v1 [nlin.ao] 19 May 2017

Physics for Scientists & Engineers 2

Stabilizing and Destabilizing Control for a Piecewise-Linear Circuit

Development of a Dainish infrastructure for spatial information (DAISI) Brande-Lavridsen, Hanne; Jensen, Bent Hulegaard

Construction of Classes of Circuit-Independent Chaotic Oscillators Using Passive-Only Nonlinear Devices

RICH VARIETY OF BIFURCATIONS AND CHAOS IN A VARIANT OF MURALI LAKSHMANAN CHUA CIRCUIT

Space charge fields in DC cables

Massively parallel molecular-continuum simulations with the macro-micro-coupling tool Neumann, P.; Harting, J.D.R.

Strongly 2-connected orientations of graphs

A zero-free interval for chromatic polynomials of graphs with 3-leaf spanning trees

Potential solution for rain erosion of wind turbine blades

Capacitor performance limitations in high power converter applications

Molecular orientation via a dynamically induced pulse-train: Wave packet dynamics of NaI in a static electric field

Transcription:

Downloaded from orbit.u.dk on: Jan 01, 018 Autonomous Duffing-Holmes Type Chaotic Oscillator Tamaševiius, A.; Bumelien, S.; Kirvaitis, R.; Mykolaitis, G.; Tamaševiit, E.; Lindberg, Erik Published in: Elektronika ir Elektrotechnika Publication date: 009 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Tamaševiius, A., Bumelien, S., Kirvaitis, R., Mykolaitis, G., Tamaševiit, E., & Lindberg, E. (009). Autonomous Duffing-Holmes Type Chaotic Oscillator. Elektronika ir Elektrotechnika, 5(93), 43-46. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

ELECTRONICS AND ELECTRICAL ENGINEERING ISSN 139 115 009. No. 5(93) ELEKTRONIKA IR ELEKTROTECHNIKA T170 ELECTRONICS ELEKTRONIKA Autonomous Duffing Holmes Type Chaotic Oscillator A. Tamaševičius, S. Bumelienė Plasma Phenomena and Chaos Laboratory, Semiconductor Physics Institute, A. Goštauto str. 11, LT-01108 Vilnius, Lithuania, phone: +370 5 619589; e-mail: tamasev@pfi.lt R. Kirvaitis Department of Electronic Systems, Faculty of Electronics, Vilnius Gediminas Technical University, Naugarduko str. 41, LT-037 Vilnius, Lithuania, phone: +370 5 745005; e-mail: raimundas.kirvaitis@adm.vgtu.lt G. Mykolaitis Department of Physics, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Saulėtekio av. 11, LT-103 Vilnius, Lithuania, phone: +370 5 619589; e-mail: gytis@pfi.lt E. Tamaševičiūtė Department of General Physics and Spectroscopy, Faculty of Physics, Vilnius University, Saulėtekio av. 9, Vilnius, LT-10, Lithuania, phone: +370 69 19788; e-mail: elena.tamaseviciute@ff.vu.lt E. Lindberg DTU Elektro Department, Electronics & Signalprocessing, 348, Technical University of Denmark, DK-800 Lyngby, Denmark, phone: +45 455 3650; e-mail: el@elektro.u.dk Introduction The Duffing Holmes nonautonomous oscillator is a classical example of a nonlinear dynamical system exhibiting complex also chaotic behaviour [1 3]. It is given by the second order differential equation with an external periodic drive term: d x dx 3 b x x a sin t. (1) Three different techniques are used to solve the Duffing Holmes equation and to process its solutions electronically. The first approach is a hybrid one making use of integration the equation in a digital processor and of the digital-to-analogue conversion of the digital output for its further analogue processing, analysis and display [4, 5]. The second method employs purely analogue hardware based on analogue computer design [6 9]. For example, analogue computer has been used to simulate Eq. (1) and to demonstrate the effect of scrambling chaotic signals in linear feedback shift registers [6 8]. Later analogue computer has been suggested for demonstration of chaos from Eq. (1) for the undergraduate students [9]. The third technique is based on building some specific analogue electrical circuit imitating dynamical behaviour of Eq. (1). The Young Silva oscillator [10] and used to demonstrate the effect of resonant perturbations for inducing chaos [11] is an example. Recently the Young Silva circuit has been essentially modified and used to test the control methods for unstable periodic orbits [1, 13] and unstable steady states [14] of dynamical systems. The modified version of the Young Silva oscillator has been characterized both numerically and experimentally in [15]. Evidently the first and the second techniques are rather general and can be applied to other differential equations as well. In contrast, the third approach is limited to a specific equation. Despite this restriction the intrinsic electrical circuits have an attractive advantage due to their extreme simplicity and cheapness. One may think of such analogue electrical circuits as of analogue computers. This is true from a mathematical and physical point of view in the sense that the underlying equations are either exactly the same or very similar also that the dynamical variables in the both cases are represented by real electrical voltages and/or currents. However, the circuit architecture of an analogue computer, compared to an intrinsic nonlinear circuit, is rather different. Any analogue computer is a standard collection of the following main processing blocks: inverting RC integrators, inverting adders, inverting and non-inverting amplifiers, multipliers, and piecewise linear nonlinear units. Meanwhile the specific analogue circuits comprise only small number of electrical components: resistors, capacitors, inductors, and semiconductor diodes. In addition, they may include a single operational amplifier (in some cases several amplifiers). In this paper, we introduce, as an alternative for the nonautonomous Eq. (1), an autonomous version of the Duffing type oscillator given by 43

d x dx 3 b x x kz 0, dz dx f ( z) or equivalently by a set of three first order equations dx y, dy 3 x x by kz, dz f ( y z). () (a) Here z is the third independent dynamical variable, f is its characteristic rate, and k is the feedback coefficient. We emphasize in Eq. () an opposite sign of the damping term, compared to Eq. (1). The negative damping, bdx in Eq. (), or by in Eq. (a) yields additional spiral instability. Also we propose a specific electrical circuit imitating solutions of Eq. (a). Electronic circuitry Simulation results The oscillator in Fig. 1 has been simulated using the ELEC- TRONICS WORKBENCH package (SPICE based software) and the results are shown in Figs. 4. The following element values have been used in the simulation: L = 19 mh, C = 470 nf, C1 = 0 nf, R = 0, R1 = 30 k, R = 10 k, R3 = 30 k, R4 = 80, R5 = 75 k, R6 = R7 = 10 k, R8 = 0 k. The OA1 to OA3 are the LM741 type or similar operational amplifiers, the diodes are the 1N4148 type or similar general-purpose devices. Fig.. Snapshot of typical chaotic waveform of x(t) from the autonomous Duffing type oscillator The novel autonomous circuit is presented in Fig. 1. Fig. 3. Simulated phase portraits [x y], [x z], [y z] Fig. 1. Circuit implementation of the autonomous Duffing type oscillator. Any of the nodes lettered as x, y or z can be taken for the output The stage containing the operational amplifier OA1, the diodes, the resistors R1, R and R3 is exactly the same as in the nonautonomous oscillator [15]. The autonomous oscillator lacks the external periodic drive source, but includes two additional linear feedback loops. The circuit composed of the OA based stage and the resistor R5 introduce the positive feedback loop, specifically negative damping in Eq. (). While the circuit including the OA OA3 stages (note a capacitor C1 in the latter stage) and the resistor R8 compose the inertial negative feedback, specifically the inertial positive damping term kz in Eq. (). Fig. 4. Simulated power spectrum S from the variable x(t) Hardware Experiments The autonomous oscillator has been built using the elements described in the previous section. Typical experimental results are presented in Fig. 5 7. 44

Fig. 5. Experimental snapshot of chaotic waveform x(t). Horizontal scale ms/div. Vertical scale 1 V/div. Element values are the same as in the previous section, except R5 = 68 k z x(t) Fig. 6. Experimental phase portraits [x y], [x z], [y z]. Element values are the same as in the previous section, except R5 = 68 k S, db y Fig. 7. Experimental power spectrum S from the output signal x(t). Frequency range 0 to 5 khz. Horizontal scale 500 Hz/div., resolution 100 Hz. Vertical scale 10 db/div. Circuit element values are the same as in the previous section, except R5= 68 k Concluding remarks x t f We have designed and built a novel Duffing type autonomous 3 rd -order chaotic oscillator. In comparison with the common nonautonomous Duffing Holmes type oscillator [15] the autonomous circuit has an internal positive feedback loop instead of an external periodic drive source. In addition, it is supplemented with an RC inertial damping loop providing negative feedback. The circuit has been investigated both numerically and experimentally. The main characteristics, including the time series, phase portraits, and power spectra have been calculated using the SPICE based software, also taken experimentally. Fairly good agreement between the simulation and the hardware z x y experimental results is observed (Fig. 3 7). Some discrepancy (about 10%) between the model and the hardware prototype, namely R5 = 75 k in the model (Fig. 3 5) and R5 = 68 k in the experimental circuit (Fig. 6 7) can be explained in the following way. The inductive element in the model is an ideal device in the sense that its L = const. Meanwhile the inductance of a real inductor, e.g. a coil wound on a ferrite toroidal core has a slight dependence on the current through it: L = L(I). We note that the structure of the proposed oscillator is rather different in comparison to many other 3 rd -order autonomous chaotic oscillators described so far. The basic unit of the RC Wien-bridge [16 18] and LC tank [19 1] based oscillators is the nd -order linear unstable resonator. An additional degree of freedom required for chaos is introduced by supplementing the resonator with the 1 st - order inertial nonlinear damping loop [16 1]. The same approach of building chaotic oscillators is used in higher order circuits [ 4] (some of the design principles are overviewed in a book chapter [5]). In contrast, the oscillator described in this paper contains a nonlinear unstable resonator and an inertial linear damping loop. References 1. Ott E. Chaos in Dynamical Systems. Cambridge University Press. 1993.. Hilborn R. C. Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press. 006. 3. Cvitanović P. et al. Chaos: Classical and Quantum. Niels Bohr Institute, Copenhagen. 008 [interactive]. Accessed at: http://chaosbook.org. 4. Namajūnas A., Tamaševičius A. An Optoelectronic Technique for Estimating Fractal Dimensions from Dynamical Poincaré Maps // IFIP Transactions A: Computer Science and Technology. 1994. Vol. A-41. P. 89 93. 5. Namajūnas A., Tamaševičius A. Simple Laboratory Instrumentation for Measuring Pointwise Dimensions from Chaotic Time Series // Review of Scientific Instruments. 1994. Vol. 65. P. 303 3033. 6. Namajūnas A., Tamaševičius A., Čenys A, Anagnostopoulos A. N. Whitening Power Spectra of Chaotic Signals // Proceedings of the 7 th International Workshop on Nonlinear Dynamics of Electronic Systems. Rønne, Bornholm, Denmark. 1999. P. 137 140. 7. Namajūnas A., Tamaševičius A., Mykolaitis G., Čenys A. Spectra Transformation of Chaotic Signals // Lithuanian Journal of Physics. 000. Vol. 40. P. 134 139. 8. Namajūnas A., Tamaševičius A., Mykolaitis G., Čenys A. Smoothing Chaotic Spectrum of Nonautonomous Oscillator // Nonlinear Phenomena in Complex Systems. 000. Vol. 3. P. 188 191. 9. Jones B. K., Trefan G. The Duffing Oscillator: A Precise Electronic Analog Chaos Demonstrator for the Undergraduate Laboratory // American Journal of Physics. 001. Vol. 69. P. 464 469. 10. Silva C. P., Young A. M. High Frequency Anharmonic Oscillator for the Generation of Broadband Deterministic Noise. U.S. Patent No. 6,17,899. October 3, 000. 11. Kandangath A., Krishnamoorthy S., Lai Y. C., Gaudet J. A. Inducing Chaos in Electronic Circuits by Resonant Perturbations // IEEE Transactions on Circuits and Systems 45

I: Fundamental Theory and Applications. 007. Vol. 54. P. 1109 1119. 1. Tamaševičius A., Tamaševičiūtė E., Mykolaitis G., Bumelienė S. Stabilisation of Unstable Periodic Orbit in Chaotic Duffing Holmes Oscillator by Second Order Resonant Negative Feedback // Lithuanian Journal of Physics. 007. Vol. 47. P. 35 39. 13. Tamaševičius A., Mykolaitis G., Pyragas V., Pyragas K. Delayed Feedback Control of Periodic Orbits without Torsion in Nonautonomous Chaotic Systems: Theory and Experiment // Physical Review E. 007. Vol. 76, No.. P. 0603. 14. Tamaševičius A., Tamaševičiūtė E., Mykolaitis G., Bumelienė S. Switching from Stable to Unknown Unstable Steady States of Dynamical Systems // Physical Review E. 008. Vol. 78, No.. P. 0605. 15. Tamaševičiūtė E.,Tamaševičius A., Mykolaitis G., Bumelienė S. Lindberg E. Analogue Electrical Circuit for Simulation of the Duffing Holmes Eequation // Nonlinear Analysis: Modelling and Control. 008. Vol. 13. P. 41 5. 16. Namajūnas A., Tamaševičius A. Modified Wien Bridge Oscillator for Chaos // Electronics Letters. 1995. Vol. 31, No 5. P. 335 336. 17. Namajūnas A., Tamaševičius A. RC Chaotic Oscillator // Electronics and Electrical Engineering. Kaunas: Technologija, 1996. No. 1(5). P. 40 4 (in Lithuanian). 18. Namajūnas A., Tamaševičius A. Simple RC Chaotic Oscillator // Electronics Letters. 1996. Vol. 3, No. 11. P. 945 946. 19. Pikšrys R. A., Pyragas K. A., Tamaševičius A. V. Diagrams for Transforming LC Autogenerator into Noise Generator // Radiotekhnika. 1986. No. 9. P. 43 45 (in Russian) (for English translation see Telecommunications and Radioengineering. 1986. No. 9). 0. Tamaševičius A. Reproducible Analogue Circuit for Chaotic Synchronisation // Electronics Letters. 1997. Vol. 33, No. 13. P.1105 1106. 1. Tamaševičius A., Mykolaitis G., Pyragas V., Pyragas K. Simple Chaotic Oscillator for Educational Purposes // European Journal of Physics. 005. Vol. 6. P. 61 63.. Nishio Y., Mori S., Saito T. An Approach Toward Higher Dimensional Autonomous Chaotic Circuits // Proceedings International Seminar on Nonlinear Circuits and Systems. Moscow, Russia. 199. P. 60 69. 3. Tamaševičius A., Namajūnas A., Čenys A. Simple 4D Chaotic Oscillator // Electronics Letters. 1996. Vol. 3, No. 11. P. 957 958. 4. Tamaševičius A., Čenys A., Mykolaitis G., Namajūnas A., Lindberg E. Hyperchaotic Oscillator with Gyrators // Electronics Letters. 1997. Vol. 33, No. 7. P. 54 544. 5. Lindberg E., Murali K., Tamaševičius A.. Chaotic Oscillators Design Principles. Chapter 1 of Chaos in Circuits and Systems. Eds. G. Chen and T. Ueta. World Scientific Pb. 00. P. 1 1. Received 009 0 06 A. Tamaševičius, S. Bumelienė, R. Kirvaitis, G. Mykolaitis, E. Tamaševičiūtė, E. Lindberg. Autonomous Duffing Holmes Type Chaotic Oscillator // Electronics and Electrical Engineering. Kaunas: Technologija, 009. No. 5(93). P. 43 46. A novel Duffing Holmes type autonomous chaotic oscillator is described. In comparison with the well-known nonautonomous Duffing Holmes circuit it lacks the external periodic drive, but includes two extra linear feedback subcircuits, namely a direct positive feedback loop, and an inertial negative feedback loop. In contrast to many other autonomous chaotic oscillators, including linear unstable resonators and nonlinear damping loops, the novel circuit is based on nonlinear resonator and linear damping loop in the negative feedback. SPICE simulation and hardware experimental investigations are presented. Fairly good agreement between numerical and experimental results is observed. Ill. 7, bibl. 5 (in English; summaries in English, Russian and Lithuanian). А. Тамашявичюс, С. Бумялене, Р. Кирвайтис, Г. Миколайтис, Е. Тамашявичюте, Э. Линдберг. Автономный хаотический генератор типа Дуффинга Холмса // Электроника и электротехника. Каунас: Технология, 009. 5(93). С. 43 46. Описывается новый хаотический автогенератор типа Дуффинга Холмса. По сравнению с общеизвестной неавтономной цепью Дуффинга Холмса в предлагаемом автогенераторе отсутствует источник внешнего периодического возбуждения, но введены две дополнительные линейные цепи обратной связи: цепочка прямой положительной и цепочка инерционной отрицательной обратной связи. В отличие от многих других хаотических автогенераторов, содержащих линейные неустойчивые резонаторы и нелинейные демфирующие цепочки, основой описываемой цепи является нелинейный резонатор и линейное демпфирующее звено в цепи обратной связи. Предсталяются результаты вычислительного и экспериментального исследования. Ил. 7, библ. 5 (на английсском языке; рефераты на английсском, русском и литовском яз.). A. Tamaševičius, S. Bumelienė, R. Kirvaitis, G. Mykolaitis, E. Tamaševičiūtė, E. Lindberg. Autonominis Duffingo Holmeso chaotinis generatorius // Elektronika ir elektrotechnika. Kaunas: Technologija, 009. Nr. 5(93). P. 43 46. Aprašomas naujas Duffingo Holmeso chaotinių virpesių autogeneratorius. Palyginti su gerai žinomu neautonominiu Duffingo Holmeso generatoriumi, jame nėra išorinio periodinio žadinimo šaltinio. Vietoj jo įtaisytos dvi papildomos tiesinės grįžtamojo ryšio grandinės: tiesioginio teigiamojo ryšio grandinėlė ir inertinio neigiamojo ryšio grandinėlė. Skirtingai nuo daugelio kitų chaotinių autogeneratorių, turinčių tiesinius nestabilius rezonatorius ir netiesines slopinimo grandinėles, aprašomojoje grandinėje naudojamas netiesinis rezonatorius ir tiesinė slopinimo grandinėlė. Pateikiami skaitinio modeliavimo ir eksperimentinio tyrimo rezultatai tarpusavyje gana gerai sutampa. Il. 7, bibl. 5 (anglų kalba; santraukos anglų, rusų ir lietuvių k.). 46