ADDITIONAL SOLVED PROBLEMS FOR TEXT

Similar documents
Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

FEEDBACK AMPLIFIERS. v i or v s v 0

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

EE 330 Lecture 24. Small Signal Analysis Small Signal Analysis of BJT Amplifier

Lecture 5: Operational Amplifiers and Op Amp Circuits

ENGR-4300 Electronic Instrumentation Quiz 4 Fall 2010 Name Section. Question Value Grade I 20 II 20 III 20 IV 20 V 20. Total (100 points)

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.

Week 11: Differential Amplifiers

( ) = ( ) + ( 0) ) ( )

Prof. Paolo Colantonio a.a

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016

1.4 Small-signal models of BJT

Transfer Characteristic

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH

Copyright 2004 by Oxford University Press, Inc.

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol:

Lesson 16: Basic Control Modes

VI. Transistor Amplifiers

V V. This calculation is repeated now for each current I.

55:141 Advanced Circuit Techniques Two-Port Theory

Electrical Circuits 2.1 INTRODUCTION CHAPTER

55:041 Electronic Circuits

College of Engineering Department of Electronics and Communication Engineering. Test 2

55:041 Electronic Circuits

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C13 MOSFET operation

Physics 114 Exam 2 Fall 2014 Solutions. Name:

Why working at higher frequencies?

PHY2049 Exam 2 solutions Fall 2016 Solution:

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given).

TUTORIAL PROBLEMS. E.1 KCL, KVL, Power and Energy. Q.1 Determine the current i in the following circuit. All units in VAΩ,,

55:141 Advanced Circuit Techniques Two-Port Theory

Physics Courseware Electronics

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE.

ELECTRONICS. EE 42/100 Lecture 4: Resistive Networks and Nodal Analysis. Rev B 1/25/2012 (9:49PM) Prof. Ali M. Niknejad

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Graphical Analysis of a BJT Amplifier

+ v i F02E2P2 I. Solution (a.) The small-signal transfer function of the stages can be written as, V out (s) V in (s) = g m1 /g m3.

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017)

PHYSICS - CLUTCH 1E CH 28: INDUCTION AND INDUCTANCE.

MAE140 - Linear Circuits - Winter 16 Midterm, February 5

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits and Electronics Spring 2001

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2

Energy Storage Elements: Capacitors and Inductors

AGC Introduction

EE C245 ME C218 Introduction to MEMS Design

Key component in Operational Amplifiers

Flyback Converter in DCM

QUESTION BANK ENGINEERS ACADEMY. EE : Electrical Machines Transformers 59

EE 330 Fall 2016 Seating

Driving your LED s. LED Driver. The question then is: how do we use this square wave to turn on and turn off the LED?

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer

ELCT 503: Semiconductors. Fall 2014

UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT. 10k. 3mH. 10k. Only one current in the branch:

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

MAE140 - Linear Circuits - Fall 13 Midterm, October 31

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Physics 1202: Lecture 11 Today s Agenda

Chapter 6 Electrical Systems and Electromechanical Systems

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Phan Nhu Quan, PhD Dec 02, 2017

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Physics 114 Exam 3 Spring Name:

Introduction to circuit analysis. Classification of Materials

G = G 1 + G 2 + G 3 G 2 +G 3 G1 G2 G3. Network (a) Network (b) Network (c) Network (d)

4.2 Chemical Driving Force

13. One way of expressing the power dissipated by a resistor is P = ( V)

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Uncertainty in measurements of power and energy on power networks

Electricity and Magnetism Lecture 07 - Physics 121 Current, Resistance, DC Circuits: Y&F Chapter 25 Sect. 1-5 Kirchhoff s Laws: Y&F Chapter 26 Sect.

I = α I I. Bipolar Junction Transistors (BJTs) 2.15 The Emitter-Coupled Pair. By using KVL: V

Lecture 10: Small Signal Device Parameters

DC Circuits. Crossing the emf in this direction +ΔV

Chapter 5 rd Law of Thermodynamics

MPSA13 MPSA14 CASE 29-02, STYLE 1 TO-92 (TO-226AA) DARLINGTON TRANSISTOR MAXIMUM RATINGS THERMAL CHARACTERISTICS ON CHARACTERISTICS) 1) NPN SILICON

Built in Potential, V 0

Common Base Configuration

Complex Variables. Chapter 18 Integration in the Complex Plane. March 12, 2013 Lecturer: Shih-Yuan Chen

Electrochemistry Thermodynamics

Frequency dependence of the permittivity

ELG 2135 ELECTRONICS I SECOND CHAPTER: OPERATIONAL AMPLIFIERS

Numerical Heat and Mass Transfer

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76

Lecture 8: Small signal parameters and hybrid-π model Lecture 9, High Speed Devices 2016

Force = F Piston area = A

Electrical Engineering Department Network Lab.

INDUCTANCE. RC Cicuits vs LR Circuits

Lecture 27 Bipolar Junction Transistors

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

I. INTRODUCTION. 1.1 Circuit Theory Fundamentals

Physics Electricity and Magnetism Lecture 12 - Inductance, RL Circuits. Y&F Chapter 30, Sect 1-4

6.01: Introduction to EECS 1 Week 6 October 15, 2009

I. INTRODUCTION. There are two other circuit elements that we will use and are special cases of the above elements. They are:

Lab 2e Thermal System Response and Effective Heat Transfer Coefficient

3.6 Limiting and Clamping Circuits

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Transcription:

DDTNL SLED PBLEMS F TEXT ELECTNC DECES ND CCUTS Prncples and pplcatons by- N. P. Deshpande ddtonal Solved Problems Chapter : Semconductor Physcs SP.: S crystal s doped wth 5 x 0 6 rsenc atoms per cm 3 ntally. t s also doped wth 3.3 x 0 6 atome/cm 3 and then wth 0 8 atome/cm 3 o Boron atoms. Determne- ) The type o resultant semconductor ) Concentraton o majorty carrers. Soluton: ) Phosphorus s a pentavalent mpurty. Hence t s o donor type. Each atom o P wll contrbute an electron to semconductor. rsenc s also a pentavalent mpurty. Snce already 5 x 0 6 atoms/cm 3 o rsenc are present, total donor densty s N D 8.3 x 0 6 atoms/cm 3. ) ddtonal dopng by Boron atoms (acceptor type mpurty) converts the S rom n- type to p-type snce acceptor concentraton s more that total donor concentraton. Net acceptor densty s less tan number o Boron atoms added due to compensaton. Hence extrnsc S s o p-type and densty o holes (majorty carrers s- p N (B) [N D (s) + N D (P)] 0 8 [5 x 0 6 + 3.3 x 0 6 ] 9.7 x 0 7 /cm 3 SP.: Determne the Ferm probablty (E) or an electron at 300 0 K havng energy level o 4kT above E. Soluton: The desred Ferm probablty s gven by relaton- ( E) 0.079or.79% + e E E kt + e 4kT kt SP.3: Fnd the rate o change o conductvty wth respect to temperature or ntrnsc Ge at 300 0 K. Soluton: ntrnsc concentraton s gven by relaton- n B T 3/ e -Eg/kT and conductvty s gven by relaton-

( ) 3 / Eg / kt µ + µ BT e ( µ + ) σ n q n p n µ For ntrnsc semconductor, n p n. Derentatng expresson or σ w.r.t. T and notng that B(µ n + µ p ) s ndependent o temperature, we get- p dσ dt 3 T E + kt g Substtutng Eg E g0 0.785 e, T 300 0 K and k 8.6 x 0 5 e/ 0 K, we get- σ 3 E g + dt T kt d 0 0.0556 / 3 0.785 + 5 x300 x8.6x0 x ( 300) SP.4: n ntrnsc S sample doped wth 0 8 atoms/cm 3 o rsenc s rased rom 300 0 K to 340 0 K. Fnd the change n derence between E and E. K Soluton: Snce rsenc s pentavalent mpurty. Extrnsc semconductor wll be o n- type. For n-type S, n N D and E E kt ln n n t 300 0 K and kt 0.0586 e. Substtutng these values n above expresson, we get- 8 n 0 E E kt ln 0.0586 ln 0 n.5x0 0.4658 e t 340 0 K and kt 0.093 e. Substtutng these values n above expresson, we get- 8 n 0 E E kt ln 0.093ln 0 n.5x0 0.58 e Hence change n (E E ) rom 300 0 K to 340 0 K s 0.58 0.4658 0.06 e SP.5: ddton o rsenc atoms per S atom to the extent o 0.4 x 0 7 results n a 0 Ω-cm resstvty extrnsc semconductor at 300 0 K. What must be the atomc densty n ntrnsc S? Soluton: Conductvty o extrnsc S s-

( Ω cm) σ n 0. ρn The conductvty s also gven by- σ n nqµ n Hence we need to determne n ( N D ) rst. µ n 300 cm /-s orm standard propertes table. σ 0. n 4.8x0 x300 n N D 9 qµ n.6x0 4 / cm 3 Snce rato o S atoms to s atoms s 0.4 x 0 7, n 4.8 x 0 4 x 0.4 x 0 7 4.99 x 0 /cm 3. SP.6: When ntrnsc S at 300 0 K s doped wth acceptor mpurty, ts conductvty becomes.5 (Ω-m) -. Determne- ) Hole concentraton ) Electron concentraton 3) ato o hole to electron concentraton. Soluton: Snce acceptor mpurty s added, the resultng semconductor wll be o p-type. Conductvty o p-type semconductor s gven by- σ p pqµ p σp.5 0 3 p.875x0 / m 9 qµ p.6 x0 x 0.05 Electron concentraton can be determned rom Mass acton law. Hence- 6 (.5x0 ) 3 n n.x0 0 p.875x0 / m The rato o hole to electron concentraton s-.875x0.x0 0.56x0 8 Chapter : Semconductor Physcs ddtonal Exercse Problems E.: Calculate the ntrnsc carrer concentraton o S and Ge at 300 0 K and 400 0 K takng nto account the varaton o E g wth temperature. E.: band gap energy or a sample o S s ound to be.0 e, what must be the temperature o the sample? 3

E.3: Plot the graph o (E) versus temperature or a semconductor wth E 6. e and E 5.9 e or temperature range o 0 0 C to 00 0 C. Comment on results. E.4: ntrnsc S at 300 0 K s doped wth 0 6 atoms/cm 3 o Boron atoms, what wll be the thermal equlbrum electron and hole concentraton values? From the calculated values o concentratons, deduce the type o extrnsc semconductor. E.5: Fnd resstvty o ntrnsc Ge at 300 0 K. acceptor mpurty to the extent o atom per 0 7 atoms o Ge s added, what wll be the change n resstvty? E.6: nterconnectons nsde the ntegrated crcuts are made usng Copper or lumnum. a strp conductor has length o.00 mm, cross sectonal area o 3 x0 - m and the resstance o 0Ω, what must be the electron concentraton? ssume moblty o electrons to be 000 cm /-s. E.7: Fnd densty o donor atoms resstvty o ntrnsc S s ound to be 8 Ω-cm. What s the rato o majorty to mnorty carrer concentratons n extrnsc S? E.8: For a p-type S bar used n Hall eect experment, d W 3 mm. The current through bar s 40 µ and Hall voltage s 00 m. magntude o lux densty used s 0. Wb/m, nd the resstvty o bar. ssume moblty o holes to be 500 cm /-s. E.9: n-type S sample s doped wth donor mpurty o 0 5 atoms /cm 3. length o S sample s.00 mm and cross sectonal area s 5 x 0-9 m, determne- ) oltage needed across the bar to produce a current o. µ ) Conductvty o the bar. E.0: n external voltage o s appled to ntrnsc S cube wth all dmensons to be 0 mm. n.5 x 0 0 electrons/cm 3, determne- ) Drt velocty o charge carrers ) Drt current densty due to electrons 3) Drt current densty due to holes 4) Total drt current densty 5) Total current n the bar. E.: bar o ntrnsc S has cross sectonal area o 4. x 0-4 m. electron densty s. x 0 6 /m 3, what should be the length o bar so that a current o. m results n t when 0 are appled across the bar? ssume µ n 0.3 m /-s, µ p 0.05 m /-s. 4

ddtonal Solved Problems Chapter 3: Dodes and Ther pplcatons SP 3.: the barrer potental or certan S dode at room s 0.6 and the concentraton o donor atoms s 0 /m3, determne the concentraton o acceptor atoms. Soluton: t room temperature T 0.0586. 0.6, n or S.5 x 0 0 /m 3 and N D 0 /m 3. Substtutng these values n the expresson or barrer potental, we get- kt N N D N N 0 ln T ln q n n N ( ) x0 0.6 0.0586 ln 0.5x0 Solvng or N, we get- N.68 x 0 atoms/m 3. D SP 3.: S p-n juncton dode has reverse saturaton current o 0-4 at room temperature. Calculate the current through the orward based dode at 67 0 C a orward voltage o 0.7 s appled across the dode. ssume η. Soluton: Both T and S change wth temperature. t room temperature.e. T 300 0 K, S 0-4, T 0.0586. t 67 0 C, T 73 + 67 340 0 K. T 340 T 0.093 600 600 everse saturaton current at T s gven by- ( T T) /0 4 S Sx 0 x Current through dode s gven by- / η e 6x0 S (340 300) /0 6x0 4 ( ) ( ) T 4 0.7 / 0.093 x e 3.768 m SP 3.3: n deal S dode has reverse saturaton current o n at room temperature (300 0 K). Fnd the dynamc resstance o dode or a orward bas o ) 0.5 ) 0.6 and 3) 0.7. ssume η. Comment on results. Soluton: Dynamc resstance o dode s gven by expresson- r η T η T Se T 0.0586 at 300 0 K. Hence η T 0.057. 5

) Dynamc resstance or a orward bas o 0.5 s- η 0.057 0.5 / 0. 0 9xe r T 057 ηt Se 3.74k ) Dynamc resstance or a orward bas o 0.6 s- η 0.057 0.6 / 0. 0 9xe r T 057 ηt Se 473.6Ω 3) Dynamc resstance or a orward bas o 0.7 s- η 0.057 0.7 / 0. 0 9xe r T 057 ηt Se 68.5Ω Comment: s the dode s orward based beyond cut-n voltage, the dynamc resstance drops at a rapd rate. Ths sgnes the exponental nature o - characterstc o dode. SP 3.4: Determne the state o each dode or the crcut shown below or ) k ) 0k. Dode D s S dode wth 0Ω and γ 0.6. Dode D s Ge dode wth 0Ω and γ 0.. D 0 D Soluton: ntally we assume that both dodes are N. We then replace the dodes wth ther equvalent crcuts. The resultant crcut that we can use or analyss s shown below- γ γ 0 D D K K ) For k, the KL expresson or loop contanng D s- - + ( + ) + + γ 0 6

Smlarly, KL expresson or loop contanng D s- - + ( + ) + + γ 0 Substtutng the values o resstors n k and current n m, we get- -0 + ( + ) x + 0.0 + 0.6 0 () -0 + ( + ) x + 0.0 + 0. 0 () Subtractng () rom (), and rearrangng terms, we get- + 40 Substtutng n () and solvng or, we get -0.9 m. Snce s negatve, dode D must be FF. Hence practcally, 0. Substtutng 0 n (), we get 9.6 m. Hence we conclude that D s FF and D s N. ) For 0k, and assumng that both D and D are N as beore, the KL expresson or loop contanng D s- - + ( + ) + + γ 0 Smlarly, KL expresson or loop contanng D s- - + ( + ) + + γ 0 Substtutng the values o resstors n k and current n m, we get- -0 + ( + ) x 0 + 0.0 + 0.6 0 (3) -0 + ( + ) x 0 + 0.0 + 0. 0 (4) Subtractng (4) rom (3), and rearrangng terms, we get- + 40 Substtutng n (3) and solvng or, we get -9 m. Snce s negatve, dode D must be FF. Hence practcally, 0. Substtutng 0 n (4), we get.978 m. Hence we conclude that D s FF and D s N. SP 3.5: Determne the slope o transer characterstc or parallel clpper crcut shown n Fgure below when the dode s N. Forward resstance o dode s 0Ω. Comment on result. D 0 7

Soluton: When the dode s N, t can be replaced by ts DC equvalent crcut. The resultant crcut s shown below- γ o Slope o transer characterstc o ths crcut s gven by relaton (3.6) whch s- K Slope + 0 9.9x0 0 + 000 3 Comment: The expresson or slope ndcates that t s desrable to have << or better clppng. Snce s the characterstc o dode, we need to choose >> n any practcal dode clppng crcut. SP 3.6: Wrte expressons or or ollowng clppng crcuts when the dode s N. ssume that the orward resstance o dode s and cut-n voltage γ. D 0 D 0 (a) (b) D 0 (c) 8

Soluton: a) Let us assume that when dode s N, current through, D and path s. When the dode s N, we can replace t wth ts DC equvalent crcut. Ths s shown below- γ o K The KL expresson or path contanng, and D s- - + + + γ 0 s seen rom the gure, + γ. b) The clpper crcut shown n Fgure b) s a parallel bsed clpper. The equvalent crcut ater replacng ddoe wth ts DC equvalent crcut s shown below- γ o K The KL expresson or closed loop contanng, and D s- - + + γ + + 0 s seen rom gure the output voltage s + γ +. c) The clpper crcut shown n Fgure c) s a parallel bsed clpper. t can be noted that polarty o s reversed.the equvalent crcut ater replacng ddoe wth ts DC equvalent crcut s shown below- 9

γ o K The KL expresson or closed loop contanng, and D s- - + + γ + - 0 s seen rom gure the output voltage s + γ -. SP 3.7: For HW crcut shown n Fgure below, determne peak and average.e. Dc output voltage. ssume drop across conductng dode to be 0.9. : D + 30, 50 Hz C L (External Load) T - Soluton: Secondary voltage s determned by step-down rato o transormer. Peak prmary voltage s gven by- m (pr) 30x 35.7 Usng stpe-down rato, peak value o seconadry voltage s gven by- n 35.7 m(pr) m (sec) 7. Peak load voltage L(p) m(sec) D 7. 0.9 6. verage value o output voltage s gven by- 0

π m(p) dc 8.34 SP 3.8: Determne the TUF or HW crcut where secondary resstance s Ω, orward ressatnce o conductng dode s 3 Ω and equvalent load resstance s 00 Ω. Comment on result. Soluton: TUF or HW s gven by expresson (3.56)- TUF x x 0.79 π S + π 5 + + L 00 Comment: Ths example satses the desrable condton or better TUF vz. ( S + ) << L.Henc etuf s very close to theoretcal maxmum value o 0.87. SP 3.9: For the FW crcut, determne- dc, dc, P dc, rms and recter ecency. ssume drop across conductng dode to be 0. 5 Ω W, resstance o each hal o secondary- S 5 Ω and equvalent load resstance s 00 Ω. Step-down rato o power transormr s :. Soluton: Secondary voltage s determned by step-down rato o transormer. Peak prmary voltage s gven by- (pr) m 30x 35.7 Usng stpe-down rato, peak value o seconadry voltage s gven by- n 35.7 m(pr) m (sec) DC output voltage s gven by- π x7. π m(sec) dc 7. 7.5 Peak secondary current s gven by- Usng stpe-down rato, peak value o seconadry voltage s gven by- m(sec) 7. m 0.7 L 00 DC load current s gven by-

π x0.7 π m dc 0.75 MS load current s gven by- m 0.75 rms 0.8 DC power delvered to load s gven by- 4 π 4 π ( 7.) ( 5 + 5 + 00) 00 P m L dc ( ) S + + L.46W 8 ecter ecency π 8 00 L ( S + + L ) π ( 5 + 5 + 00) 0.736or73.6%

ddtonal Exercse Problems Chapter 3: Dodes and Ther pplcatons E 3.: S p-n juncton dode s doped wth acceptor mpurty o.5 x 0 atoms/cm 3 and a donor mpurty o 0 atoms/cm 3. Calculate the barrer potental at a) oom temperature b) 70 0 C. E 3.: S p-n juncton dode has a reverse saturaton current o 0-4 and s orward based to 0.7. ssumng η, plot the graph o orward voltage versus temperature or temperature changng rom 0 0 C to 00 0 C. Comment on results. E 3.3: For the clppng crcuts shown below, wrte closed loop KL expresson when the dode s N. eplace each dode wth a seres combnaton o and γ. D 0 D 0 D D 0 0 D 0 D 0 E 3.4: For a Ge dode operatng at room temperature, η. D s ound to be 0. or a orward current o 8 m, a) what wll be the orward current or D 0.5? b) What must be the value o reverse saturaton current? E 3.5: For the crcut shown below, sketch the transer characterstc assumng deal dode. nput voltage range s +4. 3

D 3 0Ω 0Ω 0 0Ω 5 D E 3.6: utput voltage o a FW crcut s 4 and load draws a current o 00 m. resstance o each hal o secondary wndng o power transormer s 4 Ω, orward resstance o conductng dode s also 4 Ω, determne- ) DC power output ) ecter ecency 3) P ratng o dodes. E 3.7: For the regulator crcut shown below, Z, Z Z 5 Ω, ZK m and Zmax 40 m, what wll be the maxmum varaton n output voltage. nput voltage s constant and equal to +8. 00 Ω 8 Z o E 3.8: For the zener voltage regulator shown below, determne- ) utput voltage ) Load current 3) oltage drop across 4) Current through zener 5) Power dsspated by zener. k 48 Z 7 o 4

ddtonal Solved Problems Chapter 4: Feld Eect Transstors and pplcatons SP 4.: The crcut shown below uses JFET N 5459 wth GS(FF) -8.0 and DSS 9 m. Determne the mnmum value o DD that wll put the devce n saturaton. D D 470Ω G S N5459 + - DD Soluton: For JFET n saturaton, the mnmum value o DS P GS(FF) 8. For gven crcut, GS 0. By denton, D DSS or GS 0. The KL expresson or loop contanng DD, D and JFET s- - DD + D D + DS 0 Hence DD D D + DS (9)(0.47) + 8.3 SP 4.: Data sheet or JFET N5459 ndcates DSS 9 m. GS(FF) -8, what wll be the dran current or- ) GS - ) GS - 3) GS -3 4) GS -4. Soluton: The dran current or derent values o GS s determned by Schockley s equaton- D GS DSS where P GS(FF) 8 P GS ) For GS -, D DSS 9 6.89m P 8 GS ) For GS -, D DSS 9 5.06m P 8 GS 3 3) For GS -3, D DSS 9 3.5m P 8 GS 4 4) For GS -4, D DSS 9.5m P 8 5

SP 4.3: Data sheet or JFET N5458 ndcates DSS 6 m, GS(FF) -7.0. y s(max) 5500 µs, what wll be the orward transconductance at GS -3.5? lso determne the value o dran current or ths value o GS. Soluton: y s(max) s nothng but g m0 or JFET. n order to determne transconductance or JFET at GS -3.5 we use the relaton (and notng that - P GS(FF) 7 GS 3.5 g m g mo µ P 7 ( 5500) 750µ S or750 / The dran current or gven value o GS s obtaned usng Schockley s equaton- GS 3.5 D DSS 6.0 P 7.5m SP 4.4: certan JFET s requred to be based at md-pont. DSS or JFET s 9 m GS - and DD 8, what wll be the values o S and D or sel bas arrangement? Soluton: For JFET based at md-pont, P GS(FF) GS x 3.4-6.8. The dran current s hal o DSS.e. 9/ 4.5 m and DS DD / 9. esstance n seres wth Source termnal s gven by- S GS 444Ω 4.5m D Usng KL expresson or output loop, and rearrangng the terms, we can wrte- DD DS 8 9 D S 0.444.556k 4.5 D SP 4.5: JFET CS ampler shown n gure below uses JFET N5459. g m 4 m/ and r d 00 k, what wll be the voltage gan and output resstance o the ampler? ssume all capactors to be arbtrarly large. 6

+ DD D 0k - C C + C C + - G S + M 0Ω C S - Soluton: oltage gan or CS ampler s gven by relaton- -g m eq Where eq r d D 0k 00k 9.09k Hence -4 m/ x 9.09k -36.36 The output resstance s gven by r d D 0k 00k 9.09k SP 4.6: What s the voltage gan and nput resstance o JFET ampler shown n gure below? GSS or JFET s 5 n at GS -0 and transconductance o JFET s. m/. DD + - C C + + C C -.M 0k C S G S L 0M 7

Soluton: Ths s a Common Dran (CD) ampler. The expresson or voltage gan s- g m eq where eq S L. n the present case, L >> S. Hence eq + g m eq S. The voltage gan s- g m eq + g g m S + g.x0 +.x0 m eq m S nput resstance or devce s gven by- 0 5n GS GSS 000M 0.93 Ths nput resstance o the devce s shunted by external basng resstor G. Hence ampler nput resstance s- G G.M SP 4.7: Data sheet or certan EMSFET gves D(on) 00 m, GS(th).. ) K 6.0 m/, what must be the value o GS? ) Determne the value o D or GS 4. Soluton: ) K [ ] hence [ ] 33. 33 GS GS(th) K 6 GS GS(th) D(on) GS GS(th) 5.77 GS 5.77 + GS(th 5.77 +. 6.97 ) ) equred value o Dran current s gven by- D K[ GS - GS(th) ] 6.0[4-.] 47.04 m SP 4.8: For EMSFET basng crcut shown n gure below, the devce used has GS(th). and D(on) 00 m at GS 5. Determne the values o GS, K, D and D DS 6. D(on) 00 8

DD +4 D 0k D G S k Soluton: The basng arrangement shown uses a potental dvder crcut. Snce Source s at ground potental, GS s gven by- GS xdd x4 3.7 + 0 + GS D(on) 00 K 3.85m / [ ] GS(th) ( 5.) The dran current s gven by relaton- D K[ GS - GS(th) ] 3.85 x [3.7-.] 87.5 m we wrte a KL expresson or dran loop, and rearrange terms, external dran resstance s gven by relaton- D DD DS 4 6 06Ω 87.5m D 9

ddtonal Exercse Problems Chapter 4: Feld Eect Transstors and pplcatons E 4.: For certan JFET, GS(FF) -8 and DSS 9 m. Determne the values o D or GS varyng rom 0 to 8 n steps o and plot the transer characterstc. E 4.: JFET used n sel bas crcut has GS(FF) -0 and DSS m. Determne the values o D and S or md-pont bas. The crcut uses DD +4. Fnd quescent values o D, GS and DS. E 4.3: For the crcut shown below, determne quescent values o D, GS and DS. The JFET used has GS(FF) 7 and DSS 8m. DD - D.k p-channel JFET G 0M S 470Ω E 4.4: For the CS ampler shown n gure below, what wll be the output voltage 0m, 0 khz C nput s appled to the ampler. The JFET used has g m 3.8m/. + DD D.k - C C + 47µF C C + - 00µF G S + 0M 390Ω C S - 000µF 0 L 00k

E 4.5: For the CG ampler shown n gure below, the JFET used has g m 3.8 m/. Determne- ) oltage gan ) nput resstance 3) utput resstance. ssume all capactors to be arbtrarly large. DD +9 D 0k C C C C - + + - S.8k E 4.6: For the MSFET crcut shown n gure below, the devce used has D(on) 3. m at GS 4 and GS(th).8. Determne- ) GS and ) DS. DD + 0M D k D G S 4.7M

E 4.7: Data sheet o certan MSFET ndcates D(on) 8m at GS -0. GS(th) -.8. Determne D or GS -4. E 4.8: Draw the output voltage waveorm or CS ampler shown below. The MSFET used has g m 4.5 m/ and DSS m. ssume all capactors to be arbtrarly large. DD +4 D k C C D C C 0m MS G S G 0M E 4.9: For the crcut shown below, the MSFET used has ollowng parameters- D(on) 6 m at GS 8, GS(th). and g m 3 m/. Determne GS, D and DS. DD +0 k D k C C + - - C C + 8k L 0k

Chapter 5: Bpolar juncton Transstors and pplcatons ddtonal Solved Problems SP 5.: Calculate the values o C and CE or the crcut shown below. The transstor used has β 00. ssume BE(actve) 0.7. CC + C k B 00k BB Soluton: Wrtng KL expresson or nput loop gves us the value o base current. The closed loop KL expresson or nput loop s- - BB + B B + BE(actve) 0 earrangng terms, we get- BB BE(actve) 0.7 B 3µ B 00k ssumng that the transstor s n actve regon, C β B 00 x 3 x0-6.3 m. To determne CE, we wrte KL expresson or output loop. Ths gves- - CC + C C + CE 0 CE CC C C (.3)(.) 9.4 Snce CB s postve (or npn transstor) and CE s more than CE(sat), transstor s ndeed n actve regon. Ths justes our ntal assumpton. ( CB C B 9.7 0.7 8.44). SP 5.: For the crcut shown below, the transstor used has β 00. Determne the regon o operaton o transstor. ssume BE(actve) 0.7 and BE(sat) 0.8. 3

CC +4 C 4k7 B 00k BB 3 E k Soluton: ntally we assume that transstor s n actve regon. KL expresson or nput loop s- - BB + B B + BE(actve) + E E 0 For the transstor n actve regon, E (+β) B. Substtutng ths n above KL expresson, and rearrangng terms, we get- BB BE(actve) 3 0.7 B µ + ( + β) (00 + 0)0 3 B E For transstor assumed to be workng n actve regon, C β B 00 x x 0-6.m. We can now determne CE (hence CB ) to conrm our assumpton that transstor s ndeed workng n actve regon. KL expresson or output loop s- - CC + C C + CE + E E 0 Hence CE CC C C E E 4 - (.)(4.7) (.)().0 n order to determne CB, we calculate B and C. 4

B BE(actve) + E E 0.7 +..8 Smlarly, C CC - C C 4 (.)(4.7) 7. By denton, CB C B 7..8 4.38 Snce CB s postve or npn transstor, the devce s ndeed n actve regon. SP 5.3: For CE ampler shown n gure below, determne- ) 4) 5). The BJT used has ollowng h-parameters ) 3) S h e k h e 80 h re x 0-4 h oe 0 µ/ ssume all capactors to be arbtrarly large. + CC 00k C 3k9 C C r s C C k S E + C E 0k k - C Soluton: The C equvalent crcut or ampler ater replacng BJT wth ts h- parameter model s shown below- r s B h e C b S 00k 0k h re v ce E h e b h oe C 3k9 5

n ths case, /h oe 50k. Ths s much larger than C.e. 3k9. Hence- h e + h 80 6 + (0x0 )(3.9x0 3 B oe C ) 74. h e + h re C x0 3 + (x0 4 )( 74.)(3.9x0 3 ) 94.Ω B 00k 0k 9.k b b x b s ound out usng Norton s current dvson rule. 9. b B ( 74.) 67. 4 b B + ( 9.+ 0.94 ) nput resstance s gven by- (0.94k)(9.k) 853Ω B C ( 67.4)(3.9) oltage gan 307. 4 0.853 oltage gan takng nto account r S S + r S ( 307.4)( 0.853) 0.853 + 4.5 utput admttance or transstor- Y h oe h h e h re + e S where S s eectve source resstance seen by the transstor. r k 9. k 0.9 k S S B 6

4 ( 80)( 0 ) h eh re 6 Y h oe 0 0 3 h + 0.9 0 e S ( + ).57 µ / Y 86.43 k Eectve output resstance wll be- ( 86.43 k) ( 3.9 k) 3.73 k C SP 5.4: For the ampler shown below, calculate- ) 5) S 6) S ) 3) 4) 7). The BJT used has ollowng h-parameters h e k h e 60 h re.5 x 0-4 h oe 5 µ/ ssume all capactors to be arbtrarly large. + CC 00k C 3k9 C C r s CC S k 0k E 330Ω C E L 4k7 Soluton: To see whether approxmate analyss s vald or not, we rst calculate L C L 40k 3k9 4k7.0k hoe 6 3 h oe L 5 0.0 0 0.05 L 7

Snce h oe L 0., we can use approxmate analyss. Fgure below shows C equvalent wth BJT replaced by CE h-parameters. We have omtted h re v ce and h oe rom the equvalent crcut, consstent wth approxmate analyss. r s B h e C S k 00k 0k b E h e b C 3k9 C L 4k7 C equvalent or ampler wth BJT replaced by CE h-parameters Current gan or devce h e 60 nput resstance or devce h e k nput resstance or ampler B Current gan or ampler s gven by relaton- k 00k 0k 0.9k C C b b C C + L B + h 3.9 3.9 + 4.7 9. 9.+ B ( h ) ( 60) 4. 49 e e Derent ratos were ound out usng Norton s current dvson rule. oltage gan or ampler- h e L ( 60)(.0) 34.66 0.9 oltage gan takng nto account source resstance- S + r S ( 34.66)(0.9) 0.9 + 63.79, or devce (pproxmate model). 8

4k7 3k9 L L C.3k SP 5.5: For the crcut shown n gure below, determne- ) ) 3) and 4). The BJT used has ollowng h-parametersh e k h re.5x0-4 h e 80 h oe 5µ/ Neglect the eect o basng network. ssume all capactors to be arbtrarly large. + CC r s CC C C S k E k Soluton: Ths s a Common Collector ampler. Snce h-parameters or CE are speced, we use converson ormulae rom Table 5.6. h c h e h oc h oe 5 x 0-6 h c -(+h e ) -8 h rc Snce h oc E < 0., we can use approxmate analyss. Current gan +h e +80 8 nput resstance, neglectng the eect o basng network s- h e + (+h e ) E.0 + (+80)(.) 78.k h e oltage gan 0. 994 78. utput resstance rs + h e 000 + 000 4. 69Ω + h + 80 e 9

SP 5.6: Common Base ampler s drven by a voltage source havng output mpedance o 50Ω. (ecall that CB ampler s nput resstance s low). load resstance or ampler s 0k and BJT used has ollowng h-parameters- h b 7Ω h rb.5 x 0-4 h b -0.98 h ob 0.5µ/ Determne- ) ) 3) 4) S 5) S 6). Neglect the eect o basng network. h b ( 0.98) Soluton: Current gan 0. 975 6 3 + h + (0.5x0 x0x0 ) ob L nput resstance h b + h rb L 7 + (.5x0-4 )(0.975)(0x0 3 ) 9.43Ω L 0.975x0000 oltage gan 33. 3 9.43 oltage gan takng nto account source resstance- + r (33.3)(9.43) 9.43 + 50 S S.75 Current gan takng nto account source resstance rs + r (0.975)(50) 9.43 + 50 S S 0.63 utput admttance Y h ob h h b b h rb + r S 0.5x0 6 ( 0.98)(.5x0 7 + 50 4 ) 3.68x0 6 mho utput resstance Y 3.68x0 6 7.6k SP 5.7: For Emtter Follower stage shown below, the BJT used has ollowng h- parametersh e.k h e 00 Calculate the value o nput resstance ) Neglectng the eect o basng network ) Takng nto account the eect o basng network. 30

+ CC 39k C C C C 3k9 E k Soluton: ) nput resstance wthout consderng the eect o basng network- h + ( + h ).+ ( + 00) e e E 0.k ) nput resstance takng nto account the eect o basng network- B 0.k 39k 3.9k 3.4k SP 5.8: For the ampler shown below, the BJT used has h e k and h e 0. Calculate ) Mller resstances M, M and hence o the crcut. ). ssume C to be arbtrarly large. + CC 8k 3 C 0k 8k E k 3

Soluton: Ths s a crcut o Bootstrapped Emtter Follower. Snce voltage gan o emtter ollower crcut s close to unty. Eect o M on output sde can be neglected. Fgure below shows C equvalent crcut that we can use or computaton o perormance parameters- M 8k E k M 8k C ground The eectve load resstance, across whch output the s developed s- k 8k k 0.88 k E E M e ` ( h ) h + +.0 + () (0.88 k) 06.8 k e E h e.0 0.99 ` 06.8 Snce s close to unty, our ntal assumpton that eect o M wll be neglgble s justed. 3 0 k M.0 M - 0.99 M 06.8k b M 000 ( + h e ) ( ) 09.3 + 8 000 + 06 b M SP 5.9: two-stage C coupled BJT ampler uses dentcal transstors wth h e 0 and h e k. oltage dvder basng network uses 00k and 0k. C or each stage s 0k. Determne overall ) nput resstance ) utput resstance 3) oltage gan. ssume couplng and bypass capactors to be arbtrarly large. 3

Soluton: (eer to Fgure 5.78 o text). doptng notatons o ths gure, 00k 0k 3 00k 4 0k C C 0k. ) verall nput resstance o the ampler s gven by- h e 00k 0k k 900Ω ) Snce hoe s not speced, ts eect on output resstance can be neglected. Hence overall output resstance s C 0k. 3) To calculate voltage gan, we rst determne nput resstance o second stage. Ths s gve by- 3 4 h e 00k 0k k 900Ω or 0.9k Eectve load resstance on rst stage L C 0k 0.9k 0.85k h e L h e L ( 50)(0.85) oltage gan o rst stage 45. 8 0.9 h e C ( 50)(0) oltage gan o second stage 555. 55 (0.9) verall voltage gan x (-45.8) x (-555.55) 5444.44 SP 5.0: Class transormer coupled audo power ampler shown n gure below uses a step-down transormer wth turns rato 4:. The output s adjusted or maxmum symmetrcal swng. nput voltage s sne wave. Determne- ) C power delvered to load ) DC power nput 3) Power dsspaton ratng o the transstor. + CC +8 N : N 4: 4Ω C C E C E 33

Soluton: For an deal case and or maxmum symmetrcal swng, Pac rmsx rms m x m where m and m are peak values o secondary voltage and current respectvely. For m maxmum symmetrcal swng, CE(mn) 0 and C(mn) 0. Hence m. m m m m P ac x x L n an deal case, m(pr) CC 8. m L Secondary peak voltage s determned usng transormer s turns rato. Hence- n 8 4 m(pr) m (sec) P ( 4.5) ac m(sec) L x4 4.5.53W Quescent collector current s gven by- CC n 8 6x4 CC CQ L L 0.8 DC power nput P dc CC x CQ 8 x 0.8 5.06W Power dsspated by transstor (assumng deal transormer and neglectng the power dsspated by basng network) s the derence between DC power nput and C power output. Hence- P D P dc P ac 5.06.53.53W Comment: s expected the theoretcal maxmum ecency s 50%. L 34

Chapter 5: Bpolar Juncton Transstors and pplcatons ddtonal Exercse Problems E 5.: For the crcut shown below, determne the value o B that wll saturate the transstor. ssume BE(sat) 0.8 and CE(sat) 0.. The transstor used has β 00. CC + C k B BB + -.5 E 5.: For the crcut shown below, determne the values o CEQ and CQ. The BJT used has β 80. ssume BE(actve) 0.7. What s the value o eectve load resstance? CC + B 470k C k7 C C C C L 0k E 5.3: For a BJT havng ollowng h-parameters, plot the graph o versus L where L vares rom 00Ω to M. E 5.4: For certan CE ampler, BJT used has ollowng h-parametersh e k h e 00 h re x 0-4 h oe 5µ/ Calculate ) Current gan ) nput resstance 3) oltage gan 4) utput resstance. Neglect the eect o basng network. 35

E 5.5: For a bootstrapped Darlngton par shown below, calculate- ) verall voltage gan ) verall nput resstance. The BJTs used have ollowng h-parametersh e.k h e 60 h oe 0µ/ ssume all capactors to be arbtrarly large. + CC 3 0k C M Q Q M E k E 5.6: For the crcut shown below, derve an expresson or ) oltage gan ) utput resstance n terms o small sgnal parameters o devces. ssume h e h oe 0 or BJT and G >> and. + Q Q G E 5.7: For an deal Class B ampler o complementary-symmetry type, CC +4 and L 8Ω. Calculate ) Theoretcal maxmum C power delvered to load ) Power dsspated by each transstor. 36

E 5.8: HF transstor uses a BJT havng ollowng hybrd-p parameters- r b 0Ω k b r b e r ce 00k C e 00pF C C 3pF g m 0m/. upper cut-o requency s observed to be 0MHz, what must be the value o load resstance or the stage? 37

ddtonal Solved Problems Chapter 6: peratonal mplers and pplcatons SP 6.: For the crcut shown n gure below, % error between theoretcal and practcal output voltage s ound to be 4%. ssumng that the error s entrely due to nput oset voltage, what must ts value? + - + n - 50 m 50k k Soluton: Theoretcal output voltage o ths non-nvertng ampler s gven by- 50 n + 50 +.55 Let the practcal output be denoted by. Snce there s a 4% error between theoretcal and practcal output, we have + 0.04.65 Expresson or or non-nvertng ampler s- + + + + + n earrangng the terms, we get-.65.55 5 + m SP 6.: For the crcut shown n gure below, the output rpple s m peak-to-peak. rpple n the power supply s 40m peak-to-peak, what must be the PS o PMP n db? 38

n + - 99k k Soluton: The voltage gan o ths non-nvertng ampler s gven by- + 99 + 00 pple n the output x Hence utput rpple m 0µ 00 PS S 40m 0µ 000 PS n db 0log 0 (000) 66dB SP 6.3: Closed loop bandwdth o an nvertng ampler havng gan o 00 s observed to be 40kHz. 0Hz, what must be the open loop gan o the ampler? Soluton: Usng relaton 6.30 rom text, the open loop gan o ampler s gven by- 00x40x0 3 5 4x0 0 SP 6.4: For the summng ampler shown n gure below, determne the output voltage. + 0k k - +. k 39 + 3 47k

Soluton: The expresson or output voltage s- 3 3 () 0 (.) ( 4) 3.7 47 SP 6.5: For certan PMP, the slew rate lmted output voltage s measured to be 00m. max MHz, what must be the slew rate o PMP? Soluton: Slew rate πma x m π x x 0 6 x 00 x 0-3 0.5 /µsec SP 6.6: For the nvertng ampler shown n gure below, the open loop gan o PMP used n 00000. Determne Z and Z o Z o PMP s 75Ω. 00k n 0k - + Soluton: Z or the nvertng ampler s nothng but 0K. Closed loop output mpedance s gven by- Z Z 75 Z 75 Ω + β 0 m 4 + + 0 x 00 Chapter 6: peratonal mplers and pplcatons ddtonal Exercse Problems E 6.: Determne the CM (n db) open loop gan o certan PMP s 4 x 0 5 and common mode gan s 0.. 40

E 6.: For certan PMP, the bas current s 40n. Determne % error n the output due to bas current ) For nvertng ampler ) For non-nvertng ampler when n 0m, 00k, 0k. ssume PMP to be deal otherwse. E 6.3: For certan PMP used n non-nvertng conguraton, determne % error n the output PMP has ollowng parameters-. m B 0n CM 80 db 0 5 nput voltage to PMP s 00m, 49k, k. E 6.4: Desgn a summng ampler to gve an output voltage + + 3 3 0 Determne % error n output voltage +0% tolerance resstors are used n above nvertng summng ampler. E 6.5: Determne % error n closed loop gan o nvertng ampler where 00k 0k and 0 5. ssume the PMP to be otherwse deal. 4

ddtonal Solved Problems Chapter 7: Frequency esponse SP 7.: n square wave testng o ampler, a 00Hz square wave nput results n 35% sag n the output and applcaton o 0kHz square wave nput results n 00nsec rse tme n the output. Determne the bandwdth o ampler. π L %sga x 35x00 Soluton: %sag x00 L.8Hz 00π 00π 0.35 0.35 t 00x0 H 9 r 3.5MHz Bandwdth H L 3.5MHz.8Hz 3.5MHz SP 7.: For CE ampler shown n gure below, determne ) Md-band gan o ampler ) Low requency 3 db cut-o BJT used has h e 00 and h e.k. Neglect the eect o basng network. + CC C k C C r s Cb S k L 470µF E C E 000µF h e C 00x. Soluton: ) Md-band gan s gven by S 00 r + h +. ) To determne lower 3 db cut-o requency, we need to rst calculate equvalent capactance. Ths s gven by- S e C + h + 00 e + + 6 6 C b C E 470x0 000x0 0.7x0 6 4

Hence C 8.78µF Lower 3 db cut-o requency s gven by- L 6 3 πc ( r h ) x8.78x0 ( x0.x0 3 S e π + ) 8.846Hz SP 7.3: n a cascade ampler havng 3 non-nteractng dentcal stages, ndvdual ampler has lower cut-o requency o 00Hz and upper cut-o requency o.8mhz. What wll be the bandwdth o cascade ampler? Soluton: verall low requency cut-o s gven by 00 n /n / /3 [ ] [ ] / 00 0.509 verall hgh requency cut-o s gven by- 96.4Hz n ( /n ) /.8x0 6 ( /3 ) / 97.68kHz Bandwdth o cascaded ampler n n 97.68kHz 0.96kHz 97.49kHz Chapter 7: Frequency esponse ddtonal Exercse Problems E 7.: For CE ampler shown n gure below, determne the overall low requency response o the ampler. The BJT used has h e k and h e 00. + CC 00k C k C C r s Cb 00µF 50Ω 470µF S E C E 0k k 0µF E 7.: For Exercse problem 7. above, does the ampler mplement domnant pole? no, what modcaton wll be necessary n the crcut? 43

E 7.3: The C coupled ampler shown n gure below gves L 0Hz. What must be the value o h e o BJT used? ssume emtter bypass capactor to be arbtrarly large. E 7.4: n a cascade arrangement o C coupled amplers wth dentcal nonnteractng stages plot the graph o bandwdth versus number o stages (n) or n varyng rom to 5. Gven 0Hz and 30Khz. How many stages would be requred to realze an audo ampler? E 7.5: two-stage JFET ampler uses dentcal FETs wth ollowng parameters- g m 0m/ r d 0k. The ampler uses D 0k, G M and equvalent shunt capactance per stage s 0pF. Determne- ) alue o C b to gve requency response db down at 0Hz. ) verall md-band gan. 44

ddtonal Solved Problems Chapter 8: Feedback and scllators SP 8.: For the block dagram shown below, derve an expresson or S S + Α + Α - - β β Soluton: By nspecton o gure- S - β x ( S -β ) t second summng juncton, β ( S β ) β The output voltage x [ ( S β ) - β ] Combnng terms n, [ + β + β ] S + β + β S SP 8.: n ampler s desgned o have open loop gan o 000. The ampler delvers W output to load. The nput voltage to ampler s 0m. Measured % second harmonc dstorton s 4%. a 40dB negatve eedback s appled and the output power s to reman same, determne ) New value o nput sgnal ) % second harmonc dstorton. Soluton: ) 40 db negatve eedback amount to 0log 0 ( + β) 40. Hence + β 00. Gan wth eedback s- 45

000 9.9 + β + 00 For ampler wthout eedback, the orgnal output voltage was 000 x 0m 0. For ampler wth eedback, the closed loop gan s 9.9. Hence nput voltage requred to produce same output power wll be- 000 x0m 9.9.0 ) For ampler wth eedback, the dstorton reduces by actor D. Hence wth a 40dB negatve eedback, harmonc dstorton wll be (4 / 00).e. 0.04%. SP 8.3: pen loop gan o an ampler vares to the extent o +00 n the nomnal value o 4000. t s necessary to stablze the closed loop gan to +0.4%. Determne- ) Desenstvty ) Closed loop gan o the ampler. Soluton: Fractonal change o gan s gven by- x + β D x 00 00 D x x 6.5 4000 0.4 ) Closed loop gan or ths value o D wll be- 4000 640 D 6.5 SP 8.4: For the crcut shown n gure below, BJT used has ollowng h-parameters h e k h e 00 ) denty the eedback topology ) Calculate S and. ssume all capactors to be arbtrarly large. + CC 00k C 8k C C C 0k r s CC C C3 S k 46 E C E 0k k Q Q E k

Soluton: Current lowng through E and E s sampled and mxed wth nput at the base o Q. penng the output loop makes eedback zero. Hence ths s a case o current samplng. Snce ths current s mxed n shunt wth nput current, ths s a case o shunt mxng. Hence we can conclude that ths crcut represents current shunt eedback. The C equvalent crcut that we can use or analyss s shown below- C 8k C 0k r s Q k Q E k S B M E k7 M Stage s a CE ampler. Hence >>. Hence >>. Sng Mller s theorem, M 7k Eectve resstance n emtter lead o Q s- E E + ( E M ) k +.45k 3.45k nput resstance or second stage- h e + ( + h e ) E + (0)(3.45) 349.45k 47

h e 349.45 0.997.45 Let x x0.997 0. 7 3.45 Eectve load on Q 8k 349.45k 8k L C L 8 h e ( 00)x 800 Let x 800x0.7 60 v M 7k. Ω ( 60) 4 C 0 h ex 00x.86 349.45 x (-800) x(-.86) 548 S xβ x S + rs where M M.4Ω.4 Hence S xβ 548x 07. 85.4+ 000 S SP 8.5: For the crcut shown n gure below, determne ) v ) 3) o. Basng network s omtted or smplcty. The BJT used has h e k and h e 80. + CC r s S 600Ω E k 48

Soluton: We neglect unty n comparson wth h e n ollowng calculatons. pen loop gan or the ampler s gven by- h e E 80xk 50 rs + h e 0.6k + k rs + h e + h e E 0.6 + + (80)() Desenstvty D 5 rs + h e 0.6 + 50 ) 0. 98 D 5 ) D r S + h e + h e E 0.6 +.0 + (80)() 8.6k rs + h e 0.6 + 3) 0Ω h 80 e SP 8.6: For the crcut shown below, the closed loop gan measured s 0. PMP has open loop gan o 5 x 0 5, what must be the value o? + - 0k Soluton: >>. Hence + β β β 0. For non-nvertng ampler, β 0. + Substtutng 0k, we get 90k 49

SP 8.7: For BJT ampler shown n gure below, determne ) ) v 3) 4) o. BJT used are dentcal wth h e 50 and h e k. ssume all capactors to be arbtrarly large. + CC C C 50k C k C C 3 50k C 0k C C3 Q Q 4k7 5 3k9 6 00Ω C E 4 0k E k C C4 C E 4k7 Soluton: t s necessary to derve the equvalent crcut o ths eedback ampler wthout eedback. To determne the nput crcut, we set 0. Ths wll connect top end o to C ground. Thus 6 and wll be n parallel wth each other. we denote ths by E, E 6 0.k 4.7k 0.k. Eectve load on second stage L C ( + ) 0k 4.8k 6 3.4k h e h e L 50x3.4 6 Eectve load on rst stage L h k 50k 0k k 840Ω C 3 4 e h e h e L + ( + he) E 50x0.84 + (5)(0.) 6.88 x (-6.88) x (-6) 4.56 β 6 6 + 0. 0.0 4.7 + 0. D + β + (0.0)(4.56) 3.9 50

D 4.56 3.9 47.85 nput resstance wthout eedback h e + (+h e ) E + (5)(0.) 6.k nput resstance wth eedback x D 6. x 3.9 4k utput resstance wthout eedback L 3.4k utput resstance wth eedback 3.4 0.39k 39Ω D 3.9 SP 8.8: For the smpled crcut shown n gure below, ) denty the topology o eedback ) Determne v. The BJTs used are dentcal wth h e k and h e 00. + CC C k r s Q Q k E k S E k Soluton: we short the output, eedback voltage across E becomes zero. Hence ths s a case o voltage samplng. The eedback voltage across E s mxed n seres wth nput. Hence ths ampler represents voltage seres eedback topology. To nd the nput crcut, we set 0. Ths connects E and E n parallel between Q emtter to ground. To nd the output crcut, we open crcut nput loop. Ths connects E + E across output. The resultant C equvalent crcut that we can use or analyss s shown below- s k r s B b h e k E C h e b C k 5 C B b h e k h e b E k E k

s seen rom gure, β E + E E Hence β 0.5. oltage gan wthout eedback x x Eectve load on second stage + 4.4k nput resstance o second stage h e. L E E h ex L 50x4.4 Hence 0 Eectve load on rst stage h k k L C e 0.956k h ex L 50x0.956 oltage gan o rst stage 47. 8 h e verall voltage gan x (-0) x (-47.8) 056 Desenstvty D + β + (0.5)(056) 559 056 Gan wth eedback. 99 D 559 SP 8.9: BJT Hartley oscllator uses varable trmmer capactor to change the requency o oscllatons. Capactor vares between 5pF and 50pF. L L mh, determne the range o requency or oscllator crcut. Neglect mutual couplng between L and L. Soluton: L eq L + L mh 5

π L eq C Hence and L C L C max 3 π eq mn π x0 x5x0 mn 3 π eq max π x0 x50x0.59mhz 503.9kHz SP 8.0: For certan FET Colptt oscllator (Fgure 8.55), C 0.0µF and C 0.00µF. L µh, determne ) Gan o oscllator crcut ) Frequency o oscllatons. ssume Q o resonant crcut to be arbtrarly large. Soluton: Gan o oscllator crcut s gven by- C 0. 0 C 0.00 Frequency o oscllatons s gven by- π LC where CC 0.0x0.00 C 0.09 C C 0.0 0.00 F eq µ + + eq Hence LC 6 6 π eq π x0 x0.09x0 375.3kHz Chapter 8: Feedback and scllators ddtonal Exercse Problems E 8.: For a negatve eedback ampler, open loop gan s 00 and β 0.0. nput sgnal o 0m rom mcrophone s appled, determne ) oltage gan wth eedback ) output voltage 3) Feedback voltage. E 8.: negatve eedback ampler has open loop gan o 80dB. β 0.00, what wll be the change n closed loop gan open loop gan changes by +%. E 8.3: For a negatve eedback ampler, L 00Hz and H 0kHz. pen loop gan o the ampler s 000. β 0.0, determne ) Closed loop gan ) Bandwdth wth eedback. E 8.4: For certan negatve eedback ampler, the open loop gan o 000 alls to 60 when negatve eedback s appled. Determne the eedback actor n db. 53

E 8.5: For the eedback ampler shown n gure below, denty the eedback topology. Calculate ) v ) 3) o. The BJTs used have h e 00 and h e.k. ssume all capactors to be arbtrarly large. Basng network s omtted or smplcty. + CC C 00k C k5 C C C C3 C C Q Q E k E 470Ω C E E 8.6: For a two-stage JFET ampler shown below, denty the topology o eedback and determne ) v ) 3) o. JFETs used have r d 0k and g m 4 m/. + DD D 47k D k C C3 C C C C Q Q s G M S 70Ω G M 54 S 70Ω C S 0k

E 8.7: For a 3-stage BJT ampler shown n gure below, derve an expresson or ) Feedback actor ) v. + CC C C C3 C C Q Q 3 Q E E E 8.8: For a BJT Hartley oscllator, L mh, L mh and M 0µH. a varable capactor s used to adjust the requency o oscllatons between khz to khz, determne the value o C mn and C max. E 8.9: For certan quartz crystal, equvalent crcut components have ollowng values- L S 0.39H S 4k ) seres resonant requency o oscllator s.000mhz, what must be the value o C S? ) parallel resonant requency o oscllatons s.mhz, what would be the value o C M? 55

Chapter 9: Lnear oltage egulators and oltage eerences ddtonal Solved Problems SP 9.: For FW, capactor lter arrangement, dc 4 and equvalent load resstance s 00Ω. lter capactor used s 000µF, what wll be the MS rpple voltage? ssume 50Hz mans operaton. Soluton: 4 dc dc rms where dc 0m 4 3C 00 L L Ω Hence 0x0 3 dc rms 6 4 3C L 4x 3x50x000x0 34.64m SP 9.: + Dc voltage s derved rom FW capactor lter arrangement. The power supply s used to drve 4-dgt, 7-segment LED dsplay. Each segment draws a current o 5m. the dsplay can tolerate MS rpple o 0.8, determne the value o lter capactor. Soluton: n the worst case,.e. when all segments are N, the current demanded by load (dsplay) s dc No. o dgts x No. o segments per dgt x Current per segment 4 x 7 x 5 40m. Ths load current, drawn rom + supply amounts to the equvalent load resstance o- L dc 85. 7Ω 40m dc Usng the expresson or rpple actor r MS r dc 4 3C L C dc rms x 4 3C L 0.8 x 4x 505.µ F 3x50x85.7 SP 9.3: + dc power supply provdes current o 00m. DC voltage s derved rom FW LC lter arrangement powered by 50Hz C mans, determne the value o crtcal nductance. Soluton: We rst calculate equvalent load resstance. Ths s gven by- 56

dc L 60Ω dc 00m The value o crtcal nductance s gven by- L L 60 94.5 94.5 C 63.66mH SP 9.4: DC regulated power supply has load regulaton o 4% at ull load current o 00m. no load voltage s +5, determne ) Full load voltage ) Equvalent output resstance o regulator. Soluton: FL % Load regulaton x00 NL NL NL NL FL 0.04 Snce NL 5, FL NL +0.04 NL 5 (0.04)(5) 4 Equvalent output resstance FL FL NL 5 4 00m 0Ω SP 9.5: Desgn a C 73 based voltage regulator (eer to Fgure 9.9) to gve a nomnal output voltage o +5 wth maxmum load current o 00m. ssume 5k Soluton: eerrng to expressons 9.43 to 9.46, we can determne the requred values. SC 0.66 0.66 6. 6Ω 00m L(max) + ( + ) ( ) EF 7.0 5.0 5.0 ( + 5.0) 7.0 where resstor values are substtuted n kω. 57

Hence k. To mnmze oset error, + Practcally one may use 3 as.5k. x5 + 5 3.4k Chapter 9: Lnear oltage egulators and oltage eerences ddtonal Exercse Problems E 9.: utput voltage o a FW-lter capactor arrangement shows a peak value o 9.8 and mnmum value o 9.0. equvalent load resstance s 00Ω and lter capactor used s 000µF, determne- ) DC output voltage o the crcut ) pple actor. ssume 50 Hz C mans operaton. E 9.: Many battery elmnators requre 9 DC output. Desgn an elmnator crcut that wll provde a maxmum o 0m load current wth maxmum allowable rpple o %. ssume FW-LC lter arrangement and 50Hz C mans operaton. E 9.3: Desgn a zener regulator crcut to gve nomnal output o + DC at 0m. zener used has ZT 0m and maxmum nput voltage s 0, determne varaton n the output voltage nput changes ro 6 to 0 or the selected zener. lso determne maxmum power that can be dsspaton by the selected zener. E 9.4: zener regulator crcut uses zener dode wth ollowng parameters- Z 6.0 ZT 40m Z Z Ω P Z 750mW Zmn m unregulated nput changes between to 8, determne- ) Maxmum permssble Z ) alue o seres lmtng resstor 3) Power dsspaton ratng o seres resstor 4) Maxmum permssble load current. 58