Chemical tests to distinguish carbonyl compounds

Similar documents
Carbonyls. Aldehydes and Ketones N Goalby chemrevise.org. chemrevise.org

CARBONYL COMPOUNDS - Aldehydes and Ketones

3.8 Aldehydes and ketones

Module 4 revision guide: Compounds with C=O group

(a) Which test always gives a positive result with carbonyl compounds? (b) Which test would give a positive result with ethane-1,2-diol?

17 Alcohols H H C C. N Goalby chemrevise.org 1 H H. Bond angles in Alcohols. Boiling points. Different types of alcohols H 2 C CH 2 CH 2

Chirality, Carbonyls and Carboxylic Acids

4.2.1 Alcohols. N Goalby chemrevise.org 1 C O H H C. Reactions of alcohols. General formula alcohols C n H 2n+1 OH

F324: Rings, Polymers and Analysis Carbonyl Compounds

e.g. propan-2-ol ethane-1,1-diol propane-1,2,3-triol H H

3.5 Alcohols H H C C. N Goalby chemrevise.org 1 H H. Bond angles in Alcohols. Boiling points. Different types of alcohols H 2 C CH 2 CH 2

Name/CG: 2012 Term 2 Organic Chemistry Revision (Session II) Deductive Question

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í CARBONYL COMPOUNDS

H H O C C O H Carboxylic Acids and Derivatives C CH 2 C. N Goalby chemrevise.org. Strength of carboxylic acids.

10.2 ALCOHOLS EXTRA QUESTIONS. Reaction excess conc, H SO 180 C

OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis

4.4, 4.5 HW MS 1. (a) nucleophilic addition 1 M2. (b) (i) 2-hydroxybutanenitrile 1 (ii) 2 H 3C O H

CARBONYL COMPOUNDS. Section A. Q1 Acrylic acid is produced from propene, a gaseous product of oil refineries.

(a) (i) Give the equation representing the overall reaction. (1) Give the equation representing the formation of the electrophile.

Organic Chemistry Review: Topic 10 & Topic 20

OCR AS Chemistry A H032 for first assessment in Complete Tutor Notes. Section: Boomer Publications

Chemistry 110. Bettelheim, Brown, Campbell & Farrell. Ninth Edition

Chapter 16. Answers to examination-style questions. Answers Marks Examiner s tips. 1 (a) (i) C 6 H 12 O 6 2C 2 H 5 OH + 2CO 2 (ii) fermentation

Organic Chemistry SL IB CHEMISTRY SL

Assistant Lecturer: Sahar Mohammed Shakir Assistant Lecturer: Sarah Sattar Jabbar

Haloalkanes. Isomers: Draw and name the possible isomers for C 5 H 11 Br

Q1. The following pairs of compounds can be distinguished by simple test tube reactions.

JUNIOR COLLEGE CHEMISTRY DEPARTMENT EXPERIMENT 14 SECOND YEAR PRACTICAL. Name: Group: Date:

1) Which type of compound does not contain a carbonyl group? A) ketone B) aldehyde C) amine D) ester E) carboxylic acid

1. Study the reaction scheme below, then answer the questions that follow.

4. Carbonyl chemistry

dihalogenoalkane H 2, Nickel Catalyst addition/reduction HBr, HCl room temp KOH alcoholic heat under reflux Elimination

Some Families of Organic Compounds HL

Week 6 notes CHEM

UNIT (8) OXYGEN CONTAINING ORGANIC COMPOUNDS

It belongs to a homologous series with general formula C n H 2n+1 O

GCE A level 1094/01 CHEMISTRY CH4

Acyl chloride/ acid anhydride

DAMIETTA UNIVERSITY. Energy Diagram of One-Step Exothermic Reaction

HW #5: 16.20, 16.28, 16.30, 16.32, 16.40, 16.44, 16.46, 16.52, 16.60, 16.62, 16.64, 16.68

ALDEHYDES AND KETONES

BRCC CHM102 Chapter 17 Notes Class Notes Page 1 of 8

6.5 Alcohols H H H H. N Goalby chemrevise.org 1. Bond angles in Alcohols. Different types of alcohols H 2 C CH 2 CH 2

FACTFILE: GCE CHEMISTY

Alcohols. Nomenclature. 57 minutes. 57 marks. Page 1 of 9

Page (Extra space) (4) Benzene can be converted into amine U by the two-step synthesis shown below.

Laboratory 23: Properties of Aldehydes and Ketones

Organic Chemistry. Unit 10

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY

PMT. This question is about the reaction sequence shown below

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Carbonyl Group in Aldehydes and Ketones

91391 Demonstrate understanding of the properties of organic compounds

Experiment 7 Aldehydes, Ketones, and Carboxylic Acids

Mechanisms. . CCl2 F + Cl.

Basic Organic Chemistry

14.1 Aldehydes and Ketones Copyright 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

Q.1 Which of the structures is/are classified as phenols?

23 Synthetic Routes. Chirality in pharmaceutical synthesis. N Goalby chemrevise.org 1

Organic Chemistry. Pre-lab Assignment. Purpose. Background. Experiment 14. Before coming to lab: Hydrocarbons. Read the lab thoroughly.

Organic Chemistry. Chapter 10

WJEC Eduqas AS Chemistry - Component 2 THERMOCHEMISTRY

Carbonyl Chemistry IV + C O C. Lecture 10. Chemistry /30/02

DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers 9791 CHEMISTRY. 9791/02 Paper 1 (Part A Written), maximum raw mark 100

Aldehydes & Ketones I

Reactions of Haloalkanes

HALOALKANES. Structure Contain the functional group C-X where X is a halogen (F,Cl,Br or I)

Topic 6 Alkyl halide and carbonyl compounds Organic compounds containing a halogen


Question Answer Mark Guidance 1 (a) monomers join/bond/add/react/form polymer/form chain AND another product/small molecule e.g.

Mechanism Summary for A-level AQA Chemistry

Chapter 9 Aldehydes and Ketones Excluded Sections:

ORGANIC MOLECULES (LIVE) 10 APRIL 2015 Section A: Summary Notes and Examples Naming and Functional Groups

... (b) (i) Identify the isomer in part (a) which can be oxidised to a ketone. Give the structure of the ketone formed.

Question Answer Mark Guidance 1 (a)

Draw the structure of the alkene that would form 1,2-dibromo-3-methylbutane when reacted with bromine.

CHERRY HILL TUITION OCR (SALTERS) CHEMISTRY A2 PAPER Answer all the questions. O, is formed in the soil by denitrifying bacteria. ...

Dr. Mohamed El-Newehy

Topic 6 Alkyl halide and carbonyl compounds Organic compounds containing a halogen

Page 2. Q1.Which one of the following is not a correct general formula for the non-cyclic compounds listed? alcohols C nh 2n+2O. aldehydes C nh 2n+1O

HYDROXY COMPOUNDS. Section A. Q1 In the reaction pathway below, an alkane is converted into a carboxylic acid through several stages.

2 Set up an apparatus for simple distillation using this flask.

MOSTLY ALCOHOLS. Question 2, 2017 The structure of a molecule of an organic compound, threonine, is shown below.

2.26 Intermolecular Forces

FACTFILE: GCE CHEMISTRY

Q1. Which one of the following is not a correct general formula for the non-cyclic compounds listed?

Chemistry Questions ans Answers BASED ON HIGH ORDER THINKING SKILL (HOTS) UNIT- 12 ALDEHYDES, KETONES AND CARBXYLIC ACID

Module 2A Alcohols and halogenoalkanes

3.10 Benzene : Aromatic Hydrocarbons / Arenes

... [1] Draw another structural isomer of these two alcohols.

dihalogenoalkane H 2, Nickel Catalyst addition/reduction HBr, HCl room temp KOH alcoholic heat under reflux Elimination

Reactions of Chapter 10 Worksheet and Key

18.8 Oxidation. Oxidation by silver ion requires an alkaline medium

Aldehydes, Ketones and Carboxylic acids

Aldehydes and Ketones

Chromatography and Functional Group Analysis

2.26 Intermolecular Forces

3.2.5 Group VII. Trends in reducing abilities. 222 minutes. 218 marks. Page 1 of 21

Class XII - Chemistry Aldehydes, Ketones and Carboxylic Acid Chapter-wise Problems

Transcription:

R hemistry A 432 arbonyl ompounds arbonyl hemistry arbonyl compounds are those which contain >= - aldehydes - ketones - carboxylic acids - esters You should recall how to name aldehydes and ketones: 3 2 3 3 - longest chain is 5 carbons, so "-pentan-" stem - ketones have "-one" ending - = is located on 3 rd carbon in chain - has a methyl group - methyl group on 2 nd carbon (numbering for smallest) 2-methylpentan-3-one 3 2 2 3 - longest chain is 5 carbons so "-pentan-" stem - aldehydes have an "-al" ending - numbering starts from the end with the aldehyde - methyl group is therefore on 4 th carbon 4-methylpentanal The simplest aromatic aldehyde and ketone are: 3 benzaldehyde - colourless liquid (at RT) with almond-like aroma - almond essence, gives flavour to marzipan phenylethanone - used to create fragrances which resemble cherry, strawberry, honeysuckle or jasmine hemical tests to distinguish carbonyl compounds 1: Detecting an aldehyde or ketone Aldehydes and ketones react with 2,4-dinitrophenylhydrazine (2,4-DNP or 2,4-DNP) to form an orange or yellow precipitate. No precipitate is formed with other carbonyl compounds such as carboxylic acids or esters. Brady's Reagent is a solution of 2,4-DNP in methanol and sulphuric acid. A few drops of the carbonyl compound are put in a test tube with about 5cm 3 of Brady's reagent. The precipitate formed, referred to as a 2,4-dinitrophenylhydrazone derivative, can be used to help identify the specific aldehyde or ketone, after purifying, by Page 1

R hemistry A 432 arbonyl ompounds measuring its melting point. This works well because the different derivatives have melting points that are many degrees apart. e.g. heptan-2-one b.p. = 151 m.p of 2,4-DNP derivative = 90 cyclohexanone b.p. = 156 m.p of 2,4-DNP derivative = 162 octan-2-one b.p. = 173 m.p of 2,4-DNP derivative = 58 Identifying an aldehyde/ketone from the 2,4-DNP derivative:! The orange/yellow solid substance is purified by recrystallisation! Melting point is determined! Melting point is compared to a database of published melting points for these derivatives You will not be asked to write an equation for the formation of a 2,4-DNP derivative or to recall who to draw the structure of a 2,4-dinitrophenylhydrazone derivative. 2: Telling an aldehyde from a ketone A further test is necessary to distinguish an aldehyde from a ketone. Aldehydes can be further oxidised to carboxylic acids, but ketones cannot. Tollens' reagent is a weak oxidising agent containing silver nitrate in ammonia. Aldehydes can be oxidised further whereas ketones are not oxidised. The oxidising agent is the aqueous silver (I) ion, Ag + (aq). When warmed with Tollens reagent, the aldehyde is oxidised to a carboxylic acid, and the silver ions in solution are reduced to silver metal. A "silver mirror" is formed on the walls of the test tube (or sometimes just a silver-grey solid is formed). xidation of the aldehyde: R- + [] " R- Reduction of the silver ions: Ag + (aq) + e - " Ag (s) ow the carbonyl group reacts Firstly we need to understand a little more about the carbonyl group: 1. Like a = double bond, it is comprised of a sigma bond and a pi bond formed by the overlap of p-orbitals on the and atoms. à π-bond above and below plane of other bonds σ-bond Page 2

R hemistry A 432 arbonyl ompounds 2. Unlike a = double bond, the = bond has a dipole. The electrons in the sigma and pi bonds are more attracted to the than the. This is because oxygen is much more electronegative than carbon. As a result the is δ+ and the is δ-. δ+ δ- = Because of this difference the reactions of = are different to those of =; it is attacked by different reagents. xidation Reactions Recall that alcohols can be oxidized to form aldehydes, ketones and carboxylic acids. The product depends on: - which alcohol you use (primary or secondary tertiary alcohols don't react) - the reaction conditions onsider the isomers of butanol this example gives us primary, secondary and tertiary alcohols. The oxidising agent is here represented by []. butan-1-ol (primary) butan-2-ol (secondary) methylpropan-2-ol (tertiary) also methylpropan-1-ol (primary) [] distil product as it is formed heat and reflux with [] [] doesn't react x excess [] heat and reflux [] reflux Page 3

R hemistry A 432 arbonyl ompounds Reagent: The oxidizing agent is a solution containing acidified dichromate ions ( + /r 2 7 2- ) This is usually made using dilute sulphuric acid in which potassium dichromate is dissolved. To simplify equations and allow us to focus on the organic chemistry, we will represent the acidified dichromate as [], but we should be aware that the actual reduction of the dichromate ions is: 2- r 2 7 + 14 + + 6e - " 2r 3+ + 7 2 xid. Num: +6 +3 olour: orange green It is this characteristic colour change that indicates that the alcohol has been oxidised, although excess dichromate (orange) can mask the green colour, appearing brown. Writing the equations: use [] for the oxidising agent remember there may be water formed as a product as well the first oxidation step to an aldehyde or ketone forms water, but further oxidation of the aldehyde does not form a second water molecule never write as ambiguous molecular formulae: structural, displayed or skeletal! Primary alcohols react to form aldehydes: e.g. 3 2 + [] " 3 + 2 Primary alcohols react to form carboxylic acids: e.g. 3 2 + 2[] " 3 + 2 Secondary alcohols react to form ketones: e.g. 3 () 3 + [] " 3 3 + 2 Aldehydes react to form carboxylic acids: e.g. 3 + [] " 3 Nucleophilic Addition reactions Aldehydes and ketones also undergo reactions by a nucleophilic addition mechanism. These are addition reactions because only a single product is formed the reagent is added to the carbonyl compound. (i) reduction using sodium borohydride, NaB 4 We can reduce aldehydes and ketones, turning them back into alcohols, but NaB 4 is not a sufficiently powerful reducing agent to reduce carboxylic acids. Page 4

R hemistry A 432 arbonyl ompounds Reagent: A suitable reagent is a solution of NaB 4(aq), sodium borohydride (sodium tetrahydridoborate III). This is a source of hydride ions, -, which are the actual reducing agent. We can represent these in equations by []. onditions: Usually carried out by warming the carbonyl compound with the reducing agent. Water is used as the solvent. Equations: use [] for the reducing agent never write as ambiguous molecular formulae: structural, displayed or skeletal! Aldehydes are reduced to primary alcohols, e.g. 3 2 + 2[] " 3 2 2 Ketones are reduced to secondary alcohols, e.g. 3 3 + 2[] " 3 2 () 3 Mechanism of nucleophilic addition: The - ion is a hydrogen atom with an extra electron in its shell, meaning it has a lone pair, and is negatively charged. It can donate this lone pair to form a bond, so it is a nucleophile. Nucleophiles attack δ+ centres in this case the δ+ carbon of the =. In the first stage the hydride ion attacks the δ+ carbon, using its lone pair to form a new bond. the pi-bond between and atoms breaks, leaving an intermediate - - with a single bond and a negative charge on the atom. In the second stage the atom of the intermediate donates a lone pair to a hydrogen atom of a water molecule forming a dative bond. the - bond in water breaks heterolytically leaving hydroxide ion. e.g. reduction of propanal δ- δ+ ".. intermediate " + - : - Don t represent the second stage as - : forming a bond to an + ion there aren t + ions available, this isn t done under acidic conditions, unlike with NaN/ + when there are, and + can be used. Page 5

R hemistry A 432 arbonyl ompounds ii) reaction with N to form hydroxynitriles ydrogen cyanide adds across the = to produce an group and add a N (nitrile) group to the molecule. This is very useful in synthesis as it extends the carbon skeleton. Reagent: ydrogen cyanide is colourless, extremely poisonous, and volatile boiling just above room temperature it cannot be used safely in the laboratory so sodium cyanide and sulphuric acid are used to produce N in-situ. The reaction is still very hazardous. onditions: Not required. Equations: 2 S 4 /NaN e.g. 3 2 + N " 3 2 ()N propanal 2-hydroxybutanenitrile 2 S 4 /NaN 3 3 + N " 3 ()(N) 3 propanone 2-hydroxy(-2-)methylpropanenitrile Mechanism of nucleophilic addition: The initial attack on the δ+ carbon of the = is by the cyanide ion, often written as N -. This is a little misleading, as the negative charge is on the carbon atom, and it is a lone pair on the carbon that attacks. It is better to represent as [:N] - or - :N. In the first stage the - :N ion attacks the δ+ carbon, using its lone pair to form a new bond. the pi-bond between and atoms breaks, leaving an intermediate - -. In the second stage the atom of the intermediate donates a lone pair to a hydrogen atom of a water molecule forming a dative bond (or an + ion in solution, K for this reaction) the - bond in water breaks heterolytically leaving hydroxide ion. Page 6