VALIDATION OF A TRNSYS SIMULATION MODEL FOR PCM ENERGY STORAGES AND PCM WALL CONSTRUCTION ELEMENTS

Similar documents
VALIDATION OF A TRNSYS SIMULATION MODEL FOR PCM ENERGY STORAGES AND PCM WALL CONSTRUCTION ELEMENTS

Master School of Province de Liege -Industrial Engineer Department Nano-P.C.M.

TankExampleNov2016. Table of contents. Layout

Numerical Study of a High Temperature Latent Heat Storage ( C) Using NaNO 3 -KNO 3 Binary Mixture

University of Rome Tor Vergata

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

Parametric Study on the Dynamic Heat Storage Capacity of Building Elements Artmann, Nikolai; Manz, H.; Heiselberg, Per Kvols

Thermally activated wall system with latent heat thermal energy storage comparison of 1D and 3D model

Chapter 11: Heat Exchangers. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM V (ME-51, 52, 53, 54)] QUIZ TEST-1 (Session: )

1. Basic state values of matter

Basic Principles of an Adsorption Heat Storage System


Chapter 1: 20, 23, 35, 41, 68, 71, 76, 77, 80, 85, 90, 101, 103 and 104.

COMPARISON OF CORRECTIVE PHASE CHANGE MATERIAL ALGORITHM WITH ESP-R SIMULATION

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #2. April 3, 2014

Available online at ScienceDirect. Procedia Engineering 121 (2015 )

QUESTION ANSWER. . e. Fourier number:

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer

Coolant. Circuits Chip

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics

Theoretical and experimental studies on a latent heat thermal energy storage system (LHTES) containing flat slabs of phase change materials

Thermodynamics Introduction and Basic Concepts

Introduction to Heat and Mass Transfer. Week 7

T718. c Dr. Md. Zahurul Haq (BUET) HX: Energy Balance and LMTD ME 307 (2018) 2/ 21 T793

USE OF EXTERNAL VERTICAL FINS IN PHASE CHANGE MATERIALS MODULES FOR DOMESTIC HOT WATER TANKS

Overall Heat Transfer Coefficient

Thermal engineering with QuickField

How can we use Fundamental Heat Transfer to understand real devices like heat exchangers?

Examination Heat Transfer

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 3 August 2004

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

Applied Heat Transfer:

Development and Validation of Flat-Plate Collector Testing Procedures

CFD Analysis On Thermal Energy Storage In Phase Change Materials Using High Temperature Solution

1/54 Circulation pump, safety valve, expansion vessel

374 Exergy Analysis. sys (u u 0 ) + P 0 (v v 0 ) T 0 (s s 0 ) where. e sys = u + ν 2 /2 + gz.

MAHALAKSHMI ENGINEERING COLLEGE

ENGINEERING OF NUCLEAR REACTORS. Fall December 17, 2002 OPEN BOOK FINAL EXAM 3 HOURS

Contents... 1 Intro... 1 Giving guarantees... 2

Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW SVCET

Heat Transfer. Thermal energy

MICROENCAPSULATED PHASE CHANGE MATERIALS (PCM) FOR BUILDING APPLICATIONS

First tests on a solid sorption prototype for seasonal solar thermal storage.

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions.

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 7

The Research of Heat Transfer Area for 55/19 Steam Generator

Production of ice slurry in a scraped-surface plate heat exchanger

From Table 1 4. DL = [12 lb/ft 2 # in.(6 in.)] (15 ft)(10 ft) = 10,800 lb. LL = (250 lb/ft 2 )(15 ft)(10 ft) = 37,500 lb.

PFR with inter stage cooling: Example 8.6, with some modifications

Autumn 2005 THERMODYNAMICS. Time: 3 Hours

Investigation of adiabatic batch reactor

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3

Validatio of A Dy a i Model for Ther ally A tivated Buildi g Syste s

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness

Experimental and Numerical Investigation on Thermal Behavior of PCM in Storage Tank

SEM-2016(03)-II MECHANICAL ENGINEERING. Paper -11. Please read each of the following instructions carefully before. attempting questions.

c Dr. Md. Zahurul Haq (BUET) Heat Exchangers: Rating & Sizing - I ME 307 (2017) 2 / 32 T666

PROBLEM 1.2 ( ) 25 C 15 C dx L 0.30 m Ambient air temperature, T2 (C)

ENGG 3260: Thermodynamics. Home Assignment 1 (Chapter 1) (Answer)

Determination of heat losses of a concrete silo for sugar and a fan project

WTS Table of contents. Layout

Memorial University of Newfoundland Faculty of Engineering and Applied Science

FUNDAMENTALS OF HVAC

Thermal conductivity measurement of two microencapsulated phase change slurries

SUPER-INSULATED LONG-TERM HOT WATER STORAGE

Fatima

How can we use Fundamental Heat Transfer to understand real devices like heat exchangers?

A) 3.1 m/s B) 9.9 m/s C) 14 m/s D) 17 m/s E) 31 m/s

Thermal analysis of a direct-gain room with shape-stabilized PCM plates

TOPIC 2 [A] STEADY STATE HEAT CONDUCTION

Numerical analysis of natural convection in a latent heat thermal energy storage system containing rectangular enclosures

Theoretical Analysis of Overall Heat Loss Coefficient in a Flat Plate Solar Collector with an In-Built Energy Storage Using a Phase Change Material

DESIGN AND COST ANALYSIS OF HEAT TRANSFER EQUIPMENTS

Thermal Analysis of Shell and Tube Heat Ex-Changer Using C and Ansys

Faculté Polytechnique

ME 201 Thermodynamics

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar

UNIT I Basic concepts and Work & Heat Transfer

Example 8: CSTR with Multiple Solutions

Heat Exchangers: Rating & Performance Parameters. Maximum Heat Transfer Rate, q max

Cooling of Electronics Lecture 2

7. Find the value of If (a+1) and (a-1) are the factors of p(a)= a 3 x+2a 2 +2a - y, find x and y

Simplified Collector Performance Model

Thermal Capacity Measurement of Engineering Alloys in Dependence on Temperature.

STEADY HEAT CONDUCTION IN PLANE WALLS

CFD Analysis on Thermal Energy storage in Phase change Material

Study on the flow and thermal characteristics of a heat storage system

a 1 ft2 144 in 2 b 26 in.

Computer Evaluation of Results by Room Thermal Stability Testing

Ice formation modelling around the coils of an ice storage tank

Design of a Refrigerator. Department of Aerospace and Mechanical Engineering. Abdallah Soliman. Masih Ahmed. Ryan Seballos. EMAE 355 Project 4

Physics Module Carry out this calculation? ( ) 2. Carry out this calculation? 3. Carry out this calculation?

Theory. Humidity h of an air-vapor mixture is defined as the mass ratio of water vapor and dry air,

Hideki Kamide 1. A. Ono 1, N. Kimura 1, J. Endoh 2 and O. Watanabe 2

d ( ) ( 0.165) = 169 W/m 2

NEGST. New generation of solar thermal systems. Advanced applications ENEA. Comparison of solar cooling technologies. Vincenzo Sabatelli

Fire Engineering Principles Workbook

HEAT TRANSFER WITH PHASE CHANGE IN A SHELL AND TUBE LATENT HEAT STORAGE UNIT

THERMAL CHARACTERIZATION OF GYPSUM COMPOSITES BY USING DIFFERENTIAL SCANNING CALORIMETRY

Transcription:

VALIDATION OF A TRNSYS SIMULATION MODEL FOR PCM ENERGY STORAGES AND PCM WALL CONSTRUCTION ELEMENTS H. Schranzhofer, P. Puschnig, A. Heinz, and Wolfgang Streicher, email: w.streicher@tugraz.at, internet:http://www.iwt.tugraz.at

Outline 1) PCM storage model for TRNSYS a) Theoretical approach b) Model validation - PCM slurry storage (IWT measurement data) - Cylindrical PCM modules (IWT measurement data) - with paraffin - with sodium acedat - with sodium acedat + graphite c) Conclusion and outlook 2) PCM wall model for TRNSYS a) Theoretical approach b) Results for a test case

Phase Change Materials (PCM) 500 water paraffin (Sasol 6805) SA SA+graphite H - H 50 C [kj / liter] 400 300 200 100 0 ΔH = 396 [kj/liter] ΔH = 229 [kj/liter] ΔH = 183 [kj/liter] ΔH = 84 [kj/liter] -100 ΔT = 20 [ C] 20 30 40 50 60 70 80 temperature [ C]

Type 240: PCM storage model One-dimensional multi-node model for fluid Enthalpy approach (continuous material properties) 5 direct in- / outlets and/or 5 internal heat exchangers PCM modules - Cylindrical rods: 2D-heat conduction - Packed sphere beds: 1D-heat conduction - PCM plates: 2D-heat conduction PCM Slurry as storage / transfer medium Type implemented into Trnsys 16 i = N h, T i i m i i = 2 i =1 PCM UA i m, h, T PCM PCM PCM ik ik ik k = 1 k = n r

PCM Slurry enhancement of storage capacity Speicherkapazität (relativ zu Wasser) 1,80 1,70 1,60 1,50 1,40 1,30 1,20 1,10 50 % 40 % 30 % 20 % 10 % 1,00 50-85 50-80 50-75 50-70 50-65 50-60 50-55 Temperaturbereich [ C]

Storage Temperatures [ C] 75 70 65 60 55 50 Water storage discharge via internal HX Experiment Simulation Type 240 Tin = 50 C 500 [ / ] m& = kg h 45 0 20 40 60 80 100 120 140 160 180 Time [min] WATER Experiment Simulation Type 240 T 1 T 2 T 3 T 4 WATER 0 20 40 60 80 100 120 140 160 180 0 Time [min] α = ξ Gr 1 4 1000 800 600 400 200 heat transfer coefficient α [W/m 2 K]

storage temperatures [ C] 75 70 65 60 55 50 PCM Slurry discharge via internal HX 20% PC-SLURRY Experiment Simulation Type 240 Tin = 50 C [ kg h] m& = 500 / 45 0 20 40 60 80 100 120 140 160 180 Time [min] T 1 T 2 T 3 T 4 α = ξ Experiment 20% PC-SLURRY Simulation Type 240 Gr 1 4 0 20 40 60 80 100 120 140 160 180 0 Time [min] 1000 800 600 400 200 heat transfer coefficient α [W/m 2 K]

Cylindrical modules: storage geometry modules tank 100 cm 90 cm PCM filling ratio: 30% 5 cm 21 cm

Cylindrical modules paraffin material properties H [kj/kg] 500 450 400 350 300 250 200 150 100 50 0 0 20 40 60 80 100 λ PCM = 0.2 [ W / mk] ρ PCM 824 kg / m 3 = dc dmodule λ Cont = 0.2 [ W / mk] ρ Cont 910 kg / m = 50[ mm] =1.8[ mm] paraffin polypropylen 3 = cpcont, = 1800 / [ J kgk] temperature [ C]

Cylindrical modules paraffin charge power 5.5 5.0 110 100 4.5 T inlet 90 Power [kw] 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 TRNSYS (Type240) EXP losses m dot 80 70 60 50 40 30 20 10 T [ C] / Mass flow rate [kg/h] 0.0 0-0.5-10 0 20 40 60 80 100 120 140 160 180 200 Time [min]

75 70 Cylindrical modules paraffin temperatures, charging layer 1 (top) temperature [ C] 65 60 55 50 T = 70[ C ] inlet V & = 100 l / h [ ] 45 40 water: trnsys exp PCM (surface): trnsys exp PCM (center): trnsys exp 35 0 20 40 60 80 100 120 140 160 180 200 220 time [min]

75 70 65 layer 4 (bottom) Cylindrical modules paraffin temperatures, charging Tinlet = 70[ C] [ l h] V& = 100 / temperature [ C] 60 55 50 45 40 water: trnsys exp PCM (surface): trnsys exp PCM (center): trnsys exp 35 0 20 40 60 80 100 120 140 160 180 200 220 time [min]

5.5 5.0 Cylindrical modules paraffin: discharge power 110 100 4.5 T inlet 90 power [kw] 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 TRNSYS (Type240) EXP losses m dot 80 70 60 50 40 30 20 10 T [ C] / Mass flow rate [kg/h] 0.0 0-0.5-10 0 20 40 60 80 100 120 140 160 180 200 time [min]

75 70 layer 3 Cylindrical modules paraffin temperatures, discharging water: trnsys exp PCM (surface): trnsys exp PCM (center): trnsys exp temperature [ C] 65 60 55 50 45 0 20 40 60 80 100 120 140 160 180 200 220 time [min] Tinlet = 50[ C] [ l h] V& = 100 /

75 70 layer 1 (top) Cylindrical modules paraffin temperatures, discharging water: trnsys exp PCM (surface): trnsys exp PCM (center): trnsys exp temperature [ C] 65 60 55 50 45 0 20 40 60 80 100 120 140 160 180 200 220 time [min] Tinlet = 50[ C] [ l h] V& = 100 /

Cylindrical modules SA material properties 600 500 λ PCM = 0.5 [ W / mk] ρ PCM 1350 kg / m 3 = λ Cont = 0.2 [ W / mk] ρ Cont 910 kg / m 3 = H [kj/kg] 400 300 200 cooling heating dc dmodule cpcont, = 1800 / = 50[ mm] =1.8[ mm] [ J kgk] 100 0 0 20 40 60 80 100 temperature [ C] SA polypropylen

Modelling of subcooling effects Case 1: cooling 700 600 cooling heating 500 T critical_1 400 q [kj/kg] 300 200 100 0 0 20 40 60 80 100 T [ C] 1 PCM-temperature < T critical_1 cristallisation switch to red function

Modelling of subcooling effects Case 2: heating 700 600 500 cooling heating T critical_2 400 q [kj/kg] 300 200 100 0 0 20 40 60 80 100 T [ C] all PCM-temperatures > T critical_2 no cristallisation seeds left switch to blue function

Modelling of subcooling effects example: cooling 700 600 cooling heating T 4 T 3 T 2 T 1 500 q [kj/kg] 400 300 200 100 0 0 20 40 60 80 100 T [ C] Node 1 Node 2 Node 3 Node 4 time = n time= n +1 54.0 58.4 53.0 58.4 52.0 58.4 49.5 58.4 Module Module

Cylindrical modules SA discharge Power 2.4 120 2.0 100 Power [kw] 1.6 1.2 0.8 0.4 TRNSYS (Type240) EXP losses T inlet m dot 80 60 40 20 T [ C] / Mass flow rate [kg/h] 0.0 0 0 40 80 120 160 200 Time [min]

75 Cylindrical modules SA temperatures, discharging layer 4 (bottom) temperature [ C] 70 65 60 55 water: trnsys exp PCM (surface): trnsys exp PCM (center): trnsys exp 50 45 0 60 120 180 240 300 360 420 480 540 time [min] Tinlet = 50[ C] [ l h] V& = 100 /

Cylindrical modules SA+gr material properties 500 λ PCM = 4.5 [ W / mk] λ Cont = 15 [ W / mk] H [kj/kg] 400 300 200 ρ PCM 1054 kg / m 3 = dc dmodule ρ Cont 8000 kg / m = 53[ mm] =1.5[ mm] 3 = cp, cont = 477 / [ J kgk] 100 SA+gr 0 0 20 40 60 80 100 temperature [ C] stainless steel

Cylindrical modules SA+gr discharge Power 3 120 2.6 100 power [kw] 2.2 1.8 1.4 1 0.6 Psim Ploss mdot_in power Tinlet 80 60 40 T [ C] / mass flow rate [kg/h] 0.2 20-0.2 0-10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 time [min]

Cylindrical modules SA+gr temperatures, discharging layer 4 (bottom) 70 temperature [ C] 65 60 55 Twater (exp) Twater (exp) Tpcmsurface (exp) Tpcmcenter (exp) Twater (sim) Tpcmsurface (sim) Tpcmcenter (sim) 50 45 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 time [min] Tinlet = 50[ C] [ l h] V& = 100 /

Conclusions and outlook Simulation results correspond well to measurements for slurries and pure PCM. Current approximate approach of subcooling will be improved PCM-Graphite mixtures need more work Type 240 will be included simulation boundary conditions (building, user load, climate, hydraulics) according to IEA SHC Task 32 Expansion to ice storage is on the way

Theoretical approach Wall construction: 2.5 [cm] external plaster / 38 [cm] brick / 1.5 [cm] PCM plaster room with Ambient air External wall room PCM plaster Type 56 q s,2 q s,1 direct contact zone T s,2 T s,1 Type 56 air zone TRNSYS Model Type 241

Geometry of the test room IW1 Exterior wall construction 1.5 cm plaster / 38 cm brick / 1.5 cm PCM-plaster 1.5 cm PCM-plaster Interior wall construction west A F = 1.50 m 2 A = 20 m 2 AC day = 0.5 h -1 AC night = 6.0 h -1 1.5 cm plaster / 12 cm brick / 1.5 cm PCM-plaster Floor / Ceiling construction 2 cm parquet floor / 6 cm mineral wool / 18 cm concrete / 1.5 cm PCM-plaster EW A F = 2.25 m 2 EW south

Thermophysical properties Enthalpy [kj/kg] 50 45 40 35 30 25 MaxitClima plaster c p = 1 [kj/kgk] ΔT = 23 C c p = 1 [kj/kgk] ΔH = 18 [kj/kg] A F = 1.50 m 2 EW Asurface dpcm IW1 1.5 cm PCM-plaster A = 20 m 2 AC day = 0.5 h -1 AC night = 6.0 h -1 A F = 2.25 m 2 70.25 m EW 2 = = 1.5[ cm] 20 15 20 21 22 23 24 25 26 27 28 29 30 Temperature [ C] Δ Q = total Δ T = 3.0[ K] 7.06[ kwh] 2 353[ Wh / m ]

Simulation results Operative room temperature [ C] 30 29 28 27 26 25 24 23 22 21 20 1.5 cm gypsum plaster 1.5 cm PCM plaster 5280 5328 5376 5424 5472 5520 5568 5616 5664 5712 Hour of year

Conclusion and outlook First simulation results look realistic Comparison of simulation to measurement data will be performed (measurement data is welcome) The type will be used at IWT for building simulation projects Other beta testers are welcomes

Acknowledgment Project Energiesysteme der Zukunft of the Austrian Ministry for Traffic, Innovation and Technology. European project ENK6-CT2001-00507 (Phase Change Material Slurries) Task32 of the Solar Heating and Cooling programme of the International Energy Agency Task 32 Storage