More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

Similar documents
Frequency Response. Lecture #12 Chapter 10. BME 310 Biomedical Computing - J.Schesser

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Revisiting what you have learned in Advanced Mathematical Analysis

Signals & Systems - Chapter 3

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

EEE 303: Signals and Linear Systems

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Topic 5: Discrete-Time Fourier Transform (DTFT)

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Chapter 3. The Fourier Series

CHAPTER 9. Compressible Flow. Btu ft-lb lbm ft-lb c p = = ft-lb slug- R. slug- R. 1 k. p p. p v p v. = ρ ρ

ELEG 413 Lecture #6. Mark Mirotznik, Ph.D. Professor The University of Delaware

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series

Relation between Fourier Series and Transform

CSE 245: Computer Aided Circuit Simulation and Verification

Digital Signal Processing. Digital Signal Processing READING ASSIGNMENTS. License Info for SPFirst Slides. Fourier Transform LECTURE OBJECTIVES

MATHEMATICS FOR MANAGEMENT BBMP1103

READING ASSIGNMENTS. Signal Processing First. Fourier Transform LECTURE OBJECTIVES. This Lecture: Lecture 23 Fourier Transform Properties

Control System Engineering (EE301T) Assignment: 2

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering

Section 2: The Z-Transform

1 Finite Automata and Regular Expressions

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times.

Fourier Series: main points

Math 266, Practice Midterm Exam 2

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

Multi-Section Coupled Line Couplers

EE 529 Remote Sensing Techniques. Review

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system:

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

Chapter4 Time Domain Analysis of Control System

ENGIN 211, Engineering Math. Laplace Transforms

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

3.4 Repeated Roots; Reduction of Order

Chapter 8: Propagating Quantum States of Radiation

Chapter 2 Linear Waveshaping: High-pass Circuits

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Ch 1.2: Solutions of Some Differential Equations

EECE 301 Signals & Systems Prof. Mark Fowler

0 for t < 0 1 for t > 0

Brace-Gatarek-Musiela model

Lecture 26: Quadrature (90º) Hybrid.

Rocky Mountain Mathematics Consortium Summer Conference University of Wyoming 7-18 July 2003

10.5 Linear Viscoelasticity and the Laplace Transform

Another Explanation of the Cosmological Redshift. April 6, 2010.

Chapter 3 Fourier Series Representation of Periodic Signals

Response of LTI Systems to Complex Exponentials

Effect of sampling on frequency domain analysis

EXERCISE - 01 CHECK YOUR GRASP

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions


SAMPLE LITANY OF THE SAINTS E/G. Dadd9/F. Aadd9. cy. Christ, have. Lord, have mer cy. Christ, have A/E. Dadd9. Aadd9/C Bm E. 1. Ma ry and. mer cy.

Nikesh Bajaj. Fourier Analysis and Synthesis Tool. Guess.? Question??? History. Fourier Series. Fourier. Nikesh Bajaj

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f

Introduction to Fourier Transform

CHAPTER 9 Compressible Flow

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

Introduction to Laplace Transforms October 25, 2017

HIGHER ORDER DIFFERENTIAL EQUATIONS

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

Euler s Equation for Inviscid Fluid Flow

10.7 Temperature-dependent Viscoelastic Materials

Derivation of the differential equation of motion

From Fourier Series towards Fourier Transform

LECTURE 5 Guassian Wave Packet

Transfer function and the Laplace transformation

Introduction to Medical Imaging. Lecture 4: Fourier Theory = = ( ) 2sin(2 ) Introduction

NAME: ANSWER KEY DATE: PERIOD. DIRECTIONS: MULTIPLE CHOICE. Choose the letter of the correct answer.

T h e C S E T I P r o j e c t

GOVERNMENT OF ANDHRA PRADESH ABSTRACT

FOURIER ANALYSIS Signals and System Analysis

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

Connecting Deer Creek and River des Peres Greenway

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Chapter 5 Transient Analysis

Jonathan Turner Exam 2-10/28/03

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

Elliptical motion, gravity, etc

CHAPTER 9 Compressible Flow

Lectur 22. RF and Microwave Circuit Design Γ-Plane and Smith Chart Analysis. ECE 303 Fall 2005 Farhan Rana Cornell University

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee.

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

EXERCISE - 01 CHECK YOUR GRASP

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Lecture 4: Laplace Transforms

OPTICAL DESIGN. FIES fibre assemblies B and C. of the. LENS-TECH AB Bo Lindberg Document name: Optical_documentation_FIES_fiber_BC_2

Lecture 2: Current in RC circuit D.K.Pandey


METHODS OF CALCULATION OF DIGITAL SIGNALS SPECTRA

Transcription:

Mr n FT Lcur 4CT.5 3CT.3-5,7,8 BME 333 Bimdicl Signls nd Sysms - J.Schssr 43

Highr Ordr Diffrniin d y d x, m b Y b X N n M m N M n n n m m n m n d m d n m Y n d f n [ n ] F d M m bm m X N n n n n n m p n n p p y bp m x B p y x Ap B Y X Η X A BME 333 Bimdicl Signls nd Sysms - J.Schssr 44

Frquncy Rspns W us hv sn h h FT f h diffrnil quin dscribing sysm yilds h Frquncy Rspns, Hω W hv ls sn h cnvlving h impuls rspns, h, wih ny inpu, x will yild is upu, y. Is h Frquncy Rspns rld h impuls rspns? BME 333 Bimdicl Signls nd Sysms - J.Schssr 45

Frquncy Rspns nd h Impuls Rspns Using cnvluin, fr nly sinusidl inpus: x A y h x d h A d y x h d Tking h FT f bh sids y d x dh d h A d A h d x h d nd ning h h d is n funcin f : Y Y X h d H h d X Bu h d is h FT f h nd, hrfr, h frquncy rspns is us h FT f h impuls rspns. W sy h H nd h r FT pirs BME 333 Bimdicl Signls nd Sysms - J.Schssr 46

Anhr Inrsing Exmpl f fr - ; [ u F u d f ] d sin S FT f rcngulr puls is h Smpling Funcin Wh is h FT f u? BME 333 Bimdicl Signls nd Sysms - J.Schssr 47

FT f h Uni Impuls [ ] Frm [ ] If x=δ, hn y=h h rspns du uni impuls rspns nd Hω is h nwrk rspns r sysm funcin in phsr frm B B Y X ; X ; H A A d f x f x d This implis h h FT f h impuls rspns is h nwrk rspns r frquncy rspns H [ h ] h d BME 333 Bimdicl Signls nd Sysms - J.Schssr 48

FT f δ cninud [] d cs sin d csd sind cs d cs d; using h prpris f vn nd dd funcins. cs d BME 333 Bimdicl Signls nd Sysms - J.Schssr 49

Odd nd Evn Prpris f Signl N h h sin is dd nd lim sind lim{ sind sin d} If sin d g ; hn sin d g sinc L x, sin x dx sin x dx sin x dx sin x dx g lim{ g g } N h h csin is vn nd lim csd lim{ csd cs d} If cs d g ; hn cs d g sinc L x, cs x dx cs x dx cs x dx cs x dx g lim{ g g } lim{ g } lim csd BME 333 Bimdicl Signls nd Sysms - J.Schssr 5

Clculin f h Frquncy Rspns Givn h =δ nd i is knwn h = - u wh is FT f [ - u ] which mus qul b Hω? W cn clcul FT f [ - u ] by vluing h ingrl f - u -ω r clcul h sysm rspns funcin: / H [ u ] BME 333 Bimdicl Signls nd Sysms - J.Schssr 5

Furir Trnsfrm f A Cnsn [] d cs sin d Sinc cnsn is n vn funcin vr : [] csd Bu w sid h csd Our firs Duliy: A cnsn in h im dmin is uni impuls funcin in h frquncy dmin A uni impuls funcin in h im dmin is cnsn in h frquncy dmin BME 333 Bimdicl Signls nd Sysms - J.Schssr 5

FT f Uni Sp Funcin [ ] u u d d, which is undfind L's us nhr chniqu : df [ ] F d du [ ] [ ] [ u ] d [ u ], fr BME 333 Bimdicl Signls nd Sysms - J.Schssr 53

BME 333 Bimdicl Signls nd Sysms - J.Schssr 54 Tim & Frquncy Displcmn d d d T x T T x d d F dx x f dx x f d T f T f F f - T l x, ] [ is hn wh, ] [ If Tim Displcmn d S sin / sin S

Tim & Frquncy Displcmn Frquncy Displcmn If [ f ] F, hn wh is F Assum hr xis duliy bwn Tim nd Frquncy displcmn nd ry [ f ] f d f d F BME 333 Bimdicl Signls nd Sysms - J.Schssr Our nx Duliy: A shif in h im dmin quls muliplicin by -ωt h frquncy dmin A shif in h frquncy dmin quls muliplicin by - h im dmin 55

BME 333 Bimdicl Signls nd Sysms - J.Schssr 56 FT Symmris ]is dd Im[ ]is vn, R[ Which mns : And : And : N : * * F F F F d f F d f F d f F

Sm Inrsing FTs Expnnil Funcins [ [ u ] u ] du sinc [ ] d,sinc [ u ] [ u ],sinc [ u ] [ u ], BME 333 Bimdicl Signls nd Sysms - J.Schssr 57

Mr Inrsing FTs [ f f ] m cs m m M[ ] M[ ] This sys h w hv md w cpis f h spcrum f m n shifd h righ f h ω= xis nd n h lf. Bh f hs cpis r rducd by ½. M S / sin L s lk h cs whr m is puls nd hs h spcrum shwn bv. BME 333 Bimdicl Signls nd Sysms - J.Schssr 58

Frquncy Shifing Exmpl / M S sin F M[ ] M[ ] sin[ ] sin[ ] { } Mω..8.6 F =τ =,ω =3.4. -5-4 -3 - - 3 4 5 -. -.4 BME 333 Bimdicl Signls nd Sysms - J.Schssr 59

BME 333 Bimdicl Signls nd Sysms - J.Schssr 6 Furir Trnsfrm nd Furir Sris FT FS Tim Apridic Pridic Frquncy Cninuus Discr ] [ ] [ ] [sin ] [ ] [ ] [cs Frquncy Shif ] [ ] [ [] ] [ Nw wh bu FT f pridic funcin Rcll:

FT f Pridic Funcin FT f Pridic Funcin f A pridic funcin cn frmuld in FS: f [ f ] F k k T k T FT f pridic funcin is sris f uni impuls funcins nd is discr in h frquncy dmin. N : FT f rin f uni impulss f [ f ] F A n nt FT f rin f uni impulss is FSin h frquncy dmin nd is cninuus in h frquncy dmin k A nt n BME 333 Bimdicl Signls nd Sysms - J.Schssr 6

Enrgy f f Enrgy dissipd by, sy, hm rsisnc vr prid T T is v d T W ls clld his h qudric cnn f signl I cn b shwn h h qudric cnn f signl in rms f is FT is: T f d * F F d T And T T f d F d Th lr quin is clld Prsvl s Thrm BME 333 Bimdicl Signls nd Sysms - J.Schssr 6

Hmwrk Prblm Shw h Fω f n vn funcin f=f- is rl Shw h Fω f n dd funcin f=-f- is imginry Prblm Find Fω fr h fllwing funcins nd skch hir mpliud nd phs spcr: f = - u; f b = u-+ - u; f c = - u-+ - u; f d = sin u- BME 333 Bimdicl Signls nd Sysms - J.Schssr 63

Hmwrk Prblm 3 Clcul h Fω fr h wvfrms blw. N h h scnd is h ingrl f h firs. - - - 4CT.5., 4CT.5. 3CT.5., 3CT.5., 3CT.5.3 BME 333 Bimdicl Signls nd Sysms - J.Schssr 64