Matrix Operations. Linear Combination Vector Algebra Angle Between Vectors Projections and Reflections Equality of matrices, Augmented Matrix

Similar documents
Linear Algebra. Chapter 5. Contents

Phys 201. Matrices and Determinants

Introduction. Vectors and Matrices. Vectors [1] Vectors [2]

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic

Lecture 3: Matrix and Matrix Operations

Matrix Arithmetic. j=1

POLI270 - Linear Algebra

We could express the left side as a sum of vectors and obtain the Vector Form of a Linear System: a 12 a x n. a m2

Matrix & Linear Algebra

Elementary maths for GMT

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections )

Section 12.4 Algebra of Matrices

MATRICES. a m,1 a m,n A =

n n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full

INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRICES

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations

ICS 6N Computational Linear Algebra Matrix Algebra

Section 9.2: Matrices.. a m1 a m2 a mn

1 Matrices and matrix algebra

Matrices and Linear Algebra

CS 246 Review of Linear Algebra 01/17/19

Matrix Multiplication

Elementary Row Operations on Matrices

CLASS 12 ALGEBRA OF MATRICES

Matrices: 2.1 Operations with Matrices

MATH2210 Notebook 2 Spring 2018

Linear Algebra and Matrix Inversion

Matrices. Math 240 Calculus III. Wednesday, July 10, Summer 2013, Session II. Matrices. Math 240. Definitions and Notation.

Matrix operations Linear Algebra with Computer Science Application

DM559 Linear and Integer Programming. Lecture 3 Matrix Operations. Marco Chiarandini

CS100: DISCRETE STRUCTURES. Lecture 3 Matrices Ch 3 Pages:

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and

Quantum Computing Lecture 2. Review of Linear Algebra

Math Camp II. Basic Linear Algebra. Yiqing Xu. Aug 26, 2014 MIT

[ Here 21 is the dot product of (3, 1, 2, 5) with (2, 3, 1, 2), and 31 is the dot product of

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and

Linear Algebra March 16, 2019

Basic Concepts in Linear Algebra

Matrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

Section 9.2: Matrices. Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns.

Review of Basic Concepts in Linear Algebra

Lecture 3 Linear Algebra Background

Matrix representation of a linear map

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Matrices. Chapter Definitions and Notations

Fall Inverse of a matrix. Institute: UC San Diego. Authors: Alexander Knop

Linear Algebra V = T = ( 4 3 ).

. a m1 a mn. a 1 a 2 a = a n

Prepared by: M. S. KumarSwamy, TGT(Maths) Page

Matrix representation of a linear map

Knowledge Discovery and Data Mining 1 (VO) ( )

Linear Systems and Matrices

Matrices. 1 a a2 1 b b 2 1 c c π

Matrix Algebra. Matrix Algebra. Chapter 8 - S&B

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.

Linear Equations in Linear Algebra

Linear Algebra (Review) Volker Tresp 2017

Introduction to Matrix Algebra

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices

Vectors and matrices: matrices (Version 2) This is a very brief summary of my lecture notes.

Chapter 5: Matrices. Daniel Chan. Semester UNSW. Daniel Chan (UNSW) Chapter 5: Matrices Semester / 33

Matrix Basic Concepts

Linear Algebra (Review) Volker Tresp 2018

Linear Algebra Homework and Study Guide

We wish to solve a system of N simultaneous linear algebraic equations for the N unknowns x 1, x 2,...,x N, that are expressed in the general form

Matrix Algebra 2.1 MATRIX OPERATIONS Pearson Education, Inc.

MATH.2720 Introduction to Programming with MATLAB Vector and Matrix Algebra

Math Linear Algebra Final Exam Review Sheet

Matrix Arithmetic. a 11 a. A + B = + a m1 a mn. + b. a 11 + b 11 a 1n + b 1n = a m1. b m1 b mn. and scalar multiplication for matrices via.

3 Matrix Algebra. 3.1 Operations on matrices

Math 360 Linear Algebra Fall Class Notes. a a a a a a. a a a

Math 320, spring 2011 before the first midterm

Chapter 2. Ma 322 Fall Ma 322. Sept 23-27

Chapter 2 Notes, Linear Algebra 5e Lay

MATH Mathematics for Agriculture II

Matrices and Vectors

Linear Algebra Highlights

Review of Linear Algebra

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

MATRICES AND MATRIX OPERATIONS

CHAPTER 6. Direct Methods for Solving Linear Systems

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in

Fundamentals of Engineering Analysis (650163)

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra Primer

1 Matrices and Systems of Linear Equations. a 1n a 2n

Lecture 6: Geometry of OLS Estimation of Linear Regession

MAT 2037 LINEAR ALGEBRA I web:

Mathematics 13: Lecture 10

Kevin James. MTHSC 3110 Section 2.1 Matrix Operations

Linear Algebra: Lecture notes from Kolman and Hill 9th edition.

Lecture Notes in Linear Algebra

Review of Coordinate Systems

A Review of Matrix Analysis

Review of linear algebra

Finite Mathematics Chapter 2. where a, b, c, d, h, and k are real numbers and neither a and b nor c and d are both zero.

For comments, corrections, etc Please contact Ahnaf Abbas: Sharjah Institute of Technology. Matrices Handout #8.

MATH 106 LINEAR ALGEBRA LECTURE NOTES

Transcription:

Linear Combination Vector Algebra Angle Between Vectors Projections and Reflections Equality of matrices, Augmented Matrix Matrix Operations Matrix Addition and Matrix Scalar Multiply Matrix Multiply Matrix multiply as a dot product extension Matrix multiply as a linear combination of columns How to multiply matrices on paper Special matrices and square matrices Matrix Algebra and Matrix Multiply Properties Transpose Inverse matrix, Inverse of a 2 2 Matrix

Linear Combination A linear combination of vectors v 1,...,v k is defined to be a sum x = c 1 v 1 + + c k v k, where c 1,...,c k are constants. Vector Algebra The norm or length of a fixed vector X with components x 1,..., x n is given by the formula X = x 2 1 + + x2 n. The dot product X Y of two fixed vectors X and Y is defined by x 1. y 1. = x 1 y 1 + + x n y n. x n y n

Angle Between Vectors If n = 3, then X Y cos θ = X Y where θ is the angle between X and Y. In analogy, two n-vectors are said to be orthogonal provided X Y = 0. It is usual to require that X > 0 and Y > 0 when talking about the angle θ between vectors, in which case we define θ to be the acute angle (0 θ < π) satisfying cos θ = X Y X Y. X Figure 1. Angle θ between two vectors X, Y. θ Y

Projections The shadow projection of vector X onto the direction of vector Y is the number d defined by X d = Y. Y The triangle determined by X and (d/ Y ) Y is a right triangle. X d Figure 2. Shadow projection d of vector X onto the direction of vector Y. The vector projection of X onto the line L through the origin in the direction of Y is defined by projy ( Y X) = d Y = X Y Y. Y Y Y

Reflections The vector reflection of vector X in the line L through the origin having the direction of vector Y is defined to be the vector refl Y ( X) = 2 proj Y ( X) X = 2 X Y Y Y Y X. It is the formal analog of the complex conjugate map a + ib a ib with the x-axis replaced by line L.

Equality of matrices Two matrices A and B are said to be equal provided they have identical row and column dimensions and corresponding entries are equal. Equivalently, A and B are equal if they have identical columns, or identical rows. Augmented Matrix If v 1,..., v n are fixed vectors, then the augmented matrix A of these vectors is the matrix package whose columns are v 1,..., v n, and we write A = aug(v 1,..., v n ). Similarly, when two matrices A and B can be appended to make a new matrix C, we write C = aug(a, B).

Matrix Addition Addition of two matrices is defined by applying fixed vector addition on corresponding columns. Similarly, an organization by rows leads to a second definition of matrix addition, which is exactly the same: a 11 a 1n b 11 b 1n a 11 + b 11 a 1n + b 1n a 21 a 2n. + b 21 b 2n. = a 21 + b 21 a 2n + b 2n.. a m1 a mn b m1 b mn a m1 + b m1 a mn + b mn

Matrix Scalar Multiply Scalar multiplication of matrices is defined by applying scalar multiplication to the columns or rows: a 11 a 1n ka 11 ka 1n k a 21 a 2n. = ka 21 ka 2n.. a m1 a mn ka m1 ka mn Both operations on matrices are motivated by considering a matrix to be a long single array or vector, to which the standard fixed vector definitions are applied. The operation of addition is properly defined exactly when the two matrices have the same row and column dimensions.

Matrix Multiply College algebra texts cite the definition of matrix multiplication as the product AB equals a matrix C given by the relations c ij = a i1 b 1j + + a in b nj, 1 i m, 1 j k. Matrix multiply as a dot product extension The college algebra definition of C = AB can be written in terms of dot products as follows: c ij = row(a, i) col(b, j). The general scheme for computing a matrix product AB can be written as AB = aug(a col(b, 1),..., A col(b, n)). Each product A col(b, j) is computed by taking dot products. Therefore, matrix multiply can be viewed as a dot product extension which applies to packages of fixed vectors. A matrix product AB is properly defined only in case the number of matrix rows of B equals the number of matrix columns of A, so that the dot products on the right are defined.

Matrix multiply as a linear combination of columns The identity ( ) ( ) ( ) ( ) a b x1 a b = x c d x 1 + x 2 c 2 d implies that Ax is a linear combination of the columns of A, where A is the 2 2 matrix on the left. This result holds in general. Assume A = aug(v 1,..., v n ) and X has components x 1,..., x n. Then the definition of matrix multiply implies A X = x 1 v 1 + x 2 v 2 + + x n v n. This relation is used so often, that we record it as a formal result. Theorem 1 (Linear Combination of Columns) The product of a matrix A and a vector x satisfies Ax = x 1 col(a, 1) + + x n col(a, n) where col(a, i) denotes column i of matrix A.

How to multiply matrices on paper Most persons make arithmetic errors when computing dot products ( 7 3 5 ) 1 3 5 = 9, because alignment of corresponding entries must be done mentally. It is visually easier when the entries are aligned. On paper, the work for a matrix times a vector can be arranged so that the entries align. The transcription above the matrix columns is temporary, erased after the dot product step. 1 3 5 7 3 5 5 2 3 1 3 7 1 3 5 = 9 16 25

Special matrices The zero matrix, denoted 0, is the m n matrix all of whose entries are zero. The identity matrix, denoted I, is the n n matrix with ones on the diagonal and zeros elsewhere: a ij = 1 for i = j and a ij = 0 for i j. 00 0 10 0 0 = 00 0., I = 01 0.. 00 0 00 1 The negative of a matrix A is ( 1)A, which multiplies each entry of A by the factor ( 1): a 11 a 1n A = a 21 a 2n.. a m1 a mn

Square matrices An n n matrix A is said to be square. The entries a kk, k = 1,..., n of a square matrix make up its diagonal. A square matrix A is lower triangular if a ij = 0 for i > j, and upper triangular if a ij = 0 for i < j; it is triangular if it is either upper or lower triangular. Therefore, an upper triangular matrix has all zeros below the diagonal and a lower triangular matrix has all zeros above the diagonal. A square matrix A is a diagonal matrix if a ij = 0 for i j, that is, the off-diagonal elements are zero. A square matrix A is a scalar matrix if A = ci for some constant c. a 11 a 12 a 1n a 11 0 0 upper = 0 a 22 a 2n triangular., lower = a 21 a 22 0 triangular., 0 0 a nn a n1 a n2 a nn a 11 0 0 c 0 0 diagonal = 0 a 22 0., scalar = 0c 0.. 0 0 a nn 00 c

Matrix algebra A matrix can be viewed as a single long array, or fixed vector, therefore the toolkit for fixed vectors applies to matrices. Let A, B, C be matrices of the same row and column dimensions and let k 1, k 2, k be constants. Then Closure The operations A + B and ka are defined and result in a new matrix of the same dimensions. Addition A + B = B + A commutative rules A + (B + C) = (A + B) + C associative Matrix 0 is defined and 0 + A = A zero Matrix A is defined and A + ( A) = 0 negative Scalar multiply rules k(a + B) = ka + kb distributive I (k 1 + k 2 )A = k 1 A + k 2 A distributive II k 1 (k 2 A) = (k 1 k 2 )A distributive III 1 A = A identity These rules collectively establish that the set of all m n matrices is an abstract vector space.

Matrix Multiply Properties The operation of matrix multiplication gives rise to some new matrix rules, which are in common use, but do not qualify as vector space rules. Associative A(BC) = (AB)C, provided products BC and AB are defined. Distributive A(B + C) = AB + AC, provided products AB and AC are defined. Right Identity AI = A, provided AI is defined. Left Identity IA = A, provided IA is defined.

Transpose Swapping rows and columns of a matrix A results in a new matrix B whose entries are given by b ij = a ji. The matrix B is denoted A T (pronounced A-transpose ). The transpose has these properties: (A T ) T = A Identity (A + B) T = A T + B T Sum (AB) T = B T A T Product (ka) T = ka T Scalar A matrix A is said to be symmetric if A T = A, which implies that the row and column dimensions of A are the same and a ij = a ji.

Inverse matrix A square matrix B is said to be an inverse of a square matrix A provided AB = BA = I. The symbol I is the identity matrix of matching dimension. A given matrix A may not have an inverse, for example, 0 times any square matrix B is 0, which prohibits a relation 0B = B0 = I. When A does have an inverse B, then the notation A 1 is used for B, hence AA 1 = A 1 A = I. Theorem 2 (Inverses) Let A, B, C denote square matrices. Then (a) A matrix has at most one inverse, that is, if AB = BA = I and AC = CA = I, then B = C. (b) If A has an inverse, then so does A 1 and (A 1 ) 1 = A. (c) If A has an inverse, then (A 1 ) T = (A T ) 1. (d) If A and B have inverses, then (AB) 1 = B 1 A 1.

Inverse of a 2 2 Matrix Theorem 3 (Inverse of a 2 2) ( a b c d In words, the theorem says: ) 1 = ( ) 1 d b. ad bc c a Swap the diagonal entries, change signs on the off-diagonal entries, then divide by the determinant ad bc.