NCFP. Nickel Cadmium Fibre Plate Batteries. Dimensional and Electrical Data

Similar documents
NCFP. Nickel Cadmium Fibre Plate Batteries. Dimensional and Electrical Data

HEAT DISSIPATION ON DISCHARGE AND CHARGE

Worksheet for Sizing Engine Cranking Batteries X/H - Type FNC Batteries. Information Required to Size Batteries for Engine Cranking:

CGS ALUMINUM ELECTROLYTIC CAPACITORS

UL 1077 DIN Rail Supplementary Protectors

TRM Professional Multianode

1 of 13 AMPWELD INDUSTRIES (M) SDN. BHD. Model RC 100. Model WO-700M. Model : RC100

FEATURES APPLICATIONS DESCRIPTION QUICK REFERENCE DATA. PILKOR components

SECTION #1 - The experimental setup

Multilayer Ceramic Chip Capacitors

SCM Series Supercapacitor Modules Series-Connected Supercapacitors

16 Appendix 16 Electrical Research Association Report

Chapter 17. Electrochemistry

Chemistry: The Central Science. Chapter 20: Electrochemistry

Module 1 Units 3,4,5

Safety Precautions WARNING If critical situations that could lead to user s death or serious injury is assumed by mishandling of the product.

Surface Mount Multilayer Ceramic Capacitors for Pulse Current Applications

Western Electric A V a c u u m T u b e

On Pulse Charging of Lead-Acid Batteries Cyril Smith, November 2010

Instruction. Vacuum Circuit Breaker Operator Module. Type 3AH 4.16kV to 38kV. Power Transmission & Distribution

Characteristics Climatic Category 40/85/56 (IEC 61071) Operating Temperature. 700 ~ 2000 VDC Capacitance Range 0,2 ~ 7,5 µf Capacitance Tolerance

Characteristics Climatic Category 40/105/56 (IEC 61071) Operating Temperature. 850 ~ 1200 VDC Capacitance Range 0,33 ~ 3,0 µf Capacitance Tolerance

The Impact of Metallized Electrodes on High Energy Density Pulse Power Capacitors

Surface Mount Multilayer Ceramic Chip Capacitors Prohibit Surface Arc-Over in High-Voltage Applications

MLCC APPLICATION GUIDE

Chapter 19, Electricity Physical Science, McDougal-Littell, 2008

Characteristics Climatic Category 40/105/56 (IEC 61071)

Characteristics Climatic Category 40/105/56 (IEC 61071)

MLCC APPLICATION GUIDE

New 16V SCM Series Supercapacitor Modules

CAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING

Surface Mount Multilayer Ceramic Chip Capacitors for Safety Certified Applications

3. Cautions for use 3-1. Voltage 3-2. Self heating 3-3. Mounting conditions 3-4. Storage conditions

Lithium Sulfur Dioxide (LiSO 2 )

CPTC Thermistor: PP Series

PMLCAP. Polymer Multi Layer Capacitor Specification Sheet RUBYCON CORPORATION PML DIVISION. PMLCAP ST series RPR Rubycon PART No. Drawing No.

Capacitor Construction

Basic Electricity. Chapter 2. Al Penney VO1NO

CYCLON SELECTION GUIDE THIRD EDITION

Electric Currents and Resistance

Hybrid Capacitor Applications

NorthStar Battery Company DCN: SES DCR: 1038-S07 Date: Page 1 of 12

handbook, 050/052 4 columns smaller

Positive Signal The most technologically advanced. double coated dichroic filters are used, which transmit

ISEmax CAM40/CAS40. Technical Information

4.2. Ex-Ceiling light fittings AB 80 / AB 05 LED / AB 05 / AB 12 NAV 70. (Zone 1, 2, 21, 22)

Lemon Batteries Connected in a Series/Parallel Configuration Charging a 4.4 Farad Capacitor. SECTION #1 - The experimental setup

SPECIFICATION SS 51/9 400KV COUPLING CAPACITORS FOR POWER LINE CARRIER SYSTEM

VX25 Enclosure System. Technical documentation PE conductor connection, current carrying capacity

No Item Code Description Series Reference. Thickness. M B min (mm) T (mm) code. See Thickness Specification Reference Table below

Surface Mount Multilayer Ceramic Chip Capacitors with Integrated Resistor for High Pulse Current Applications


Application Guidelines For Tantalum Electroilytic Capacitors

SCC LE Series SuperCapacitors

Prosperity Dielectrics Co., Ltd. 1 ACS-1045 Rev15

CONNECTORS, ELECTRICAL, RECTANGULAR, MICROMINIATURE, NON-REMOVABLE GAUGE 26 PCB PIN CONTACTS BASED ON TYPE 8MCG

High-ohmic/high-voltage resistors

Double Layer Capacitors. PN: NEX_ series & NED_ series

WELCOME TO PERIOD 14. Homework Exercise #13 is due today. Watch video 3 Edison s Miracle of Light for class discussion next Tuesday or Wednesday.

Resistance (R 25) Ω Ω Ω. Tolerance of R 25 M ±20% H ±25% S ±35%

PTS Volt DC surface mount resettable PTC devices. Technical Data Applications. Agency information.

All part numbers in the coding below start with "TC-" and end with "203"

PRODUCT SPECIFICATIONS

SCIENCE 1207 ELECTRIC CURRENTS

Experiment FT1: Measurement of Dielectric Constant

Super High AUTO (SHA) Series

Electro - Principles I

PRODUCT SPECIFICATIONS

FEATURES STANDARD CONFIGURATION

TECHNICAL INFORMATION

New 3.0V SCC Series Supercapacitors High Capacitance Cylindrical Supercapacitors

High-Voltage Types Ordering Information, Mica Capacitors

Capacitors with screw terminals Long life industrial 85 C 12000h

Aluminum Capacitors SMD (Chip) Long Life Vertical

PiB Series. PiB (Pump-in-a-Box) 4380 & 4392 Series

N-CHANNEL MOSFET Qualified per MIL-PRF-19500/592

Ceramic PTC Thermistor: PSB Series

Fusible Carbon Film MELF Resistors

Ceramic PTC Thermistor: PPL Series

Reference Only Spec. No. JEFL243B 0003F-01 P 1/ 6

HELLA. Linear slot diffuser. Ordering codes. HELLA - Linear diffuser. Linear Diffusers 1 / 18. Example of the ordering code HELLA B-0-0-AN

6. In a dry cell electrical energy is obtained due to the conversion of:

SPECIFICATION. 1. Scope This specification applies ferrite Chip common mode filters C3-2012F-Series to be delivered to user.

Introduction to Blackbody Sources

Chapter 8: Energy from Electron Transfer

SCIENCE STUDENT BOOK. 12th Grade Unit 7

SAFETY TRAINING LEAFLET 08 ACETYLENE, CALCIUM CARBIDE, LIME SLUDGE AND PURIFYING MATERIALS

PRODUCT SPECIFICATION

STATIC GAS MONITOR Type SGM/DEW Revision A of 20 aprile 2016

AVX is a leading worldwide manufacturer and supplier of a broad line of passive electronic components and Interconnects.

Surface Mount Multilayer Ceramic Chip Capacitor Solutions for High Voltage Applications

FEATURES Overload protection without risk of fire wide range of overload currents. APPLICATIONS TV, Monitor, Audio, Video DESCRIPTION

Introduction to electrochemistry

TF 202 / TF 202-Ex. Field mounted temperature transmitters, FOUNDATION Fieldbus (H1), Pt 100 (RTD), thermocouples, 1 or 2 independent channels

The Basic Capacitor. Water Tower / Capacitor Analogy. "Partnering With Our Clients for Combined Success"

TYPE. 250 ppm / 200 ppm / rated dissipation at T amb = ppm / 200 ppm / 250 ppm / 200 ppm /

Emergency lighting units EM Inverter

- Memorize the terms voltage, current, resistance, and power. - Know the equations Ohm s Law and the Electric Power formula

Surface Mount Multilayer Ceramic Chip Capacitors DSCC Qualified Type 05007

TYPE. max. working voltage 250 V 350 V 500 V 750 V. max. overload voltage 500 V 700 V 1000 V 1500 V. basic specifications IEC B

Transcription:

NCFP Nickel Cadmium Fibre Plate Batteries Dimensional and Electrical Data

Nickel Cadmium Fibre Electrode Batteries Nickel Cadmium Fibre electrode batteries may be seen as 3rd generation (1 s) technology. Pocket plate is 1st generation (11) and Sintered Plate is 2nd generation (1 s). The Fibre Electrode Technology has been provided by DAUG, Germany (research venture of Mercedes Benz & Volkswagen). HBL s NCFP Batteries are available both as Single cells of 1.2 V and as Blocks (of individual cells thermally welded together) of multiple voltages & capacities. INTERTEK LI S TE D CM IEC US Construction Terminal Arrangement Nickel-plated terminal posts provide good electrical conductivity Flame arresting flip-open vent cap Prevents explosion and electrolyte contamination Splash guard Prevents electrolyte splashing and possible short-circuit caused by external objects accidentally falling into the cell Plates Made of Nickel plated fibre matrix hold the active material, which provides good conductivity and ensures excellent electrical performance Translucent polypropylene cell containers Make the cell mechanically sturdy and facilitates visual electrolyte level checks for ease in maintenance Separator Micro-porous sintered PVC separator ensures insulation between the plates without hampering electrolyte flow

Product Range HBL s NCFP Batteries are available as Single Cells and as Blocks in four types designated KFX, KFH, KFM & KFL based on performance characteristics. The wide capacity range in each type permit selection of an optimum battery for any application. KFX range uses Very thin plates to provide extremely high discharge currents for short durations. KFH range uses Thin plates (thicker than X type) to provide high discharge currents for short durations. KFM range uses ptimized plate thickness ideal for medium discharge currents and durations. KFL range uses Thick plates to provide low currents for long durations. utstanding Advantages of HBL s batteries are: Excellent Cycle life. High energy density. Long storage life. Wide operating temperature range. No change of electrolyte for life time. Minimal maintenance. High resistance to electrical and mechanical abuse. Quick charging. Built in Performance The Nickel Cadmium Fibre Electrode employed in the NCFP batteries allows % of the Electrode Volume available for the active material. The three dimensional fibre structure provides a very high conducting density and ensures that the active material is accessed during current collection, thereby giving an excellent electrical performance. The benefits of the above are seen in low internal resistance, high rates of discharge, and improved recharge capability. The NCFP battery electrode technology uses active material free from Graphite and iron. Absence of graphite prevents internal carbonate formation and absence of iron reduces maintenance. The elastic nature of NCFP electrode enables it to absorb greater shock and vibration stresses. This includes volume changes during charge and discharge cycles, hence the battery can give more than 00 cycles. The NCFP is considerably lighter in weight hence has a high energy density. Pure Active Material Nickel Fibre Matrix T h e s e c e l l s a r e a v a i l a b l e i n c o n t a i n e r s of polypropylene. The polypropylene container can withstand mechanical stresses, shocks and vibrations. It performs in temperature extremes without losing strength, insulates well, resists corrosion. Furthermore, the translucent nature of polypropylene allows visual check of electrolyte level for ease of maintenance. The cells are also available in Structural Foam molded, Stainless Steel containers for special requirements. Broad Channels for Electrolyte Magnified View of Fibre Matrix The above design features make these batteries rugged and highly reliable. 1

Governing Standards HBL s NCFP batteries conform to relevant international standards such as IEC, DIN, BS, KS, etc. The Batteries are tested and certified by Canadian Standards Association for IEC standards. Battery Characteristics Nickel Cadmium Fibre Plate Batteries are the most reliable and rugged batteries available today. The batteries do not suffer from sudden death failure. They can withstand to a great extent any type of abuse like overcharge, deep discharge, even accidental reverse charge and can be stored in any state of charge Charging These batteries can be charged by all normal methods (like taper, constant current, constant voltage, float or trickle charging. A Dual mode charger which will recharge a discharged battery in Boost mode (higher voltage and current) and then bring it to Float mode (lower voltage) to keep it in fully charged condition is ideal to get the best performance. Recommended Charging Parameters Current limit - max. 0.2C A Float voltage - 1. to 1.2 V/Cell Boost voltage - 1. to 1. V/Cell for L type - 1. to 1. V/Cell for M type - 1.3 to 1. V/Cell for H type - 1.3 to 1. V/Cell for X type However, if single mode charger is already available, like in old systems or in locomotives, the battery can be operated with constant voltage charging. Adequate Recharging time is required in this case. Recommended Charging voltage setting: 1. to 1.V / Cell. Discharge Performance The rated capacity of a Nickel Cadmium battery is defined as the Ampere Hours available at hour rate of discharge 0 to an end voltage of 1.00V/Cell at C after charging at constant current of 0.2C rate for hours. The nominal voltage of a single cell is 1.2 volts. The discharge performance depends on the battery type. For example, a H type cell at minutes discharge can deliver about twice the discharge current compared to an L type cell of equal rated capacity. Always use the discharge performance tables to find the proper X, H, M and L type alternatives for a specific application. The tabulated discharge performance data are valid for cells fully charged. If the actual conditions differ from standard, the expected performance will be different. ur application engineering department will provide the details and further help you in selecting the optimum battery type for your requirement. In accordance with its policy of continuous improvement the company reserves the right to change specifications and designs without notice. Illustrations,data, dimensions and weights given in this brochure are for guidance only. 2

S i n g l e C e l l s Capacities and Dimensions KFL-range Cell type KFL P KFL P KFL P KFL P KFL P KFL P KFL P KFL P KFL 1P KFL P KFL 1P KFL P KFL 1P KFL 0P KFL 2P KFL P KFL 2P KFL 3P KFL 0P KFL 3P KFL P KFL P KFL P KFL 0P KFL P KFL P KFL P Container size reference S1 S3 S3 S S S S S S S S S S S S S S S S S Capacity at hour rate 1 1 1 0 2 2 3 0 3 0 Height Width Length 2 2 2 3 3 3 1 1 1 1 1 1 1 3 3 3 3 3 3 3 Cell dimension in mm 3 3 3 3 3 3 3 1 1 1 1 1 1 1 Cell connection bolt(s) size Approximate weight of the cell (Kg) M 1.1 M 1. M 1. M 3.1 M 3.2 M.2 M. M.1 M. 2 X M 2 X M..1 2 X M.2 2 X M. 2 X M. 2 X M. 2 X M. 2 X M.0 2 X M.2 2 X M.3 2 X M. 2 X M.0 2 X M.2 2 X M.3 2 X M. 2 X M. 2 X M. 2 X M. Approximate electrolyte volume between the level marks (L) 0. 0.1 0.1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. KFM-range Cell type KFM P KFM P KFM P KFM P KFM P KFM P KFM 2P KFM P KFM P KFM P KFM 1P KFM P KFM P KFM 1P KFM P KFM 12P KFM 2P KFM P KFM P KFM P KFM 0P KFM 3P KFM 3P KFM 32P KFM 3P KFM 0P KFM P KFM P KFM P KFM P KFM P KFM 0P KFM P KFM P KFM P Container size reference S1 S1 S2 S3 S S S S S S S S S S S S S S S S S S S S Capacity at hour rate 2 1 1 12 2 0 3 3 32 3 0 0 Cell dimension in mm Height Width Length 2 2 2 2 3 3 3 3 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 Cell connection bolt(s) size M M M M M M M M M M M 2 x M 2 x M 2 x M 2 x M 2 x M 2 x M 2 x M 2 x M 2 x M 2 x M 2 x M 2 x M 2 x M 2 x M 2 x M 2 x M 2 x M 2 x M 2 x M 2 x M 2 x M 2 x M 2 x M 2 x M Approximate weight of the cell (Kg) 1.2 1.3 1. 1. 3. 3. 3........0.1.2.3...0.2.3...... 1.0 1.1 1.2 1. 1. 1. 1. Approximate electrolyte volume between the level marks (L) 0. 0. 0. 0.1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 3

S i n g l e C e l l s Capacities and Dimensions KFH-range Cell type KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH 1P KFH P KFH P KFH 1P KFH 1P KFH 0P KFH 2P KFH 2P KFH 2P KFH P KFH 2P KFH P KFH 0P Container size reference S1 S1 S2 S3 S S S S S S S S S S S S S S S S Capacity at hour rate 1 1 1 0 2 2 2 2 0 Cell dimension in mm Height Width Length 2 2 2 2 3 3 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 Cell connection bolt(s) size M M M M M M M M M M M 2 X M 2 X M 2 X M 2 X M 2 X M 2 X M 2 X M 2 X M 2 X M 2 X M 2 X M 2 X M 2 X M 2 X M 2 X M 2 X M Approximate weight of the cell (Kg) 1.2 1.3 1. 2.0 3.3 3. 3. 3. 3.......2.3.........0.1. Approximate electrolyte volume between the level marks (L) 0. 0. 0. 0.1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. KFX-range Cell type Container size reference Capacity at hour rate Cell dimension in mm Height Width Length Cell connection bolt(s) size Approximate weight of the cell (Kg) Approximate electrolyte volume between the level marks (L) KFX P S2 2 1 M 1. 0. KFX P S3 2 M 1. 0.1 KFX P S M 3.3 0. KFX P S 3 M.0 0. KFX P S 3 M. 0. KFX P* B31-1 3 1 1 M. 1. KFX P* B31-1 3 1 1 M 1.2 1. KFX P* B31-1 3 1 1 M 1.3 1. KFX P S 2 x M. 0. KFX P S 2 x M. 0. *Two Cell Block (2.V)

S i n g l e C e l l s KFL-range Discharge currents in Amperes at ± C for a fully charged cell to ECV 1.V/cell Cell type Capacity min min min 1 hour 2 hour 3 hour hour hour hour KFL P KFL P KFL P KFL P KFL P KFL P 31 3 1 1 2 2.0 2. 3.... KFL P KFL P KFL 1P 1 1 1 1 1 1 3 1.3..3 KFL P KFL 1P KFL P 1 3 1 2 1 3 3 2 2 2 1...2 KFL 1P KFL 0P KFL 2P KFL P KFL 2P KFL 3P 1 0 2 2 3 2 1 2 1 2 3 11 3 3 1 2 2 1 1 1 1 3 1 31 1. 1...0.. KFL 0P KFL 3P KFL P 0 3 0 3 3 1 3 3 2 1 2 1 2 3.3 3.3.2 KFL P KFL P KFL 0P KFL P KFL P KFL P 0 3 3 3 3 3 0 3 3 3 3 1 3 31 1 1 3 2 1 3 1 3 3.1.1.0 1.0 2.0 2. Discharge currents in Amperes at ± C for a fully charged cell to ECV 1.V/cell Cell type Capacity min min min 1 hour 2 hour 3 hour hour hour hour KFL P KFL P KFL P KFL P KFL P KFL P KFL P KFL P KFL 1P KFL P KFL 1P KFL P KFL 1P KFL 0P KFL 2P KFL P KFL 2P KFL 3P KFL 0P KFL 3P KFL P KFL P KFL P KFL 0P KFL P KFL P KFL P 1 1 1 0 2 2 3 0 3 0 1 1 3 1 2 0 31 3 1 2 1 3 3 1 1 2 2 2 3 3 3 1 2 1 1 2 2 1 3 3 2 2 1 1 2 11 1 2 1 3 3 0 3 0 1 2 1 1 2 2 1 3 3 1 0 1 2 1 1 1 3 3 1 3 2 1 31 3 1 2 2.0 3.0 3..0.0.0..0..0.0. 1.0.0.0..0.0.0 3.0.0.0.0.0 2.0 3.0.0

KFL-range S i n g l e C e l l s Discharge currents in Amperes at ± C for a fully charged cell to ECV 1.0V/cell Cell type Capacity min min min 1 hour 2 hour 3 hour hour hour hour KFL P KFL P KFL P KFL P KFL P KFL P KFL P KFL P KFL 1P KFL P KFL 1P KFL P KFL 1P KFL 0P KFL 2P KFL P KFL 2P KFL 3P KFL 0P KFL 3P KFL P KFL P KFL P KFL 0P KFL P KFL P KFL P 1 1 1 0 2 2 3 0 3 0 31 2 2 3 3 1 1 1 1 3 3 31 1 3 1 2 1 1 1 2 2 2 3 3 1 3 3 1 3 3 3 1 1 1 2 3 11 3 1 3 3 3 3 1 2 3 2 1 1 1 2 2 2 2 1 1 3 2 1 1 1 1 1 3 3 3 3 1 2 3 1 1 3 2 2 3 2.0 3.0 3..0.0.0..1..1.1. 1.1.1.1..2.2.2 3.2.2.3.3.3 2.3 3.3.3 Discharge currents in Amperes at ± C for a fully charged cell to ECV 1.00V/cell Cell type Capacity min min min 1 hour 2 hour 3 hour hour hour hour KFL P KFL P KFL P KFL P KFL P KFL P KFL P KFL P KFL 1P KFL P KFL 1P KFL P KFL 1P KFL 0P KFL 2P KFL P KFL 2P KFL 3P KFL 0P KFL 3P KFL P KFL P KFL P KFL 0P KFL P KFL P KFL P 1 1 1 0 2 2 3 0 3 0 1 1 1 3 1 2 2 3 0 3 2 1 3 1 2 1 1 2 2 3 3 2 1 1 1 1 2 1 2 1 1 2 1 3 3 3 1 2 1 1 1 3 3 1 3 3 1 3 1 3 2 2 1 1 1 1 1 3 3 2 2 2 1 1 1 3 3 1 2 3 1 1 3 2 2 3 2.0 3.1 3..1.1.1..2..3.1. 1.2.2.2..3.3.3 3.3.... 2. 3..

KFM-range S i n g l e C e l l s Discharge currents in Amperes at ± C for a fully charged cell to ECV 1. V/cell Cell type Capacity min min min 1 hour 2 hour 3 hour hour KFM P KFM P KFM P KFM P KFM P KFM P KFM 2P KFM P KFM P KFM P KFM 1P KFM P KFM P KFM 1P KFM P KFM 12P KFM 2P KFM P KFM P KFM P KFM 0P KFM 3P KFM 3P KFM 32P KFM 3P KFM 0P KFM P KFM P KFM P KFM P KFM P KFM 0P KFM P KFM P KFM P 2 1 1 12 2 0 3 3 32 3 0 0 31 2 1 1 1 1 1 2 3 3 3 2 1 1 1 1 2 1 1 1 0 3 3 3 3 3 2 1... 2 1 1 2 0 2 3 2 2 3 31 3 2 0 3 3 3 1 1 3 3 1 2 2 0 2 3 3 3 3 3 3 2 3 2 2 1 1 1 1 1 0 2 2 1 3 2 3 3 1 3 3 0 1 1 1 1 1 3 2.1.0.3..3... 1.2..... 31. 3......0. 2..0. 2.2...2.3 3.1.0.. 2.

KFM-range S i n g l e C e l l s Discharge currents in Amperes at ± C for a fully charged cell to ECV 1. V/cell Cell type Capacity min min min 1 hour 2 hour 3 hour hour KFM P KFM P KFM P KFM P KFM P KFM P KFM 2P KFM P KFM P KFM P KFM 1P KFM P KFM P KFM 1P KFM P KFM 12P KFM 2P KFM P KFM P KFM P KFM 0P KFM 3P KFM 3P KFM 32P KFM 3P KFM 0P KFM P KFM P KFM P KFM P KFM P KFM 0P KFM P KFM P KFM P 2 1 1 12 2 0 3 3 32 3 0 0 3 2 1 2 3 3 0 3 3 0 3 2 3 1 3 1 1 1 1 1 1 0 2 0 3 3 32 0 3 1 3.1..2 3 3 1 1 3 2 2 1 3 3 3 3 3 3 0. 1 3 2 1 2 2 2 0 3 3 31 3 3 1 1 1 3 2 2 2 2 2 3. 3 1 1 1 1 1 1 2.2.1.....1.3 1..... 31.. 3..2.0.0.. 1...0 1...3.2. 2.1.0.0 3.0.0.0

KFM-range S i n g l e C e l l s Discharge currents in Amperes at ± C for a fully charged cell to ECV 1.0 V/cell Cell type Capacity min min min 1 hour 2 hour 3 hour hour KFM P KFM P KFM P KFM P KFM P KFM P KFM 2P KFM P KFM P KFM P KFM 1P KFM P KFM P KFM 1P KFM P KFM 12P KFM 2P KFM P KFM P KFM P KFM 0P KFM 3P KFM 3P KFM 32P KFM 3P KFM 0P KFM P KFM P KFM P KFM P KFM P KFM 0P KFM P KFM P KFM P 2 1 1 12 2 0 3 3 32 3 0 0 1 1 1 3 1 1 2 2 2 3 3 2 3 3 1 1 3 2 3 1 2 1 1 3 3 3 1 3 1 1 1 3 1 2 1 31 3 3 1 1 31 2 1 1 1 1 2 1 2 2 3 3 31 1 2 1 1 1 1 2 3 11 0 2 2 3 3 2 2 31 2 2 3 2 1 3 1 1 2 2 1 2 2.2.2.....3. 1.0.... 31..3.0....0. 2..1. 2.3.2.2.1 1. 3.1.0.0.0.0.0

KFM-range S i n g l e C e l l s Discharge currents in Amperes at ± C for a fully charged cell to ECV 1.00 V/cell Cell type Capacity min min min 1 hour 2 hour 3 hour hour KFM P KFM P KFM P KFM P KFM P KFM P KFM 2P KFM P KFM P KFM P KFM 1P KFM P KFM P KFM 1P KFM P KFM 12P KFM 2P KFM P KFM P KFM P KFM 0P KFM 3P KFM 3P KFM 32P KFM 3P KFM 0P KFM P KFM P KFM P KFM P KFM P KFM 0P KFM P KFM P KFM P 2 1 1 12 2 0 3 3 32 3 0 0 1 1 1 1 3 2 2 3 3 2 2 2 1 1 1 1 3 3 1 2 3 3 32 1 3 3 1 1 1 3 1 2 2 3 3 2 3 1 3 1 0 1 3 1 2 2 2 2 3 3 0 1 1 1 3 1 1 1 1 1 3 2 0 2 2 3 3 1 3 1 1 1 3 2 3 2.2.2..0..0.. 1.2.0.0.2.0.0.. 2.0.0 1.0..0 3.0.. 3.0.0.0 1.0 2..0.0.0.0.0.0

KFH-range Discharge currents in Amperes at ± C for a fully charged cell to ECV 1. V/cell Cell type Capacity S i n g l e C e l l s 1 2 3 Ah sec sec min min min min min min min hour hour hour KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH 1P KFH P KFH P KFH 1P KFH 1P KFH 0P KFH 2P KFH 2P KFH 2P KFH P KFH 2P KFH P KFH 0P 1 1 1 0 2 2 2 2 0 3 3 3 3 1 3 1 2 3 3 1 1 3 3 1 3 2 2 3 1 1 1 0 2 2 0 3 0 0 3 2 2 1 1 1 0 0 2 0 2 3 3 3 0 0 2 0 1 2 1 3 0 3 3 3 1 3 2 0 1 1 1 1 2 2 3 3 3 3 2 1 1 1 3 2 3 2 2 3 1 1 1 1 2 3 2 1 1 3 1 3 3 1 3 2 1 1 1 2.0 2.2 3.2....3..2.0.. 1..3.1.1.0.. 3...... 1.3. Discharge currents in Amperes at ± C for a fully charged cell to ECV 1. V/cell Cell type Capacity 1 2 3 Ah sec sec min min min min min min min hour hour hour KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH 1P KFH P KFH P KFH 1P KFH 1P KFH 0P KFH 2P KFH 2P KFH 2P KFH P KFH 2P KFH P KFH 0P 1 1 1 0 2 2 2 2 0 1 3 1 2 3 3 0 00 3 1 1 1 1 2 2 31 3 2 1 1 2 3 3 2 3 0 1 3 10 3 1 1 1 1 2 0 2 0 3 0 0 2 1 1 12 2 0 3 0 2 1 2 3 2 2 2 3 31 2 3 1 31 1 3 3 1 1 1 3 2 0 2 2 3 3 3 3 3 2 1 1 1 11 2 0 1 3 3 1 3 1 3 2 2 1 1 3 2 2 2 2 1 1 3 1 1 31 2 3 2.1 2.3 3.2.0......3.3.2 1.1..... 3..2 2.0.... 2..3

S i n g l e C e l l s KFH-range Discharge currents in Amperes at ± C for a fully charged cell to ECV 1.0V/cell Cell type Capacity 1 2 3 Ah sec sec min min min min min min min hour hour hour KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH 1P KFH P KFH P KFH 1P KFH 1P KFH 0P KFH 2P KFH 2P KFH 2P KFH P KFH 2P KFH P KFH 0P 1 1 1 0 2 2 2 2 0 1 1 3 3 10 1 1 1 1 2 3 3 32 2 11 1 1 1 3 3 0 3 3 1 1 2 1 2 2 2 3 2 0 1 3 3 1 1 1 1 2 0 2 0 3 0 0 1 1 3 0 2 0 3 2 0 1 2 1 1 1 3 1 2 3 1 3 1 3 1 1 1 0 2 2 1 3 3 1 1 3 1 1 1 1 1 3 3 1 1 1 1 1 2 2 1 2 2 3 1 1 Discharge currents in Amperes at ± C for a fully charged cell to ECV 1.00V/cell Cell type Capacity 1 2 3 Ah sec sec min min min min min min min hour hour hour KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH 1P KFH P KFH P KFH 1P KFH 1P KFH 0P KFH 2P KFH 2P KFH 2P KFH P KFH 2P KFH P KFH 0P 1 1 1 0 2 2 2 2 0 1 3 3 2 0 1 1 1 3 1 1 3 3 0 2 1 1 1 1 2 3 3 32 2 11 1 2 3 32 3 3 1 1 12 2 32 2 2 2 2 1 1 1 1 2 2 2 3 3 3 3 2 1 2 1 1 1 2 2 2 2 3 3 0 2 3 1 3 1 1 1 1 2 0 2 2 3 1 3 3 1 1 1 1 3 1 1 1 1 1 1 3 2 1 2 2 3 1 3 1 2

KFH-range Discharge currents in Amperes at ± C for a fully charged cell to ECV 0.V/cell Ah S i n g l e C e l l s Cell type Capacity 1 sec sec min min min min min KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH 1P KFH P KFH P KFH 1P KFH 1P KFH 0P KFH 2P KFH 2P KFH 2P KFH P KFH 2P KFH P KFH 0P 1 1 1 0 2 2 2 2 0 1 1 1 00 1 0 3 30 2 3 1 1 3 3 2 0 1 1 1 3 2 2 2 2 0 3 0 10 1 1 1 2 2 2 3 3 2 1 2 1 1 1 2 3 2 3 2 3 3 2 2 31 1 2 1 1 2 1 3 3 0 3 2 Discharge currents in Amperes at ± C for a fully charged cell to ECV 0.V/cell Cell type Capacity Ah 1 sec sec min min min min min KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH 1P KFH P KFH P KFH 1P KFH 1P KFH 0P KFH 2P KFH 2P KFH 2P KFH P KFH 2P KFH P KFH 0P 1 1 1 0 2 2 2 2 0 2 2 1 3 1 1 1 3 2 2 3 2 2 3 2 00 3 0 1 1 1 00 1 2 0 3 30 3 3 3 1 3 2 3 3 2 31 1 1 1 3 2 2 2 2 0 3 0 10 2 1 2 1 2 1 2 3 2 2 1 2 1 2 0 3 2 2

S i n g l e C e l l s KFX-range Discharge currents in Amperes at ± C for a fully charged cell to ECV 1.V/cell Cell type Capacity 1 1 Ah sec sec sec sec Min min min KFX P KFX P KFX P KFX P KFX P KFX P KFX P KFX P KFX P KFX P 1 3 3 31 2 2 2 1 1 3 3 1 1 3 2 3 2 3 3 1 3 1 2 2 3 1 1 2 3 3 0 Discharge currents in Amperes at ± C for a fully charged cell to ECV 1.V/cell Cell type Capacity Ah 1 sec sec 1 sec sec Min min min KFX P KFX P KFX P KFX P KFX P KFX P KFX P KFX P KFX P KFX P 1 2 1 2 1 3 3 3 02 1 1 3 1 2 3 3 1 2 2 32 3 2 3 3 Discharge currents in Amperes at ± C for a fully charged cell to ECV 1.00V/cell Cell type Capacity Ah 1 sec sec 1 sec sec Min min min KFX P KFX P KFX P KFX P KFX P KFX P KFX P KFX P KFX P KFX P 2 0 2 3 1 3 0 2 0 1 2 2 3 2 2 2 3 1 1 1 1 3 3 3 2 2 3 2

S i n g l e C e l l s KFX-range Discharge currents in Amperes at ± C for a fully charged cell to ECV 0.V/cell Cell type Capacity 1 1 Ah sec sec sec sec Min min min KFX P 3 3 KFX P 3 1 1 0 3 2 KFX P 3 3 KFX P 1 3 1 KFX P 1 2 KFX P 3 3 2 31 2 2 KFX P 1 3 1 3 KFX P 1 KFX P 3 2 1 KFX P 3 0 0 Discharge currents in Amperes at ± C for a fully charged cell to ECV 0.V/cell Cell type Capacity 1 1 Ah sec sec sec sec Min min min KFX P 3 0 KFX P 0 KFX P 2 3 KFX P 10 32 1 KFX P 10 1 1 KFX P 2 1 KFX P 00 20 2 1 3 KFX P 3 30 3 1 KFX P 00 3 3 00 KFX P 00 20

S i n g l e C e l l s Battery Rack Dimensions For safe and reliable operation, batteries should be mounted on suitable battery racks. HBL battery racks are made of alkali-resistant, powder coated steel sections. Battery racks are available in multi-step one tier or multi-step two tier configuration. Standard battery racks are supplied in knocked-down condition and can be easily assembled at site. Container size reference 1STEP 2STEP 1Tier 3STEP STEP 1STEP 2STEP 2Tier 3STEP STEP 1&2 3 W H W H W H W H W H W H W H W H Single Cells (Normal arrangement) 2 3 31 3 31 31 31 31 31 31 31 1 3 2 1 3 2 00 3 2 3 1 2 Note : Height is including cells Evaluation of length Length of rack = (X + 1) x No. f cells in a row for (S1-S) = (X + 2) x No. f cells in a row for (S-) Where, X = Length of Cell ( i.e for S1- ) (All dimensions in mm) The value of length should be rounded off to nearest to and mm should be added. SINGLE TIER RACKS 2STEP 1TIER RACK SINGLE TIER RACKS 3STEP 1TIER RACK SINGLE TIER RACKS STEP 1TIER RACK

S i n g l e C e l l s TW TIER RACKS 1STEP 2TIER RACK TW TIER RACKS 2STEP 2TIER RACK TW TIER RACKS 3STEP 2TIER RACK TW TIER RACKS STEP 2TIER RACK

B l o c k C e l l s Capacities and Dimensions KFL-range Cell type Container size reference Capacity at hour rate Cell dimension in mm Height Width Length Cell connection bolt(s) size Approximate weight of the cell (Kg) Approximate electrolyte volume between the level marks (L) 1.2V 2.V 3.V 1.2V 2.V 3.V 1.2V 2.V 3.V KFL P B-1 2 1 M. 0.3 KFL P B-1 2 1 0 M. 0. KFL P B-1 2 1 0 M. 0. KFL P B-1 2 1 0 M.1 0. KFL P B-1 2 1 0 M.2 0. KFL P B-1 3 1 1 M. 1.1 KFLP B-1 3 1 1 M.0 1.1 KFL 1P B-1 1 3 1 1 M. 1.1 KFL 1P B-1 1 3 1 1 M. 1.1 KFL P B-1 3 1 1 12 M. 1.1 KFL 1P B-1 1 3 1 1 12 M. 1.1 KFL P B2-1 1 1 12 M. 1.1 KFL 1P B2-1 1 1 1 12 M. 1.1 KFL 0P B31-1 0 3 1 1 M.3.0 1. 2. KFL 2P B31-1 2 3 1 1 M.. 1. 2. KFL P B-1 1 1 M.1.2 1. 2. KFL 2P B-1 2 1 1 M. 31.0 1. 2. KFL 3P B2-2 3 1 1 2 32 2 X M...3 1.1 2.2 3.3 KFL 0 P B2-2 0 1 1 2 32 2 X M..1. 1.1 2.2 3.3 KFL 3 P B2-2 3 1 1 2 32 2 X M..3.0 1.1 2.2 3.3 KFL P B31-2 3 1 1 2 2 X M.1 3.3 1. 3.2 KFL P B31-2 3 1 1 2 2 X M.. 1. 3.2 KFL P B31-2 3 1 1 2 2 X M.. 1. 3.2 KFL 0P B-2 0 1 1 2 2 X M.1.2 1. 3.2 KFL P B-2 1 1 2 2 X M.2. 1. 3.2 KFL P B-2 1 1 2 2 X M.3. 1. 3.2 KFL P B-2 1 1 2 2 X M.. 1. 3.2 KFL P B-2 1 1 2 2 X M..3 1. 3.2 KFL P B-2 1 1 2 2 X M.2 2.3 1. 3.2 KFL P B-2 1 1 2 2 X M.3 2. 1. 3.2 KFL P B-2 1 1 2 2 X M. 2. 1. 3.2 KFL P B31-3 3 1 3 X M. 2. KFL 0P B31-3 0 3 1 3 X M. 2. KFL P B-3 1 3 X M. 2. KFL 0P B-3 0 1 3 X M.1 2. KFL P B-3 1 3 X M.2 2. KFL P B-3 1 3 X M.3 2. KFL P B-3 1 3 X M 31.0 2. KFL P B-3 1 3 X M 31.1 2. KFL P B-3 1 3 X M 31.2 2. KFL P B31-3 1 2 X M. 3.2 KFL P B- 1 2 X M.2 3.2 KFL P B- 1 2 X M.3 3.2 KFL P B- 1 2 X M. 3.2 KFL 00P B- 00 1 2 X M. 3.2 KFL P B- 1 2 X M.3 3.2 KFL 0P B- 0 1 2 X M. 3.2 KFL P B- 1 2 X M. 3.2 KFL P B- 1 2 X M 2. 3.2 KFL 0P B- 0 1 X M 1..0 KFL P B- 1 X M 1..0 KFL P B- 1 X M 1..0 1

B l o c k C e l l s Capacities and Dimensions KFM-range Cell type Container size reference Capacity at hour rate Cell dimension in mm Height Width Length Cell connection bolt(s) size Approximate weight of the cell (Kg) Approximate electrolyte volume between the level marks (L) 1.2V 2.V 3.V 1.2V 2.V 3.V 1.2V 2.V 3.V KFM P B-1 2 1 M. 0.3 KFM P B-1 2 1 M. 0.3 KFM P B-1 2 1 0 M. 0. KFM P B-1 2 1 0 M.1 0. KFM P B-1 2 1 0 M. 0. KFM P B-1 2 1 0 M. 0. KFM P B-1 3 1 1 12 M.2 1.2 1.1 1. KFM P B-1 3 1 1 12 M.3 1. 1.1 1. KFM P B-1 3 1 1 12 M. 1.0 1.1 1. KFM 1P B-1 1 3 1 1 12 M. 1.2 1.1 1. KFM P B-1 3 1 1 12 M. 1. 1.1 1. KFM P B-1 3 1 1 12 M.0 1. 1.1 1. KFM 1P B2-1 1 1 1 12 M.0. 1.1 1. KFM P B2-1 1 1 12 M.1. 1.1 1. KFM 12P B31-1 12 3 1 1 M.. 1.1 1. KFM 2P B31-1 2 3 1 1 M 1.3. 1. 2. KFM P B31-1 3 1 1 M 1.. 1. 2. KFM P B-1 1 1 M.2 31. 1. 2. KFM P B-1 1 1 M.. 1. 2. KFM 0P B-2 0 3 1 1 2 32 2 x M...2 1.1 2.2 3.3 KFM 3P B2-2 3 1 1 2 32 2 x M.1.1.2 1.1 2.2 3.3 KFM 3P B2-2 3 1 1 2 32 2 x M.2.. 1.1 2.2 3.3 KFM 32P B2-2 32 1 1 2 32 2 x M.3.. 1.1 2.2 3.3 KFM 3P B2-2 3 1 1 2 32 2 x M...2 1.1 2.2 3.3 KFM 0P B2-2 0 1 1 2 32 2 x M. 31.0. 1.1 2.2 3.3 KFM P B31-2 3 1 1 2 2 x M 1.3 3.. 1. 3.2. KFM P B31-2 3 1 1 2 2 x M 1. 3.. 1. 3.2. KFM P B31-2 3 1 1 2 2 x M 1.0.0.0 1. 3.2. KFM P B31-2 3 1 1 2 2 x M 1.1.2.3 1. 3.2. KFM P B-2 1 1 2 2 x M.2 2. 3. 1. 3.2. KFM 0P B-2 0 1 1 2 2 x M. 2..2 1. 3.2. KFM P B-2 1 1 2 2 x M. 2..3 1. 3.2. KFM P B-2 1 1 2 2 x M..0. 1. 3.2. KFM P B-2 1 1 2 2 x M.. 1. 3.2. KFM P B31-3 3 1 3 x M. 2.. KFM P B-3 1 3 x M. 2.. KFM P B31-3 1 2 x M 3. 3.2 KFM P B31-3 1 2 x M 3. 3.2 KFM 3P B- 3 1 2 x M 2. 3.2 KFM P B- 1 2 x M. 3.2 KFM P B- 1 2 x M. 3.2 KFM P B- 1 x M 3.1.0 KFM P B- 1 x M 3.2.0 KFM 1P B- 1 1 x M 3.3.0 KFM P B- 1 x M..0 KFM 11P B- 11 1 x M..0 1

Bl l o c k C el l l s Capacities and Dimensions KFH-range Cell type Container size reference Capacity at hour rate Cell dimension in mm Height Width Length Cell connection bolt(s) size Approximate weight of the cell (Kg) Approximate electrolyte volume between the level marks (L) 1.2V 2.V 3.V 1.2V 2.V 3.V 1.2V 2.V 3.V KFH P B-1 2 1 M.3 0.3 KFH P B-1 2 1 0 M. 0. KFH P B-1 2 1 0 M. 0. KFH P B-1 3 1 1 M. 1.1 KFH P B-1 3 1 1 M. 1.1 KFH P B-1 3 1 1 M.0 1.1 KFH P B-1 3 1 1 M.3 1.1 KFH 0P B31-1 0 3 1 1 M.0 1. KFH P B31-1 3 1 1 M..0 1. 2. KFH 1P B31-1 1 3 1 1 M.1. 1. 2. KFH P B31-1 3 1 1 M.2. 1. 2. KFH P B31-1 3 1 1 M.3.2 1. 2. KFH 1P B31-1 1 3 1 1 M.. 1. 2. KFH 1P B31-1 1 3 1 1 M..3 1. 2. KFH 0P B-1 0 1 1 M 1.. 1. 2. KFH 2P B-1 2 1 1 M.3. 1. 2. KFH 2P B-1 2 1 1 M.. 1. 2. KFH 2P B31-2 2 3 1 1 2 2 X M...1 1. 3.2. KFH P B31-2 3 1 1 2 2 X M... 1. 3.2. KFH 2P B31-2 2 3 1 1 2 2 X M.1 3.1 1.2 1. 3.2. KFH P B31-2 3 1 1 2 2 X M.2 3. 1. 1. 3.2. KFH 0P B31-2 0 3 1 1 2 2 X M.3 3. 1. 1. 3.2. KFH 3P B31-2 3 3 1 1 2 2 X M. 3. 2.2 1. 3.2. KFH 32P B31-2 32 3 1 1 2 2 X M..0 2. 1. 3.2. KFH P B31-2 3 1 1 2 2 X M..2 2. 1. 3.2. KFH 3P B-2 3 1 1 2 X M 1. 1. KFH P B-2 1 1 2 X M 1. 1. KFH P B-2 1 1 2 X M.2 1. KFH P B-2 1 1 2 X M.3 1. KFH P B31-3 3 1 3 X M. 2. KFH P B31-3 3 1 3 X M.3 2. KFH 2P B31-3 2 3 1 3 X M. 2. KFH 0P B-3 0 1 3 X M. 2. KFH P B-3 1 3 X M. 2. KFH P B-3 1 3 X M. 2. KFH P B-3 1 3 X M.3 2. KFH P B- 1 2 X M. 3.2 KFH P B- 1 2 X M. 3.2 KFH P B- 1 2 X M. 3.2 KFH P B- 1 2 X M. 3.2 KFH P B- 1 2 X M. 3.2 KFH 0P B- 0 1 2 X M. 3.2 KFH P B- 1 2 X M. 3.2 KFH P B- 1 X M..0

KFL-range B l o c k C e l l s Discharge currents in Amperes at + C for a fully charged cell to ECV 1.V/cell Cell type Capacity min min min 1 hour 2 hour 3 hour hour hour hour KFL P 1 2. KFL P 31 3. KFL P 3. KFL P 1. KFL P. KFL P 1.3 KFL P 2 1. KFL 1P 1 3 1 3.3 KFL 1P 1 3. KFL P 1 3. KFL 1P 1 3 2 1. KFL P 2 1 3 2 2.2 KFL 1P 1 1 2 1. KFL 0P 0 2 2 3 3 1. KFL 2P 2 1 3 3. KFL P 11 1 1 31.0 KFL 2P 2 2 1. KFL 3P 3 2 1 1 1. KFL 0P 0 3 1 2 3.3 KFL 3P 3 0 3 2 3.3 KFL P 3 1 3 2 1.2 KFL P 3 3 0 1 3.1 KFL P 1 1.1 KFL 0P 0 3 3.0 KFL P 3 3 3 3 1.0 KFL P 3 3 3 2 2.0 KFL P 3 3 31 1 1 2. KFL P 2 0. KFL P 3 3 2 1 3. KFL P 2 3 12 3. KFL P 0 1 1 1. KFL P 1 3.2 KFL 0P 0 3 1. KFL P 1 1 1 2 1 1. KFL 0P 0 3 3 2. KFL P 1 3 2 3.0 KFL P 31 2 1.0 KFL P 2 3 2. KFL P 3 3.3 KFL P 1 31 2 3.3 KFL P 3 1 2 2 1.2 KFL P 2 1.1 KFL P 2 3 3 1.1 KFL P 31 11 1 1 KFL 00P 00 1 1 1 3 3 KFL P 1 3 2 1 KFL 0P 0 2 0 2 2 KFL P 0 3 2 1 KFL P 3 1 2 1 1 KFL 0P 0 1 KFL P 1 3 2 KFL P 0 11 1

KFL-range B l o c k C e l l s Discharge currents in Amperes at + C for a fully charged cell to ECV 1.V/cell Cell type Capacity min min min 1 hour 2 hour 3 hour hour hour hour KFL P 3.0 KFL P 3. KFL P 2 3 KFL P 1 KFL P KFL P 1 1 3. KFL P 2 2 1 KFL 1P 1. KFL 1P 1 KFL P 1 1 2 KFL 1P 1 1 1 1 KFL P 1. KFL 1P 1 3 1 3 1 KFL 0P 0 1 1 1 3 KFL 2P 2 1 2 3 KFL P 2 0 31. KFL 2P 2 2 11 1 1 3 KFL 3P 3 0 1 2 2 3 KFL 0P 0 31 2 1 1 0 KFL 3P 3 3 2 3 KFL P 1 1 1 KFL P 3 2 KFL P 3 1 1 KFL 0P 0 3 3 1 2 KFL P 3 3 3 2 KFL P 2 0 2 1 3 KFL P 1 3 2 1 3 KFL P 1 3 1 KFL P 0 3 2 12 1 KFL P 2 0 1 KFL P 1 1 1 KFL P 2 3 2 2 1. KFL 0P 0 3 2 1 1 3 KFL P 3 2 1 3 KFL 0P 0 3 31 3 1 1 KFL P 1 3 1. KFL P 3 3 2 1. KFL P 2 3 1 KFL P 1 3 1 3 KFL P 1 3 1 3 KFL P 3 0 3 3 KFL P KFL P 1 3 3 1 1 KFL P 3 2 3 3 1 3 KFL 00P 00 1 2 2 3 3 0 KFL P 2 2 3 3 2 1 KFL 0P 0 2 2 3 2 KFL P 31 3 2 2 1 KFL P 1 1 1 2 1 KFL 0P 0 2 2 KFL P 3 1 1 KFL P 1 1 1

B l o c k C e l l s KFL-range Discharge currents in Amperes at + C for a fully charged cell to ECV 1.0V/cell Cell type Capacity min min min 1 hour 2 hour 3 hour hour hour hour KFL P KFL P KFL P KFL P KFL P KFL P KFL P KFL 1P KFL 1P KFL P KFL 1P KFL 1P KFL 1P KFL 0P KFL 2P KFL P KFL 2P KFL 3P KFL 0P KFL 3P KFL P KFL P KFL P KFL 0P KFL P KFL P KFL P KFL P KFL P KFL P KFL P KFL P KFL 0P KFL P KFL 0P KFL P KFL P KFL P KFL P KFL P KFL P KFL P KFL P KFL P KFL 00P KFL P KFL 0P KFL P KFL P KFL 0P KFL P KFL P 1 1 1 1 0 2 2 3 0 3 0 0 0 00 0 0 31 2 2 3 1 1 1 1 1 3 3 31 1 3 2 2 1 3 2 3 1 1 1 2 2 2 3 3 1 2 1 1 0 3 1 10 1 1 3 3 1 3 3 3 1 2 3 3 3 2 3 1 2 1 1 2 3 11 3 1 3 3 3 3 3 2 1 2 3 31 1 1 3 1 1 2 3 2 1 1 1 2 2 2 2 2 1 3 2 3 2 3 2 1 1 2 1 3 2 1 1 1 1 1 3 1 1 2 2 3 2 3 3 3 3 3 1 3 3 3 1 2 2 1 1 1 1 1 1 2 1 3 1 11 2 2 2 3 1 1 1 3 2 2 3 2 2 3 3 1 1 1 1 1 1 1 1 1 3.0 3..0.0.0..1..1.1.1. 1.1.1.1..2.2.2 3.2.2.3.3.3 2.3 3.3.3.3 1..... 3...0.0... 3... 3. 0... 1.2 1... 1.

KFL-range B l o c k C e l l s Discharge currents in Amperes at + C for a fully charged cell to ECV 1.00V/cell Cell type Capacity min min min 1 hour 2 hour 3 hour hour hour hour KFL P KFL P KFL P KFL P KFL P KFL P KFL P KFL 1P KFL 1P KFL P KFL 1P KFL P KFL 1P KFL 0P KFL 2P KFL P KFL 2P KFL 3P KFL 0P KFL 3P KFL P KFL P KFL P KFL 0P KFL P KFL P KFL P KFL P KFL P KFL P KFL P KFL P KFL 0P KFL P KFL 0P KFL P KFL P KFL P KFL P KFL P KFL P KFL P KFL P KFL P KFL 00P KFL P KFL 0P KFL P KFL P KFL 0P KFL P KFL P 1 1 1 1 0 2 2 3 0 3 0 0 0 00 0 0 1 1 2 1 1 2 2 3 0 3 2 1 2 1 1 10 1 1 1 1 2 1 1 2 2 3 3 2 1 1 1 3 1 1 2 1 2 1 1 2 1 1 2 1 3 3 3 1 2 1 1 3 1 2 31 1 2 1 3 1 1 3 3 1 3 3 3 1 2 3 3 3 2 1 3 1 3 3 2 2 1 1 1 1 1 3 2 2 2 3 3 3 3 31 3 1 2 1 2 2 1 1 1 3 3 1 1 2 3 2 2 1 2 0 3 3 2 1 1 2 1 2 1 1 1 1 3 2 1 1 2 0 0 0 1 1 3 2 2 3 2 2 1 3 1 1 1 2 1 1 3.1 3..1.1.1..2..3.3.1. 1.2.2.2..3.3.3 3.3.... 2. 3... 1....1. 3...2.2... 3... 1 1 1 3 1 1

KFM-range B l o c k C e l l s Discharge currents in Amperes at + C for a fully charged cell to ECV 1.V/cell Cell type Capacity min min min 1 hour 2 hour 3 hour hour KFM P KFM P KFM P KFM P KFM P KFM P KFM P KFM P KFM P KFM 1P KFM P KFM P KFM 1P KFM P KFM 12P KFM 2P KFM P KFM P KFM P KFM 0P KFM 3P KFM 3P KFM 32P KFM 3P KFM 0P KFM P KFM P KFM P KFM P KFM P KFM 0P KFM P KFM P KFM P KFM P KFM P KFM P KFM P KFM 3P KFM P KFM P KFM P KFM P KFM 1P KFM P KFM 11P 1 1 12 2 0 3 3 32 3 0 0 3 1 11 31 2 1 1 1 1 1 1 1 2 3 3 3 2 1 2 11 1 12 3 3 1 1 2 1 1 1 0 3 3 3 3 3 2 1 1 2 2 2 2 1 1 2 0 2 3 2 2 3 31 3 2 0 3 3 3 3 1 1 1 3 3 1 2 2 0 2 3 3 3 3 3 2 1 3 31 3 2 3 2 2 1 1 1 1 1 0 2 2 1 3 2 2 3 1 3 3 0 1 1 1 1 1 3 3 3 1 1.3...3..3. 1.2..... 31. 3......0. 2..0. 2.2...2.3 3.1.0.. 2. 1..1.0 1. 2.0. 1. 0. 3. 2...3

KFM-range B l o c k C e l l s Discharge currents in Amperes at + C for a fully charged cell to ECV 1.V/cell Cell type Capacity min min min 1 hour 2 hour 3 hour hour KFM P KFM P KFM P KFM P KFM P KFM P KFM P KFM P KFM P KFM 1P KFM P KFM P KFM 1P KFM P KFM 12P KFM 2P KFM P KFM P KFM P KFM 0P KFM 3P KFM 3P KFM 32P KFM 3P KFM 0P KFM P KFM P KFM P KFM P KFM P KFM 0P KFM P KFM P KFM P KFM P KFM P KFM P KFM P KFM 3P KFM P KFM P KFM P KFM P KFM 1P KFM P KFM 11P 1 1 12 2 0 3 3 32 3 0 0 3 1 11 3 3 2 1 3 3 3 0 3 3 0 3 2 3 1 1 1 3 1 3 1 1 1 1 2 0 2 0 3 3 32 0 3 1 3 0 1 1 3 0 3 3 1 1 3 2 2 1 3 3 3 3 3 3 0 2 2 1 3 2 1 2 2 2 0 3 3 31 3 1 1 3 3 1 1 1 3 2 2 2 2 2 31 2 31 3 3 2 3 1 1 1 1 1 1 0 2 2 3 3 3 3 1 31 2 2 1 2 3 1 11 1 2 1 2 2 3

KFM-range B l o c k C e l l s Discharge currents in Amperes at + C for a fully charged cell to ECV 1.0V/cell Cell type Capacity min min min 1 hour 2 hour 3 hour hour KFM P KFM P KFM P KFM P KFM P KFM P KFM P KFM P KFM P KFM 1P KFM P KFM P KFM 1P KFM P KFM 12P KFM 2P KFM P KFM P KFM P KFM 0P KFM 3P KFM 3P KFM 32P KFM 3P KFM 0P KFM P KFM P KFM P KFM P KFM P KFM 0P KFM P KFM P KFM P KFM P KFM P KFM P KFM P KFM 3P KFM P KFM P KFM P KFM P KFM 1P KFM P KFM 11P 1 1 12 2 0 3 3 32 3 0 0 3 1 11 1 1 2 1 1 11 1 2 2 2 2 3 3 2 3 1 31 3 1 1 1 03 3 3 1 1 3 3 2 3 1 2 1 1 3 2 1 1 2 3 3 3 1 3 1 1 1 3 1 2 1 31 3 3 1 3 3 31 31 1 1 31 3 2 1 1 1 1 2 1 2 2 3 3 1 3 1 3 31 3 1 2 1 1 1 1 2 3 11 0 2 2 3 3 2 2 3 2 1 31 2 2 3 2 1 3 1 1 2 2 1 2 2 3 3 3 3 1....... 1.0.... 31..3.0....0. 2..1. 2.3.2.2.1 1. 3.1.0.0 1 1 2 2 1 1

KFM-range B l o c k C e l l s Discharge currents in Amperes at + C for a fully charged cell to ECV 1.00V/cell Cell type Capacity min min min 1 hour 2 hour 3 hour hour KFM P KFM P KFM P KFM P KFM P KFM P KFM P KFM P KFM P KFM 1P KFM P KFM P KFM 1P KFM P KFM 12P KFM 2P KFM P KFM P KFM P KFM 0P KFM 3P KFM 3P KFM 32P KFM 3P KFM 0P KFM P KFM P KFM P KFM P KFM P KFM 0P KFM P KFM P KFM P KFM P KFM P KFM P KFM P KFM 3P KFM P KFM P KFM P KFM P KFM 1P KFM P KFM 11P 1 1 12 2 0 3 3 32 3 0 0 3 1 11 1 1 1 2 2 3 3 2 2 2 1 1 1 1 1 2 3 2 2 3 3 32 1 3 1 3 1 1 1 1 1 31 3 2 1 1 3 1 2 2 3 3 2 3 1 3 2 11 1 11 0 1 3 1 2 2 2 2 3 3 0 1 1 3 3 1 1 3 1 1 1 1 1 3 2 0 2 2 3 1 2 31 2 3 3 1 3 1 1 1 3 2 3 2 3 1 1..0.0..0.0. 1.2.0.0.2.0.0.. 2.0.0 1.0..0 3.0.. 3.0.0.0 1.0 2..0.0 1 12 3 1 3 3 2

KFH-range B l o c k C e l l s Discharge currents in Amperes at + C for a fully charged cell to ECV 1.V/cell Cell type Capacity sec sec 1 min min min min min min min 2 hour 3 hour hour KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH 0P KFH P KFH 1P KFH P KFH P KFH 1P KFH 1P KFH 0P KFH 2P KFH 2P KFH 2P KFH P KFH 2P KFH P KFH 0P KFH 3P KFH 32P KFH P KFH 3P KFH P KFH P KFH P KFH P KFH P KFH 2P KFH 0P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH 0P KFH P KFH P 0 1 1 1 0 2 2 2 2 0 3 32 3 2 0 0 3 3 1 3 1 1 2 31 3 3 1 1 2 3 3 3 2 3 3 3 3 3 3 3 3 1 2 3 1 1 12 1 20 0 1 3 3 1 1 0 2 0 3 0 0 3 1 1 2 1 3 2 1 1 1 2 0 2 0 2 3 3 2 0 0 2 0 1 1 1 3 11 2 1 3 3 0 3 3 3 2 2 03 1 3 2 0 1 1 1 2 3 3 3 31 1 2 1 3 2 1 1 1 3 2 0 2 2 3 3 3 1 3 3 2 3 2 3 1 1 1 1 2 11 1 3 3 2 3 3 32 32 2 3 2 1 1 3 1 3 2 3 1 1 2 2 0 3 3 3 3 3 3 3 1 3 2 1 1 1 1 1 1 1 11 1 1 3 3 1 3 3 2 1 1 11

KFH-range B l o c k C e l l s Discharge currents in Amperes at + C for a fully charged cell to ECV 1.V/cell Cell type Capacity sec sec 1 min min min min min min min 2 hour 3 hour hour KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH 0P KFH P KFH 1P KFH P KFH P KFH 1P KFH 1P KFH 0P KFH 2P KFH 2P KFH 2P KFH P KFH 2P KFH P KFH 0P KFH 3P KFH 32P KFH P KFH 3P KFH P KFH P KFH P KFH P KFH P KFH 2P KFH 0P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH 0P KFH P KFH P 0 1 1 1 0 2 2 2 2 0 3 32 3 2 0 0 3 1 3 3 1 1 1 1 3 30 3 3 2 1 1 2 31 3 3 2 1 1 3 2 31 3 2 1 3 3 2 3 1 3 10 3 1 20 31 3 1 1 2 0 2 3 3 0 0 2 2 1 1 1 31 3 1 1 12 2 3 0 2 3 10 3 1 2 3 2 1 2 2 3 31 3 1 31 0 1 3 3 1 1 3 2 0 2 0 3 3 3 3 3 0 2 31 1 2 1 1 1 11 2 0 1 3 3 2 2 3 3 3 3 1 3 2 2 1 1 11 1 3 3 3 3 3 3 3 2 1 3 2 1 2 2 2 1 1 1 1 1 11 0 2 0 3 3 3 3 1 2 3 1 1 1 1 1 3 3 1 1 2 2 3 2 3.....3.3.2..... 3..2 2.0.... 2..3..3...1.0..0.3... 1.2 1. 1.2 1.3.0 1.1 3.3 1. 11.1 1.0

KFH-range B l o c k C e l l s Discharge currents in Amperes at + C for a fully charged cell to ECV 1.0V/cell Cell type Capacity sec sec 1 min min min min min min min 2 hour 3 hour hour KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH 0P KFH P KFH 1P KFH P KFH P KFH 1P KFH 1P KFH 0P KFH 2P KFH 2P KFH 2P KFH P KFH 2P KFH P KFH 0P KFH 3P KFH 32P KFH P KFH 3P KFH P KFH P KFH P KFH P KFH P KFH 2P KFH 0P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH 0P KFH P KFH P 0 1 1 1 0 2 2 2 2 0 3 32 3 2 0 0 1 3 3 1 1 1 0 3 1 0 1 2 0 2 1 2 32 2 11 1 1 2 2 01 3 3 3 2 2 1 0 3 3 0 3 00 3 1 11 1 1 2 3 3 3 2 3 1 1 2 2 2 2 2 0 1 3 31 1 0 22 3 3 1 1 2 0 2 3 3 0 0 1 1 1 1 3 2 2 2 2 3 0 2 0 3 2 0 2 1 1 1 12 11 1 1 1 1 3 1 2 3 3 1 3 3 0 1 2 1 3 3 1 1 1 0 2 2 1 3 3 2 3 1 3 2 2 3 1 3 1 1 3 1 1 1 1 1 1 3 2 1 3 3 3 3 1 3 1 3 3 3 1 1 1 1 2 1 1 1 2 2 2 2 2 3 3 3 3 3 3 2 3 2 2 1 3 1 1 1 1 2 2 2 2 3 3 3........... 31....3.3.3.2 1.2..1 2.3... 1.. 3. 1.1 2...2 1. 1.1. 1. 1. 3. 3.1..3 1. 2.1 31

KFH-range B l o c k C e l l s Discharge currents in Amperes at + C for a fully charged cell to ECV 1.00V/cell Cell type Capacity sec sec 1 min min min min min min min 2 hour 3 hour hour KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH 0P KFH P KFH 1P KFH P KFH P KFH 1P KFH 1P KFH 0P KFH 2P KFH 2P KFH 2P KFH P KFH 2P KFH P KFH 0P KFH 3P KFH 32P KFH P KFH 3P KFH P KFH P KFH P KFH P KFH P KFH 2P KFH 0P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH 0P KFH P KFH P 0 1 1 1 0 2 2 2 2 0 3 32 3 2 0 0 3 2 2 0 1 1 1 3 1 0 3 3 2 1 1 0 1 1 1 2 3 1 3 2 1 1 1 31 1 1 3 2 0 3 1 1 2 32 2 11 1 1 2 2 3 31 3 3 3 2 3 1 2 3 32 3 1 11 1 11 1 31 3 3 3 3 2 2 2 3 2 2 0 2 11 3 10 1 1 2 20 1 1 1 2 2 3 3 3 3 2 3 3 1 2 1 1 11 2 1 1 1 2 2 2 2 3 2 0 2 2 0 31 3 1 3 1 2 1 3 3 1 1 1 1 2 0 2 2 1 3 3 1 1 1 1 3 3 1 1 1 1 3 2 2 1 3 0 2 3 1 1 1 1 1 3 1 2 2 1 2 3 3 3 3 1 3 1 3 3 2 1 3 1 1 1 1 2 3 2 1 3 3.0.0.0.0.0.0 1.0.0.0.0.0.0 3.0.0.0.0.0 1.0 2.0.2.0 3.2...0..0. 3 0 1 2 1 1 1 1

KFH-range B l o c k C e l l s Discharge currents in Amperes at + C for a fully charged cell to ECV 0.V/cell Cell type Capacity sec sec 1 min min min min min KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH 0P KFH P KFH 1P KFH P KFH P KFH 1P KFH 1P KFH 0P KFH 2P KFH 2P KFH 2P KFH P KFH 2P KFH P KFH 0P KFH 3P KFH 32P KFH P KFH 3P KFH P KFH P KFH P KFH P KFH P KFH 2P KFH 0P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH 0P KFH P KFH P 0 1 1 1 0 2 2 2 2 0 3 32 3 2 0 0 2 1 2 2 0 3 30 3 32 2 3 3 1 1 3 1 20 02 3 0 1 3 0 1 3 2 2 0 1 1 3 1 0 3 1 3 3 1 1 3 2 2 2 3 1 10 1 2 2 3 3 3 2 3 3 3 1 1 2 3 3 2 2 1 2 1 31 11 11 2 31 31 32 3 1 2 3 2 3 3 3 2 3 1 31 2 1 1 1 3. 3. 1. 1 0 2 1 3 3 3 2 3 31 1 1

B l o c k C e l l s KFH-range Discharge currents in Amperes at + C for a fully charged cell to ECV 0.V/cell Cell type Capacity sec sec 1 min min min min min KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH 0P KFH P KFH 1P KFH P KFH P KFH 1P KFH 1P KFH 0P KFH 2P KFH 2P KFH 2P KFH P KFH 2P KFH P KFH 0P KFH 3P KFH 32P KFH P KFH 3P KFH P KFH P KFH P KFH P KFH P KFH 2P KFH 0P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH P KFH 0P KFH P KFH P 0 1 1 1 0 2 2 2 2 0 3 32 3 2 0 0 2 3 1 1 1 20 3 1 1 2 1 1 2 0 1 3 12 2 2 3 1 2 1 3 0 2 2 1 3 1 3 1 2 2 1 20 0 3 30 3 32 3 1 0 3 0 2 3 3 1 2 3 3 2 31 1 1 1 3 1 3 3 1 3 2 2 2 3 1 10 1 2 2 3 3 3 2 3 3 3 2 1 1 2 1 31 3 2 2 2 1 1 1 2 31 3 1 2 2 1 2 0 3 3 1 1 1 2 3 1 1 3

B l o c k C e l l s BATTERY RACK DIMENSINS For safe and reliable operation, batteries should be mounted on suitable battery racks. HBL battery racks are made of alkali-resistant, powder coated steel sections. Battery racks are available in multi-step one tier or multi-step two tier configuration. Standard battery racks are supplied in knocked-down condition and can be easily assembled at site. Evaluation of length : length of rack = (x + ) x no. of block cells in a row ( for all block cells ) Where x = length of cell or block cell for row-wise mounting ( i.e. For B-1, B-1, B31-1, B-1, B-1, B2-1) = width of cell or block cell for cross-wise mounting ( i.e. For B31///2-2/3/// ) The value of length should be rounded-off to nearest to mm and mm should be added. Container size reference B-1/B-1 B31-1/B-1 B-1/B2-1 B31-2 B31-3 B31- B31- B31- B-2 B-3 B- B- B- B-2 B-3 B- B- B- 1STEP W 2STEP 1Tier 3STEP STEP 1STEP 2STEP 2Tier 3STEP STEP H W H W H W H W H W H W H W H 0 3 1 0 0 0 10 3 1 0 1 3 0 0 2 0 3 3 1 0 1 3 1 0 1 3 0 2 3 2 0 0 10 10 2 2 0 1 B2-2 B2-3 B2- B2- B2-10 10 10 2 2 10 (All dimensions in mm) SINGLE TIER RACKS 2STEP 1TIER RACK SINGLE TIER RACKS 3STEP 1TIER RACK SINGLE TIER RACKS STEP 1TIER RACK

B l o c k C e l l s TW TIER RACKS 1STEP 2TIER RACK TW TIER RACKS 2STEP 2TIER RACK TW TIER RACKS 3STEP 2TIER RACK TW TIER RACKS STEP 2TIER RACK 3

Typical Discharge curves for KFX - type Cell at Different Rates and +º C 1. Typical Discharge curves for KFH - type Cell at Different Rates and +º C 1. 1.2 1. Cell Voltage (V) 1.2 1 0. 0. C.0 C 1.0 C 0. C 0.2 C 0.1 C Cell Voltage (V) 1 0. 0..0C 2.0C 1.0C 0,C 0,2C 0,1C 0. 0. 0.2 0 0 Capacity (%) 0.2 0 0 Capacity (%) 1. Typical Discharge curves for KFL - type Cell at Different Rates and +º C 1. Typical Discharge curves for KFM - type Cell at Different Rates and +º C 1.2 1.2 Cell Voltage (V) 1 0. 0. 0. 1.0 C 0. C 0.2 C 0.1 C Cell Voltage (V) 1 0. 0. 0. 3.0 C 2.0 C 1. C 0. C 1.0 C 0.2 C 0.2 0.2 0 0 Capacity (%) 0 0 Capacity (%) 1. 1.2 Discharge curves for KFX - type Cell at different rates and +º C Performance of NCFP cells at different temperatures a t 0. 2 C r a t e Cell Voltage (V) 1 0. 0. 0. C Rate 3 C Rate Capacity (%) 0.2 0 0 Capacity (%) - - 0 0 Temperature (ºC) Typical charge Characterstic f NCFP cells at 0 Different Constant Voltages at + C ( Current limlit 0.2 C ) 2 Typical chargecurves for NCFP cells at constant current at 0.2C rate and different temperature 1. CAPACITY (%) 3 2 1 1. 1. V/ CELL 2. 1.2 V/ CELL 3. 1. V/ CELL Cell Voltage (V) 1. 1. 1. 1. 0 0 C 0 C 0 C 1. 0 0 TIME ( HURS) 1.3 1.2 0 Capacity (%)

HBL NiCad Batteries (UK) Ltd Unit -, Webb Ellis Business Park, Woodside park, Rugby, Warwickshire, CV 2NP, United Kingdom. Tel:(0). Fax: (0) 3 Corp. Comms/NCFP Brochure/Jan