AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

Similar documents
AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

(f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons.

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

AP1 Kinematics (C) (D) t t t t

St. Joseph s Anglo-Chinese School

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time.

Regents Physics. Physics Midterm Review - Multiple Choice Problems

AP Physics C. Momentum. Free Response Problems

Energy Problem Solving Techniques.

2. What would happen to his acceleration if his speed were half? Energy The ability to do work

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam.

AP Physics C - Mechanics

i. Indicate on the figure the point P at which the maximum speed of the car is attained. ii. Calculate the value vmax of this maximum speed.

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector

PSI AP Physics I Work and Energy

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

D) No, because of the way work is defined D) remains constant at zero. D) 0 J D) zero

Physics 201, Midterm Exam 2, Fall Answer Key

AP* Circular & Gravitation Free Response Questions

Review Session 1. Page 1

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above.

In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion.

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o

Extra Circular Motion Questions

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of

Slide 1 / 76. Work & Energy Multiple Choice Problems

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

Question 8.1 Sign of the Energy II

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes

University of Colorado, Boulder, 2004 CT8-3

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Potential and Kinetic Energy: The Roller Coaster Lab Teacher Version

Work and Energy Chapter Questions. 2. Contrast the effects of external forces and internal forces on the total energy of a system.

Practice Test for Midterm Exam

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below.

CPS lesson Work and Energy ANSWER KEY

RELEASED FORM RELEASED. North Carolina Test of Physics

4Mv o. AP Physics Free Response Practice Momentum and Impulse ANSWERS

AP Physics C. Work and Energy. Free-Response Problems. (Without Calculus)

AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum)

1 A car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true?

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy ***

Lecture 10 Mechanical Energy Conservation; Power

Potential Energy & Conservation of Energy

AP Physics 1 Work Energy and Power Practice Test Name

AP Physics 1 Lesson 9 Homework Outcomes. Name

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30.

Name: Class: Date: so sliding friction is better so sliding friction is better d. µ k

PSI AP Physics B Circular Motion

1. The diagram below shows the variation with time t of the velocity v of an object.

Physics 110 Homework Solutions Week #5

What are two forms of Potential Energy that we commonly use? Explain Conservation of Energy and how we utilize it for problem-solving technics.

Welcome back to Physics 211

Which, if any, of the velocity versus time graphs below represent the movement of the sliding box?

AP PHYSICS 1 Learning Objectives Arranged Topically

Potential and Kinetic Energy: Roller Coasters Student Advanced Version

Potential and Kinetic Energy: Roller Coasters Teacher Version

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

Multiple Choice Review for Final Exam ~ Physics 1020

How does the total energy of the cart change as it goes down the inclined plane?

AP Physics C: Work, Energy, and Power Practice

AP Mechanics Summer Assignment

C) D) 2. The diagram below shows a worker using a rope to pull a cart.

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Newton s Laws of Motion

Slide 2 / 76. Slide 1 / 76. Slide 3 / 76. Slide 4 / 76. Slide 6 / 76. Slide 5 / 76. Work & Energy Multiple Choice Problems A 1,800 B 5,000 E 300,000

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20

PHYS 154 Practice Test 3 Spring 2018

The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest.


Slide 1 / 76. Slide 2 / 76. Slide 3 / 76. Work & Energy Multiple Choice Problems A 1,800 B 5,000 E 300,000. A Fdcos θ - μ mgd B Fdcos θ.

Energy Whiteboard Problems

Test Booklet. Subject: SC, Grade: HS 2008 Grade High School Physics. Student name:

End-of-Chapter Exercises

Unit 2: Vector Dynamics

AP Physics C Summer Assignment Kinematics

EXAM 3 MECHANICS 40% of the final grade

Recall: Gravitational Potential Energy

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate.

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial =

PRACTICE TEST for Midterm Exam

University of Houston Mathematics Contest: Physics Exam 2017

Honor Physics Final Exam Review. What is the difference between series, parallel, and combination circuits?

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

Physics Midterm Review KEY

AP Physics Free Response Practice Dynamics

Multiple-Choice Questions

s_3x03 Page 1 Physics Samples

AP PHYSICS 1. Energy 2016 EDITION

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km

CHAPTER 6 TEST REVIEW -- MARKSCHEME

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1

Base your answers to questions 5 and 6 on the information below.

AP Physics I Summer Work

Transcription:

1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach the ground, which of the following are correct? Neglect air resistance. (A) Ball A has half the kinetic energy and takes half the time to hit the ground as Ball B. (B) Ball A has half the kinetic energy and takes one-fourth the time to hit the ground as Ball B. (C) Ball A has half the final velocity and takes half the time to hit the ground as Ball B. (D) Ball A has one-fourth the final velocity and takes one-fourth the time to hit the ground as Ball B. (E) None of these are correct. B A Answer: E The final velocities of the balls are given by v = 2gh. The final velocity of B is related to the square root of the height, therefore the final velocity of B is 2 times the final velocity of A, eliminating choices C and D. Further, the kinetic energy of Ball A is half the kinetic energy of Ball B at the instant the balls reach the ground. The time it takes for the balls to reach the ground is also related to the square root of the height, therefore the time for B to hit the ground is 2 times the time for A to hit the ground, eliminating choices A and B. E must be the correct answer. EK: 5.B.4 The internal energy of a system includes the kinetic energy of the objects that make up the system and the potential energy of the configuration of the objects that make up the system. quantitatively. 6.4 The student can make claims and predictions about natural phenomena based on scientific theories and models. LO: 5.B.4.2 The student is able to calculate changes in kinetic energy and potential energy of a system, using information from representations of that system. Difficulty: 1 Page 1

2. A net force (Fcosθ) acts on an object moving in the positive x-direction along the axis over a distance of 4 meters, depicted in the graph at right. (a) Find the work done by the force in the interval from 0.0 to 1.0 m. AP1 WEP F cos 6.0N 1m 2m 3m 4m x (b) Find the work done by the force in the interval from 1.0 to 2.0 m. 6.0N (c) Find the work done by the force in the interval from 2.0 to 4.0 m. (d) At what position(s) is the object moving with the largest speed? Explain your answer. Answers: (a) 3 J (b) 0 J (c) -9 J (d) The object is moving with the largest speed at the positions of 1 to 2 m. From 0 to 1 m the force is increasing the speed of the object where it reaches a maximum value. From 1 to 2 m there is no force acting on the object therefore it is moving at a constant speed. From 2 to 4 m the negative force is slowing the object down since the object is still moving in the positive x direction. EK: 4.C.2 Mechanical energy (the sum of kinetic and potential energy) is transferred into or out of a system when an external force is exerted on a system such that a component of the force is parallel to its displacement. The process through which the energy is transferred is called work. quantitatively. 2.2 The student can apply mathematical routines to quantities that describe natural phenomena. LO: 4.C.2.1 The student is able to make predictions about the changes in the mechanical energy of a system when a component of an external force acts parallel or antiparallel to the direction of the displacement of the center of mass. Page 2 Difficulty: 1

3. Bob pushes a box across a horizontal surface at a constant speed of 1 m/s. If the box has a mass of 30 kg, find the power Bob supplies given the coefficient of kinetic friction is 0.3. Answer: 90 W First, draw a free body diagram for the situation. Next, recognizing the box is moving at constant speed and is therefore experiencing no net force, apply Newton s 2nd Law in the x- and y-directions to solve for Bob s applied force. a F netx = F Bob f k = ma x =0 x F Bob = f k = µ k N F nety = N mg = 0 N = mg F Bob = µ k N = µ k mg = (0.3)(30kg)(10 m s 2 ) = 90N Finally, use the relationship between power, force, and velocity to determine the power supplied. P = ΔE Fd cosθ v= d Δt = P = Fv = (90N )(1 cosθ=1 m s Δt Δt ) = 90W f k N mg F Bob EK: 3.B.2 Free-body diagrams are useful tools for visualizing forces being exerted on a single object and writing the equations that represent a physical situation. 5.B.5 Energy can be transferred by an external force exerted on an object or system that moves the object or system through a distance; this energy transfer is called work. Energy transfer in mechanical or electrical systems may occur at different rates. Power is defined as the rate of energy transfer into, out of, or within a system. quantitatively. 2.2 The student can apply mathematical routines to quantities that describe natural phenomena. 7.2 The student can connect concepts in and across domain(s) to generalize or extrapolate in and/or across enduring understandings and/or big ideas. LO: 3.B.2.1 The student is able to create and use free-body diagrams to analyze physical situations to solve problems with motion qualitatively and quantitatively. 5.B.5.5 The student is able to predict and calculate the energy transfer to (i.e., the work done on) an object or system from information about a force exerted on the object or system through a distance. Difficulty: 2 Page 3

4. A roller coaster car begins at rest at height h above the ground and completes a loop along its path. In order for the car to remain on the track throughout the loop, what is the minimum value for h in terms of the radius of the loop, R? Assume frictionless. h R Answer: h must be greater than or equal to 5R/2. First, use the law of conservation of energy to find the speed of the cart at the top of the loop. U i = K f +U f mgh = 1 mv 2 + mg(2r) 2gh = v 2 2 f f + 4gR v 2 f = 2g(h 2R) Next, recognize for the cart to stay on the loop and not fall off, the centripetal acceleration must be equal to or greater than the acceleration due to gravity. v 2 R g v2 gr 2g(h 2R) gr (h 2R) R 2 h 5R 2 EK: 4.C.1 The energy of a system includes its kinetic energy, potential energy, and microscopic internal energy. Examples should include gravitational potential energy, elastic potential energy, and kinetic energy. 5.A.2 For all systems under all circumstances, energy, charge, linear momentum, and angular momentum are conserved. For an isolated or a closed system, conserved quantities are constant. An open system is one that exchanges any conserved quantity with its surroundings. quantitatively. 7.2 The student can connect concepts in and across domain(s) to generalize or extrapolate in and/or across enduring understandings and/or big ideas. LO: 4.C.1.1 The student is able to calculate the total energy of a system and justify the mathematical routines used in the calculation of component types of energy within the system whose sum is the total energy. 5.A.2.1 The student is able to define open and closed systems for everyday situations and apply conservation concepts for energy, charge, and linear momentum to those situations. Page 4 Difficulty: 2

5. If you throw a rock straight up outside, it eventually returns to your hand with the same speed that it had when it left, neglecting air resistance. What would happen if you were to throw the rock straight up in the same way, but while inside the classroom? Compared to the speed with which it left your hand, after rebounding off of the ceiling it would return to your hand with... (A) (B) (C) (D) a higher speed. a lower speed. the same speed, just like when you are outside. more information needed Explain your reasoning. Answer: (B) a lower speed. Analyzing this problem through the lens of conservation of energy, some energy is lost in the collision to sound, internal energy, work done on the ceiling, etc., so when the rock returns to your hand, it has to have less energy than it began with. EK: 4.C.1 The energy of a system includes its kinetic energy, potential energy, and microscopic internal energy. Examples should include gravitational potential energy, elastic potential energy, and kinetic energy. 5.A.2 For all systems under all circumstances, energy, charge, linear momentum, and angular momentum are conserved. For an isolated or a closed system, conserved quantities are constant. An open system is one that exchanges any conserved quantity with its surroundings. quantitatively. 6.4 The student can make claims and predictions about natural phenomena based on scientific theories and models. LO: 4.C.1.2 The student is able to predict changes in the total energy of a system due to changes in position and speed of objects or frictional interactions within the system. 5.A.2.1 The student is able to define open and closed systems for everyday situations and apply conservation concepts for energy, charge, and linear momentum to those situations. Difficulty: 1 Page 5

6. Is it possible to give a block a push and then have it slide up an incline at a constant speed (without you continuing to push on it)? Explain your reasoning. (A) (B) (C) No. Yes, but only if there is friction between the block and the incline. Yes, but only if there is no friction between the block and the incline. Explain your reasoning. Answer: (A) No. The block has a set amount of kinetic energy at the bottom of the incline. Once the initial push ends, no more work is done on the block to increase its kinetic energy. As the block travels higher up the ramp, KE is converted to gravitational potential energy, so the block must slow down. 7. Is it possible to give a block a push and then have it slide down an incline at a constant speed (without continuing to push on it)? (A) (B) (C) No. Yes, but only if there is friction between the block and the incline. Yes, but only if there is no friction between the block and the incline. Explain your reasoning. Answer: (B) Yes, but only if there is friction between the block and the incline. The block has gravitational potential energy and kinetic energy at the top of the incline. As it travels down the incline, gravitational potential energy is converted into internal energy through friction. If this were a frictionless incline, the block would accelerate as the gravitational potential energy became kinetic energy. EK: 4.C.1 The energy of a system includes its kinetic energy, potential energy, and microscopic internal energy. Examples should include gravitational potential energy, elastic potential energy, and kinetic energy. 5.A.2 For all systems under all circumstances, energy, charge, linear momentum, and angular momentum are conserved. For an isolated or a closed system, conserved quantities are constant. An open system is one that exchanges any conserved quantity with its surroundings. quantitatively. 6.4 The student can make claims and predictions about natural phenomena based on scientific theories and models. LO: 4.C.1.2 The student is able to predict changes in the total energy of a system due to changes in position and speed of objects or frictional interactions within the system. 5.A.2.1 The student is able to define open and closed systems for everyday situations and apply conservation concepts for energy, charge, and linear momentum to those situations. Page 6 Difficulty: 1

8. A dart of mass m is accelerated horizontally through a tube of length L situated a height h above the ground by a constant force F. Upon exiting the tube, the dart travels a horizontal distance Δx before striking the ground, as depicted in the diagram below. L h Δx (a) Develop an expression for the velocity of the dart, v, as it leaves the tube in terms of Δx, h, and any fundamental constants. (b) Derive an expression for the kinetic energy of the dart as it leaves the tube in terms of m, Δx, h, and any fundamental constants. (c) Derive an expression for the work done on the dart in the tube in terms of F and L. (d) Derive an expression for the height of the tube above the ground in terms of m, Δx, L, F, and any fundamental constants. Difficulty: 3 Page 7

An experiment is then performed in which the length of the tube, L, is varied, resulting in the dart traveling various horizontal distances Δx which are recorded in the table below. Trial 1 2 3 4 5 6 Tube Length L (m) 0.2 0.5 0.8 1.2 1.7 2.0 Horizontal Distance Δx (m) 3.5 5.5 7.0 8.6 10.2 11.1 (e) Use the grid below to plot a linear graph of Δx 2 as a function of L. Use the empty boxes in the data table, as appropriate, to record the calculated values you are graphing. Label the axes as appropriate, and place numbers on both axes. (f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons. Page 8 Difficulty: 3

Answer: (a) v = Δx 2h / g AP1 WEP (c) W = FL (b) K = mgδx2 4h (d) h = mgδx2 4FL (e) 140 120 y = 61.427x Horizontal Distance^2 (m^2) 100 80 60 40 20 0 0 0.5 1 1.5 2 2.5 L (m) (f ) h = Δx2 L mg 4F mg = slope (0.02)(9.8) = 61 4F 4(2) =1.5m EK: 3.E.1 The change in the kinetic energy of an object depends on the force exerted on the object and on the displacement of the object during the interval that the force is exerted. 4.C.2 Mechanical energy (the sum of kinetic and potential energy) is transferred into or out of a system when an external force is exerted on a system such that a component of the force is parallel to its displacement. The process through which the energy is transferred is called work. 5.B.5 Energy can be transferred by an external force exerted on an object or system that moves the object or system through a distance; this energy transfer is called work. SP: 2.2 The student can apply mathematical routines to quantities that describe natural phenomena. 4.4 The student can evaluate sources of data to answer a particular scientific question. 5.3 The student can evaluate the evidence provided by data sets in relation to a particular scientific question. LO: 3.E.1.4 The student is able to apply mathematical routines to determine the change in kinetic energy of an object given the forces on the object and the displacement of the object. 4.C.2.2 The student is able to apply the concepts of Conservation of Energy and the Work-Energy theorem to determine qualitatively and/or quantitatively that work done on a two-object system in linear motion will change the kinetic energy of the center of mass of the system, the potential energy of the systems, and/or the internal energy of the system. 5.B.5.1 The student is able to design an experiment and analyze data to examine how a force exerted on an object or system does work on the object or system as it moves through a distance. Difficulty: 3 Page 9

9. Identical metal blocks initially at rest are released in various environments as shown in scenarios A through D below. In all cases, the blocks are released from a height of 2m. Neglect air resistance. 1 2 3 4 2θ θ θ μ k = 0.20 μ k = 0.20 frictionless free fall Rank the scenarios from least kinetic energy to greatest kinetic energy at the instant before the block reaches the ground. (A) 2 < 3 < 1 < 4 (B) 2 < 1 < 3 = 4 (C) 2 < 1 < 3 < 4 (D) 1 = 2 < 3 = 4 Answer: (B) 2 < 1 < 3 = 4 Scenarios 3 and 4 both start at the same height, with the same gravitational potential energy, and without friction, they must have the same mechanical energy at height 0, therefore they have the same kinetic energy. Scenarios 1 and 2 have both lost some energy to friction, so they will have a smaller amount of kinetic energy at the bottom. At a greater (steeper) angle, scenario 1 has a smaller frictional force over a shorter distance, therefore less work is done by friction, leaving more kinetic energy at the bottom. EK: 4.C.2 Mechanical energy (the sum of kinetic and potential energy) is transferred into or out of a system when an external force is exerted on a system such that a component of the force is parallel to its displacement. The process through which the energy is transferred is called work. quantitatively. 6.4 The student can make claims and predictions about natural phenomena based on scientific theories and models. LO: 4.C.2.2 The student is able to apply the concepts of Conservation of Energy and the Work-Energy theorem to determine qualitatively and/or quantitatively that work done on a two-object system in linear motion will change the kinetic energy of the center of mass of the system, the potential energy of the systems, and/or the internal energy of the system. Page 10 Difficulty: 2