MATH RING ISOMORPHISM THEOREMS

Similar documents
ALGEBRA AND NUMBER THEORY II: Solutions 3 (Michaelmas term 2008)

Lecture 7.3: Ring homomorphisms

Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35

Ideals, congruence modulo ideal, factor rings

Math 547, Exam 1 Information.

Problem 1. Let I and J be ideals in a ring commutative ring R with 1 R. Recall

Section 18 Rings and fields

Computations/Applications

φ(a + b) = φ(a) + φ(b) φ(a b) = φ(a) φ(b),

MATH 113 FINAL EXAM December 14, 2012

Commutative Algebra MAS439 Lecture 3: Subrings

RINGS: SUMMARY OF MATERIAL

Johns Hopkins University, Department of Mathematics Abstract Algebra - Spring 2013 Midterm Exam Solution

CHAPTER 14. Ideals and Factor Rings

Algebraic structures I

Homework 10 M 373K by Mark Lindberg (mal4549)

1 2 3 style total. Circle the correct answer; no explanation is required. Each problem in this section counts 5 points.

Lecture 4.1: Homomorphisms and isomorphisms

CHAPTER I. Rings. Definition A ring R is a set with two binary operations, addition + and

TROPICAL SCHEME THEORY

Introduction to Ring Theory

Honors Algebra 4, MATH 371 Winter 2010 Assignment 3 Due Friday, February 5 at 08:35

Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman

Algebraic Structures Exam File Fall 2013 Exam #1

Abstract Algebra II. Randall R. Holmes Auburn University. Copyright c 2008 by Randall R. Holmes Last revision: November 7, 2017

ALGEBRA II: RINGS AND MODULES. LECTURE NOTES, HILARY 2016.

(Rgs) Rings Math 683L (Summer 2003)

NOTES ON FINITE FIELDS

Name: Solutions Final Exam

Background Material in Algebra and Number Theory. Groups

BASIC GROUP THEORY : G G G,

SUMMARY ALGEBRA I LOUIS-PHILIPPE THIBAULT

Math 120 HW 9 Solutions

Some practice problems for midterm 2

φ(xy) = (xy) n = x n y n = φ(x)φ(y)

Rings and Fields Theorems

MATH 1530 ABSTRACT ALGEBRA Selected solutions to problems. a + b = a + b,

Zachary Scherr Math 503 HW 3 Due Friday, Feb 12

Solutions to odd-numbered exercises Peter J. Cameron, Introduction to Algebra, Chapter 2

Total 100

Solutions to Assignment 4

Solutions for Some Ring Theory Problems. 1. Suppose that I and J are ideals in a ring R. Assume that I J is an ideal of R. Prove that I J or J I.

2a 2 4ac), provided there is an element r in our

Math 210B:Algebra, Homework 2

Equivalence Relations and Partitions, Normal Subgroups, Quotient Groups, and Homomorphisms

MATH 581 FIRST MIDTERM EXAM

MATH 403 MIDTERM ANSWERS WINTER 2007

NOTES IN COMMUTATIVE ALGEBRA: PART 2

1.5 The Nil and Jacobson Radicals

Math 762 Spring h Y (Z 1 ) (1) h X (Z 2 ) h X (Z 1 ) Φ Z 1. h Y (Z 2 )

ISOMORPHISMS KEITH CONRAD

Many of the groups with which we are familiar are arithmetical in nature, and they tend to share key structures that combine more than one operation.

Lecture 2. (1) Every P L A (M) has a maximal element, (2) Every ascending chain of submodules stabilizes (ACC).

1. Group Theory Permutations.

ALGEBRA HW 4. M 0 is an exact sequence of R-modules, then M is Noetherian if and only if M and M are.

Solutions for Assignment 4 Math 402

Solutions for Practice Problems for the Math 403 Midterm

A Primer on Homological Algebra

Math 121 Homework 5: Notes on Selected Problems

Abstract Algebra II. Randall R. Holmes Auburn University

ENTRY GROUP THEORY. [ENTRY GROUP THEORY] Authors: started Mark Lezama: October 2003 Literature: Algebra by Michael Artin, Mathworld.

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

Algebra I: Chapter 7 A Brief Introduction to Theory of Rings 7.1 Rings, Homomorphisms and Ideals.

Commutative Algebra. Andreas Gathmann. Class Notes TU Kaiserslautern 2013/14

(3) Let Y be a totally bounded subset of a metric space X. Then the closure Y of Y

ALGEBRA II: RINGS AND MODULES OVER LITTLE RINGS.

Ph.D. Qualifying Examination in Algebra Department of Mathematics University of Louisville January 2018

Math Introduction to Modern Algebra

HOMEWORK 3 LOUIS-PHILIPPE THIBAULT

Lecture 6: Finite Fields

A TALE OF TWO FUNCTORS. Marc Culler. 1. Hom and Tensor

Math 4400, Spring 08, Sample problems Final Exam.

Theorem 5.3. Let E/F, E = F (u), be a simple field extension. Then u is algebraic if and only if E/F is finite. In this case, [E : F ] = deg f u.

Math 222A W03 D. Congruence relations

The group (Z/nZ) February 17, In these notes we figure out the structure of the unit group (Z/nZ) where n > 1 is an integer.

SUMMARY OF GROUPS AND RINGS GROUPS AND RINGS III Week 1 Lecture 1 Tuesday 3 March.

Algebra Prelim Notes

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Math Introduction to Modern Algebra

Algebra homework 6 Homomorphisms, isomorphisms

Graduate Preliminary Examination

CSIR - Algebra Problems

AN INTRODUCTION TO THE THEORY OF FIELD EXTENSIONS

Solutions to Some Review Problems for Exam 3. by properties of determinants and exponents. Therefore, ϕ is a group homomorphism.

Math 581 Problem Set 6 Solutions

Chapter 3. Rings. The basic commutative rings in mathematics are the integers Z, the. Examples

EXERCISES. = {1, 4}, and. The zero coset is J. Thus, by (***), to say that J 4- a iu not zero, is to

6. The Homomorphism Theorems In this section, we investigate maps between groups which preserve the groupoperations.

MATH ABSTRACT ALGEBRA DISCUSSIONS - WEEK 8

LINEAR ALGEBRA II: PROJECTIVE MODULES

9 Solutions for Section 2

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ.

Your Name MATH 435, EXAM #1

15. Polynomial rings Definition-Lemma Let R be a ring and let x be an indeterminate.

Eighth Homework Solutions

FACTORIZATION OF IDEALS

Math 429/581 (Advanced) Group Theory. Summary of Definitions, Examples, and Theorems by Stefan Gille

Algebraic Geometry: MIDTERM SOLUTIONS

Math 210B: Algebra, Homework 4

Mathematics for Cryptography

Transcription:

MATH 371 - RING ISOMORPHISM THEOREMS DR. ZACHARY SCHERR 1. Theory In this note we prove all four isomorphism theorems for rings, and provide several examples on how they get used to describe quotient rings. The isomorphism theorems state: Theorem 1.1. Let R be a ring. (1) Let ϕ: R S be a ring homomorphism. Then R/ ker(ϕ) = Im(ϕ). (2) Let A, B R be subrings with the additional property that B is an ideal in R. Then (A + B)/B = A/(A B). (3) Let I J R be ideals in R. Then (R/I)/(J/I) = R/J. (4) Let I R be an ideal. Then there is an order preserving bijection between subrings of R/I and subrings of R containing I. Furthermore, this bijection sends ideals to ideals. Proof. We prove the isomorphism theorems as follows. r R we let r denote the coset r + I in R/I. Throughout, for (1) Define a function ψ : R/I S via ψ(r) = ϕ(r). To check that ψ is well-defined, suppose r R is another element for which r = r. Then r r ker(ϕ) and so ϕ(r r ) = 0. This implies that ψ(r ) = ϕ(r ) = ϕ(r) = ψ(r) proving that ψ is well-defined. Next we check that ψ is a homomorphism. This follows since if r 1, r 2 R/ ker(ϕ) then ψ(r 1 + r 2 ) = ψ(r 1 + r 2 ) = ϕ(r 1 + r 2 ) = ϕ(r 1 ) + ϕ(r 2 ) = ψ(r 1 ) + ψ(r 2 ) ψ(r 1 r 2 ) = ψ(r 1 r 2 ) = ϕ(r 1 r 2 ) = ϕ(r 1 )ϕ(r 2 ) = ψ(r 1 )ψ(r 2 ). Next we check that ψ is injective. If r ker ψ then 0 = ψ(r) = ϕ(r) meaning r ker ϕ and hence r = 0. Thus ψ gives an isomorphism of R/ ker(ϕ) onto its image in S, but clearly this image is just = Im(ϕ) = ϕ(r). (2) We define a function ϕ: A (A + B)/B 1

2 DR. ZACHARY SCHERR by ϕ(a) = a. It s clear that ϕ is a ring homomorphism since it is the composition of the inclusion map A A+B followed by the quotient map A + B (A + B)/B, each of which are ring homomorphisms. Next we check that ϕ is surjective. Let x A+B and x (A+B)/B. Since x A + B, there exists a A and b B with x = a + b. Then x a = b B showing that x = a. Thus ϕ(a) = a = x and so indeed ϕ is surjective. Thus the first isomorphism theorem gives A/ ker(ϕ) = (A + B)/B. An element a A is contained in ker(ϕ) if and only if a = 0 in (A + B)/B, which occurs if and only if a B. Thus we see that ker(ϕ) = A B, and the result follows. (3) Since there are different ideals in question, we use cosets to emphasize which quotient space we are referring to at every step of the proof. Define a function ψ : R/I R/J via ψ(r + I) = r + J. It is important to check that ψ is well-defined since it is defined in terms of coset representatives. If r + I = r + I then r r I and as I J we also have r r J. Thus r + J = r + J and indeed ψ(r + I) = ψ(r + I). It is clear that ψ is surjective since any element in R/J is of the form r + J for some r R and of course ψ(r + I) = r + J. Thus the first isomorphism theorem tells us that (R/I)/ ker(ψ) = R/J. Now r + I ker(ψ) if and only if r + J = 0 + J, which is equivalent to saying r J. Thus we see that ker(ψ) = J/I and so the theorem follows. (4) Consider the quotient map π : R R/I given by π(r) = r. For S a subring of R containing I, we let S denote π(s). We know that homomorphisms take rings to subrings, so certainly S is a subring of R/I. To show that the map S S is actually a bijection, we must check that π 1 (S) = S. That is, we must check that no other subring maps onto S. To see this, note first that trivially S π 1 (S). For the converse, suppose that x π 1 (S). Let π(x) = s for some s S. Then π(x) = π(s) and so x s ker(π) = I. Thus x s I S, and since s S it follows that x S as well. This proves that π 1 (S) = S and so we indeed have our bijection. The statement about inclusion preserving is clear. It just says that S S if and only if S S, which follows from our bijection. As for ideals, one direction is obvious. Actually, if ϕ: R S is any ring homomorphism, then ϕ 1 (J) is an ideal in R whenever J is an ideal in S. To see this, let I = ϕ 1 (J). It s clear that 0 I,

MATH 371 - RING ISOMORPHISM THEOREMS 3 and if a, b I then ϕ(a b) = ϕ(a) ϕ(b) J showing that a b I. Similarly, if r R then ϕ(ri) ϕ(r)j J showing that ri I. A similar argument shows that Ir I. The converse may not hold unless ϕ is surjective, but of course the quotient map π is always surjective. Assuming that ϕ is surjective, let I R be an ideal. It is clear that J = ϕ(i) is a subring of S. This is because if x, y ϕ(i) then there are a, b I so that ϕ(a) = x and ϕ(b) = y, showing that x y = ϕ(a) ϕ(b) = ϕ(a b) I. To show closure under products in S we need to use surjectivity. If s S then there is an r R so that ϕ(r) = s. Then and similarly for Js. sj = ϕ(r)ϕ(i) = ϕ(ri) ϕ(i) = J 2. Examples The isomorphism theorems are interesting since they tell you, among other things, that you can find all homomorphic images of a ring R without ever leaving R. That is, all homomorphic images come from quotients of R. Of course, the isomorphism theorems also help you identify quotient rings. In this section, we will use the isomorphism theorems to try to understand quotient rings better. Example 1 Consider the ring R = Z[x] and I = (x) = {xf(x) f(x) R}. How should we figure the ring structure of R/I? One way is to find a set of coset representative and use them to guess at what the ring structure should be. Notice that for g(x), h(x) R we have g(x) h(x) I if and only if g(x) and h(x) have the same constant term. This tells us that a complete set of coset representative is n + I where n Z. Since (n + I) + (m + I) = (n + m) + I and (n + I)(m + I) = nm + I, we should believe that R/I is isomorphic to Z. A different way to see this is to use the isomorphism theorems. What we can do, is try to produce a surjective homomorphism ϕ: R Z whose kernel equals I. Then the first isomorphism theorem would show that R/I = Z. To this end, we define ϕ via ϕ(a n x n + a n 1 x n 1 +... + a 1 x + a 0 ) = a 0. Check to make sure you see that this is indeed a homomorphism and that it is surjective. Then g(x) = a n x n +... + a 0 is in the kernel of ϕ if and only if a 0 = 0, which is the case iff g(x) = a n x n +... + a 1 x = x(a n x n 1 +... + a 1 ) = xf(x)

4 DR. ZACHARY SCHERR for some f(x) R. This proves that ker(ϕ) = (x) so indeed R/I = Z by the first isomorphism theorem. Example 2 What about a slightly harder example like R = Z[x] and I = (5, x) = {5f(x) + xg(x) f(x), g(x) R}. Again, we could try to find coset representatives for I in R, but there is an easier way. Since the ideal (x) is a subset of (5, x), we may use the third isomorphism theorem to say: R/I = (Z[x]/(x))/((5, x)/(x)). We just checked that Z[x]/(x) = Z, but what about (5, x)/(x)? Here, the second isomorphism theorem comes to our rescue! The ideal (5, x) equals the sum (5) + (x). So what we re trying to analyze is which should be the same as ((5) + (x))/(x) (5)/((5) (x)). Now f(x) (5) (x) if and only if every coefficient of f(x) is a multiple of 5 and f(x) has no constant term. This shows that (5) (x) = (5x). Thus what we re after is (5)/(5x). Now this is a quotient we should be able to handle. The ideal (5) = {5f(x) f(x) Z[x]}. This ideal consists of all polynomials whose coefficients are multiples of 5, and we are declaring that two such polynomials are equivalent of their difference is in the ideal (5x), which is the same as declaring that they have the same constant term. This should hopefully convince you that the coset representatives of (5x) in (5) consists of integer multiples of 5. What we ve just done is prove: Z[x]/(5, x) = (Z[x]/(x))/((5, x)/(x)) = Z/5Z. In particular, we ve just shown that the ideal (5, x) is maximal in Z[x]. In fact, one can extend this argument to show that if p is a prime in Z then (p, x) is a maximal ideal in Z[x] since Z[x]/(p, x) = Z/pZ. Example 3 Let s try a non-commutative example. Consider R = M 2 (Z) and let I = {M R all entries of M are a multiple of 5}. We can prove that I is an ideal and explicitly describe R/I in one step with the isomorphism theorems. Consider a function ϕ: M 2 (Z) M 2 (Z/3Z) given by reducing the entries of a matrix modulo 3. You can easily check that ϕ is a homomorphism and that it is surjective. What is the kernel of I? Well, it consists of all matrices in R with entries all multiples of 3. This is precisely I = M 2 (3Z). Thus I is an ideal in R and M 2 (Z)/M 2 (3Z) = M 2 (Z/3Z). Example 4

MATH 371 - RING ISOMORPHISM THEOREMS 5 Consider the ring R = Z[i] and let I = (1+i). We would like to understand the ring R/I. First off, notice that (1 + i)(1 i) = 2 so 2 I. This shows that (2) I, so we can use the third isomorphism theorem to say that R/I = (Z[i]/(2))/((1 + i)/(2)). The ring Z[i]/(2) shouldn t be too hard to understand. Notice that two elements a + bi and c + di are equivalent modulo (2) if and only if their difference, (a c) + (b d)i (2), which is to say that both a c mod 2 and b d mod 2. Thus we see that the ideal (2) in Z[i] has four cosets! We can write representatives as 0, 1, i, 1 + i = 1 + i. Next we need to analyze (1+i)/(2). In the ring Z[i]/(2) we see that (1 + i) consists of the set {0, 1+i}. Thus (1 + i) has two coset representatives in Z[i]/(2), consisting of 0+(1 + i) and 1 + (1 + i). This shows us that the ring R/I = Z[i]/(1 + i) consists of two elements, and it shouldn t be hard to convince yourselves that R/I = Z/2Z. Notice, for example, that we ve just proved something interesting about the ideal (1 + i) in Z[i]. Since Z/2Z is a field, the ideal (1 + i) is maximal!.