On Factoring 2 k ± 1

Similar documents
GRADE 7 MATH LEARNING GUIDE. Lesson 26: Solving Linear Equations and Inequalities in One Variable Using

In this lesson, students model filling a rectangular

Math 31 Lesson Plan. Day 5: Intro to Groups. Elizabeth Gillaspy. September 28, 2011

and Transitional Comprehensive Curriculum. Algebra I Part 2 Unit 7: Polynomials and Factoring

Multiplying Inequalities by Negative Numbers

The Integers. Math 3040: Spring Contents 1. The Basic Construction 1 2. Adding integers 4 3. Ordering integers Multiplying integers 12

FACTORIZATION AND THE PRIMES

MODULAR ARITHMETIC KEITH CONRAD

Chapter 5. Number Theory. 5.1 Base b representations

Surprising relationships connecting ploughing a field, mathematical trees, permutations, and trigonometry

The Integers. Peter J. Kahn

6.N.3 Understand the relationship between integers, nonnegative decimals, fractions and percents.

Computational Tasks and Models

Executive Assessment. Executive Assessment Math Review. Section 1.0, Arithmetic, includes the following topics:

CS 5319 Advanced Discrete Structure. Lecture 9: Introduction to Number Theory II

EXAMPLES OF MORDELL S EQUATION

Galois fields/1. (M3) There is an element 1 (not equal to 0) such that a 1 = a for all a.

STUDY GUIDE Math 20. To accompany Intermediate Algebra for College Students By Robert Blitzer, Third Edition

Sydney University Mathematical Society Problems Competition Solutions.

Some Notes on Linear Algebra

Direct Proof MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Direct Proof Fall / 24

MATH10212 Linear Algebra B Homework Week 3. Be prepared to answer the following oral questions if asked in the supervision class

Exam 2 Solutions. In class questions

Number Theory Math 420 Silverman Exam #1 February 27, 2018

Basic elements of number theory

Basic elements of number theory

GRE Quantitative Reasoning Practice Questions

Eureka Math. Algebra II Module 1 Student File_A. Student Workbook. This file contains Alg II-M1 Classwork Alg II-M1 Problem Sets

Park School Mathematics Curriculum Book 1, Lesson 1: Defining New Symbols

Proposal for Sabbatical Leave

We continue our Low Floor High Ceiling series in which

b14 c04 a15 a03 b02 Edge Decompositions on Graphs

Modern Algebra Prof. Manindra Agrawal Department of Computer Science and Engineering Indian Institute of Technology, Kanpur

Stephen F Austin. Exponents and Logarithms. chapter 3

Mathematical Olympiad for Girls

THE TRIANGULAR THEOREM OF THE PRIMES : BINARY QUADRATIC FORMS AND PRIMITIVE PYTHAGOREAN TRIPLES

Numbers and their divisors

EXAMPLES OF MORDELL S EQUATION

2 Arithmetic. 2.1 Greatest common divisors. This chapter is about properties of the integers Z = {..., 2, 1, 0, 1, 2,...}.

Introduction - Algebra II

All rights reserved. Reproduction of these materials for instructional purposes in public school classrooms in Virginia is permitted.

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Discussion 6A Solution

Writing Mathematical Proofs

ECEN 5022 Cryptography

All rights reserved. Reproduction of these materials for instructional purposes in public school classrooms in Virginia is permitted.

MATH10212 Linear Algebra B Homework Week 5

Prealgebra. Edition 5

Clock Arithmetic and Euclid s Algorithm

Nine Week SOL Time Allotment. A.4a, b and A.5a - Properties. A.1b and A.3c - Order of Operations. A.1b - Evaluating Expression

1. Introduction to commutative rings and fields

SOLUTIONS Math 345 Homework 6 10/11/2017. Exercise 23. (a) Solve the following congruences: (i) x (mod 12) Answer. We have

APPENDIX B SUMMARIES OF SUBJECT MATTER TOPICS WITH RELATED CALIFORNIA AND NCTM STANDARDS PART 1

ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS

CHAPTER 1. REVIEW: NUMBERS

Prentice Hall Mathematics, Algebra 1, South Carolina Edition 2011

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: NP-Completeness I Date: 11/13/18

Chapter One. The Real Number System

Math 016 Lessons Wimayra LUY

11 Division Mod n, Linear Integer Equations, Random Numbers, The Fundamental Theorem of Arithmetic

3 The language of proof

Nine Week SOL Time Allotment

A Curious Connection Between Fermat Numbers and Finite Groups

1. Introduction to commutative rings and fields

In this initial chapter, you will be introduced to, or more than likely be reminded of, a

Mathematics Background

Fermat s Little Theorem. Fermat s little theorem is a statement about primes that nearly characterizes them.

Ch 3.2: Direct proofs

Egyptian Fractions: Part I

LARGE PRIME NUMBERS (32, 42; 4) (32, 24; 2) (32, 20; 1) ( 105, 20; 0).

DR.RUPNATHJI( DR.RUPAK NATH )

A Curriculum Module for AP Calculus Curriculum Module

OPTIONAL: Watch the Flash version of the video for Section 6.1: Rational Expressions (19:09).

Egyptian Fractions: Part I

Research Reflections

Traditionally, an Algebra 1 course focuses on

4 PRIMITIVE ROOTS Order and Primitive Roots The Index Existence of primitive roots for prime modulus...

The University of Jordan. Accreditation & Quality Assurance Center. Course Name: Structural Geology COURSE Syllabus

C.T.Chong National University of Singapore

Math 31 Lesson Plan. Day 2: Sets; Binary Operations. Elizabeth Gillaspy. September 23, 2011

Math 109 HW 9 Solutions

Algorithms CMSC Homework set #1 due January 14, 2015

Grade 8 Mathematics MCA Item Sampler Teacher Guide

Math 319 Problem Set #2 Solution 14 February 2002

Finite arithmetic and Latin squares

CHAPTER 6. Prime Numbers. Definition and Fundamental Results

Pythagorean Triangles with Repeated Digits Different Bases

Set theory. Math 304 Spring 2007

SUPPORTING INFORMATION ALGEBRA II. Texas Education Agency

Definition 6.1 (p.277) A positive integer n is prime when n > 1 and the only positive divisors are 1 and n. Alternatively

COWLEY COLLEGE & Area Vocational Technical School

Affine Planes: An Introduction to Axiomatic Geometry

AN ALGEBRA PRIMER WITH A VIEW TOWARD CURVES OVER FINITE FIELDS

Introduction to Metalogic

A Simple Left-to-Right Algorithm for Minimal Weight Signed Radix-r Representations

* 8 Groups, with Appendix containing Rings and Fields.

Grade 8 Big Ideas SY

CONGRUENT NUMBERS AND ELLIPTIC CURVES

Calculation of Gear Trains by Approximation 1 (translated by John G. Kirk)

PLEASANTON UNIFIED SCHOOL DISTRICT 8 Course Outline Form

STANDARDS OF LEARNING CONTENT REVIEW NOTES. ALGEBRA I Part II 1 st Nine Weeks,

Transcription:

On Factoring 2 k ± 1 Peter Hilton and Jean Pedersen The cover of the October, 1990 issue of the excellent South African student journal Mathematical Digest, founded and edited by our good friend John Webb, showed the factorization of the ninth Fermat number, F 9 = 2 29 + 1 In particular, it showed that the smallest prime factor of F 9 is 2,424,833 John Webb stated that the factorization of the ninth Fermat number took six weeks of computation on 1,000 linked computers We thought it might be of interest to show how the fact that 2,424,833 is a factor of F 9 could be verified in just over an hour and a half using a hand calculator 1 We first need to describe our notion of a symbol, and state our Binary Quasi-order Theorem concerning the symbol After that we will show how executing the algorithm which produces the symbol and using the theorem can provide a verification that 641 is a factor of F 5 = 2 25 + 1 The reader should then have no difficulty duplicating the process to verify factorizations of other F n (where at least one factor is known) The implications are obvious if it is suspected that a certain number, say b, is a factor of F n, then there is an easy way to check the suspect The difficulties are also obvious there are lots of suspects and very few culprits! Nevertheless, it may be satisfying to be able to check such apparently inaccessible facts as those stated in our opening paragraph by (i) using only relatively small numbers (no number occurring in our algorithm is larger than the number b in the symbol below, so that verifying that 2,424,833 is a factor of 2 29 + 1 involves no number bigger than 2,424,833), and (ii) using only simple arithmetic (which may be carried out on a hand calculator) Let us proceed The symbol we will construct is this: a 1 a 2 a r b (*) k 1 k 2 k r Peter Hilton is Distinguished Professor of Mathematics at the State University of New York at Binghamton He is well known for his research in algebraic topology, homological algebra, and group theory Jean Pedersen is an Associate Professor of Mathematics at Santa Clara University in California She has published articles on polyhedral geometry, combinatorics, and number theory Professors Hilton and Pedersen recently visited the University of Otago, New Zealand, where they worked with Professor Derek Holton on a book designed to attract bright high school students and undergraduates to mathematics where a i, b are odd, a i < b 2, and b = a i + 2 k i a i+ 1, i = 1, 2,, r (a r + 1 = a 1 ) We have shown (Hilton & Pedersen, 1985, 1987a) that such a symbol always exists for a given b and a = a 1, and it is plainly uniquely determined by b and a if we insist that the a i are all distinct In the same articles we have proved the following theorem The Binary Quasi-order Theorem: If the symbol (*) is reduced (ie, gcd(b, a 1 ) = 1) and contracted (ie, the symbol involves no repeated a i ), then the quasi-order 2 of 2 mod b is k = 2 k ( 1) r mod b r i=1 k i and, in fact, The theorem has the consequence that b is a factor of 2 k - ( 1) r Notice, however, that we start with the factor b and find the smallest k such that b is a factor of 2 k ± 1 (of course determining whether we should take +1 or 1) This is not at all the procedure taught in the traditional study of factorization, which is typically approached merely as an arithmetical exercise Notice, too, that we read k and r off the symbol (*), but that k and the parity (odd or even) of r depend only on b, although the symbol depends on b and a This independence of a is so remarkable a feature of our theorem that we feel we should illustrate it with an example Example 1: We have the following reduced and contracted symbols (we will explain the construction of such a symbol, in some detail, below): and 41 1 5 9 3 2 5 3 19 11 15 13 7 17 41 1 1 1 1 2 1 3 In both cases k = 10; in the first case r = 3, in the second r = 7 Thus either symbol tells us that the quasi-order of 2 mod 41 is 10, and further, that 2 10 1 mod 41, so that 41 2 10 + 1 To justify our description of the quasi-order algorithm as a means of factorizing 2 k ± 1, we should show how to find the complementary factor This is already available Volume 5 Number 1 29

from the symbol, as the following theorem shows (see Hilton & Pedersen, 1987a, 1987b) The Complementary Factor Theorem: If the symbol (*) is reduced and contracted, then ab = Ab, where B = 2 k - ( 1) r and A = 2 k - k r - 2 k - k r - k r-1 + 2 k - k r - k r-1 - k r-2 - + ( 1) r 2 k 1 - ( 1) r In particular, 2 k - ( 1) r = bc, where c = A a, which is an integer Let us return to our example Example 1 (revisited): The first symbol has a = 1 and A = 2 5-2 3 + 1 = 25, so that c = 25 The second symbol has a = 3 and A = 2 7-2 6 + 2 4-2 3 + 2 2-2 + 1 = 75, so that, again, c = 25 Thus, either symbol tells us that 2 10 + 1 = 41 x 25 Notice that this factorization (like all of the factorizations in this article) is established without ever expressing 2 10 + 1 in base 10 Indeed, our arithmetic involves only dividing numbers less than or equal to 40 by 2, taking powers of 2 up to at most 2 9 (actually, only up to 2 7 in this case), and simple addition and subtraction We now go into greater detail on how to use our theorems, especially in connection with factorizations of Fermat numbers Suppose we want to find the quasi-order of 2 mod 641 In other words, we wish to find the smallest positive integer k such that 2 k ± 1 mod 641 We begin by constructing a symbol (*) with b = 641, choosing a 1 = 1 Begin by writing 1 641 Then calculate as follows (using a hand calculator is convenient, but not necessary): 641-1 = 640, 640 2 = 320, 320 2 = 160, 160 2 = 80, 80 2 = 40, 40 2 = 20, 20 2 = 10, 10 2 = 5 (and STOP, because 5 is odd) These calculations show that 641 = 1 + 2 7 (5), and hence k 1 = 7 and a 2 = 5 Now record k 1 = 7 (the number of times we divided by 2) directly below a 1 = 1, and record a 2 = 5 (the last quotient) to the immediate right of a 1 = 1 The symbol is then extended to 1 5 641 7 Next, repeat the algorithm by calculating as follows: 641-5 = 636, 636 2 = 318, 318 2 = 159 (stop here because 159 is odd) These calculations show that 641 = 5 + 2 2 (159), and hence k 2 = 2 and a 3 = 159 Now record k 2 = 2 directly below a 2 = 5 and a 3 = 159 to the immediate right of a 2 = 5, so that the symbol grows to 1 5 159 641 7 2 The algorithm is continued until the a i s begin to repeat; thus, in this example, we stop when the quotient, after repeated division by 2, is 1 The reader may wish to carry out the algorithm until this happens to verify that the completed symbol will be 1 5 159 241 25 77 141 125 129 641 7 2 1 4 3 2 2 2 9 (**) From (**) we see that 9 k i = 7 + 2 + 1 + 4 + 3 + 2 + 2 i=1 + 2 + 9 = 32 and that r = 9, which is odd Hence, by the Binary Quasi-Order Theorem, we conclude that 32 is the smallest positive integer k such that 2 k ± 1 mod 641, and that, in fact, 2 32 1 mod 641 Thus, 641 2 32 + 1 = 2 25 + 1, and so, as promised, we have shown that 641 is a factor of F 5 It is natural to ask what would have happened if we had started our symbol with one of the other suitable numbers for a i We know we would have obtained the same information as above, but could we ever obtain a shorter symbol? To illustrate part of the answer, observe that if we had started our symbol with any of the numbers in the top row of (**), say a 1 = 5, we would have obtained essentially the same symbol with the position of the entries permuted cyclically, as shown in (***) below 5 159 241 25 77 141 125 129 1 641 2 1 4 3 2 2 2 9 7 (***) Of course, the information contained in (**) and (***) is exactly the same However, if we had started with a 1 = 3, then the symbol would have been very different and, as the reader may verify, would actually have contained 15 entries If we regard (**) and (***) as the same symbol (think of the numbers to the right of 641 as written around a cylinder), then, as a matter of fact, for b = 641 there are just 10 different contracted symbols, each with an odd number of entries varying in length between 9 and 23 But in each case the sum of the entries of the bottom row is 32 The reader may now check his or her understanding of how to construct a symbol by actually constructing the symbols presented in Example 1 Next, the more ambitious reader may wish to construct a symbol and use our theorem to show that 274,177 is a factor of F 6 or that 30 The Mathematics Educator

2,424,833 is a factor of F 9 The symbol with b = 274,177 that begins with a 1 = 1 has 19 entries, and we have not found any symbol with b = 274,177 having fewer entries Further, with b = 2,424,833, the symbol beginning a 1 = 1 has 237 entries, but the symbol beginning with a 1 = 65,537 has only 213 entries We do not know whether or not the symbols we have found verifying the factors of F 6 and F 9 are the shortest possible or not Can any reader do better? (Notice that 65,537 = F 4!) We now show how our second theorem enables us to obtain the complementary factor for our factorization of F 5 using the symbol (**) We repeat the calculation with the symbol (***) to give the reader experience Example 2 referring to (**) A = 2 23-2 21 + 2 19-2 17 + 2 14-2 10 + 2 9-2 7 + 2 0 = 6,700,417, where 23 = 32-9 21 = 32-9 - 2 19 = 32-9 - 2-2 0 = 32-9 - 2-2 - 2-3 - 4-1 - 2-7 (Hint: Derive these exponents from the numbers in the bottom row of (**) read backwards) Thus F 5 = 641 x 6,700,417 (Notice that the calculation is, to some extent, self-checking, as the last exponent in the expression for A must be 0) Example 3 referring to (***) A = 2 25-2 16 + 2 14-2 12 + 2 10-2 7 + 2 3-2 2 + 2 0 = 33,502,085, where 25 = 32-7 16 = 32-7 - 9 14 = 32-7 - 9-2 0 = 32-7 - 9-2 - 2-2 - 3-4 - 1-2 (Hint: Look at the numbers in the bottom row of (***)) Since a = 5 in (***), we find that the complementary factor is 33,502,085 5 = 6,700,417 Thus, again, F 5 = 641 x 6,700,417 We close with one final point about the Binary Quasi- Order Theorem We have stressed that it gives us a means of obtaining, for a given odd number b, a positive integer k and a parity r such that 2 k ( 1) r mod b However, as we have also said, it does more because the k we obtain from our algorithm is the smallest positive integer such that 2 k ± 1 mod b For example, with b = 7 we find k = 3 and 2 3 1 mod 7; but of course it is also true that 2 6 1 mod 7 Again, with b = 9 we find k = 3 and 2 3 1 mod 9; but 2 6 1 mod 9, and 2 9 1 mod 9 However, in the case of the Fermat numbers, it is natural not to stress the minimality of k For if 2 2n 1 mod b, then 2 n must be minimal! This follows from the observations (i) that if any power 2 l is congruent to 1 mod b, then the minimal power of 2 congruent to ±1 mod b is, in fact, congruent to 1 mod b; and (ii) if the minimal power of 2 congruent to 1 mod b is 2 s then any power 2 l congruent to 1 mod b has l = st, with t odd Thus if 2 2n 1 mod b and the quasi-order of 2 mod b is s, then 2 n = st, with t odd But this forces t = 1 and 2 n = s, so 2 n is itself the quasi-order of 2 mod b Readers may be intrigued to know that our algorithm arose in designing a systematic way to fold straight strips of paper into regular convex and star polygons For details see Hilton and Pedersen, 1987a and 1988 Ambitious readers eager to know more about the relation of Fermat numbers and symbols might like to consult Hilton and Pedersen, in press Thoughts on Mathematics Education What implications might our article have for the teaching of mathematics? First and foremost, it shows that a little mathematical thought can avoid a huge amount of machine time Thus the availability of machines certainly does not render the mathematical analysis of a problem unnecessary on the contrary, it stimulates it The proper mathematical use of machines is not to crunch numbers but to conduct mathematical experiments, on the basis of which hypotheses may be formulated and theorems proved We would also like to think that our article shows that mathematics can be fun and can contain the element of surprise We are glad to be able to report that elementary students who had thought themselves to possess no mathematical talent whatsoever have derived great pleasure, even excitement, from calculating quasi-orders by our algorithm, and then verifying the resulting factorizations on their calculators Notes 1 When the numbers were large, or we were tired, we used a Casio fx-7000 graphics calculator to carry out the computations We found that scrolling the screen was an advantage because we could easily see the previous entries, but any hand calculator could be used With only pencil and paper, the necessary calculation could be done in less than three hours 2 Here we understand the quasi-order of 2 mod b, where b is odd, to be the smallest integer k such that Volume 5 Number 1 31

2 k ±1 mod b Of course, there is a corresponding definition for the quasi-order of t mod b, where t is an integer relatively prime to b Our algorithm may be generalized also (see Hilton & Pedersen, 1986, 1987a), to give a Quasi-order Theorem for a general t 2 References Hilton, P, & Pedersen, J (1985) Folding regular star polygons and number theory Mathematical Intelligencer, 7(1) 15-26 Hilton, P, & Pedersen, J (1986) The general quasi-order algorithm in number theory International Journal of Mathematics and Mathematical Sciences, 9(2), 245-251 Hilton, P, & Pedersen, J (1987a) Geometry in practice and numbers in theory Monographs in Undergraduate Mathematics, 16 Greensboro, NC: Department of Mathematics, Guilford College Hilton, P, & Pedersen, J (1987b) On the complementary factor in a new congruence algorithm International Journal of Mathematics and Mathematical Sciences, 10(1), 113-123 Hilton, P, & Pedersen, J (1988) Build your own polyhedra Menlo Park, CA: Addison-Wesley Hilton, P, & Pedersen, J (in press) On folding instructions for products of Fermat numbers Preprint available from the authors Editorial (continued from p 2) in teaching must be presented, but documentation is difficult and it is nearly impossible to make the case for promotion based primarily on excellence in teaching Further, at many places, scholarly productivity in teaching means writing articles about teaching for refereed journals Materials (eg articles, books, computer programs, videos, multimedia) provide the tangible record Third, there is a continuous problem of communicating the nature of scholarly productivity in mathematics education to our peers who are not in mathematics education (but who serve on review committees) This is as much a problem whether our peers are generalists in education, specialists in some other area of education, or in some other field It is particularly a problem when our peers are in mathematics since many mathematics educators are housed in mathematics departments and judged by colleagues who are not always supportive of work in mathematics education Sadly, the promotion and tenure review process can be difficult and impersonal while it is intended to be impartial It often takes most of a year to run its course, the committees are usually anonymous, and candidates seldom have any opportunity for input into the process other than by formal written procedures The JPBM Report (1994) offers six guiding principles to assist faculty in the mathematical sciences to work on each institution s definition of the reward structure (pp 28-38) Anticipating the process of promotion and tenure review is one aspect of career planning and is best viewed in that light The supporting evidence in a file or dossier does not come together just in the months before it is submitted but rather it is accumulated and assessed from the start of one s appointment If the items of evidence for a dossier are prepared and accumulated continuously, a lot of the unnecessary pressure of the promotion year can be alleviated Some institutions will have mentors or administrators who facilitate and assist in this long-term preparation If such assistance is not provided, a young faculty member is well advised to informally seek out mentors Another advantage of long term planning is that it provides a framework for deciding whether assignments and activities might add to the evidence in support of promotion One might still decide to follow an activity of interest for some other reason, but at least the decision is made within a framework Generally, the promotion and tenure process serves the university and its faculty well It continues to be driven by faculty input and it facilitates one s career development It is our quality control mechanism and despite anxiety for meeting the requirements and procedures, most of us would not want it any other way Reference Joint Policy Board for Mathematics (1994) Recognition and Rewards in the Mathematical Sciences Report of the Committee on Professional Recognitions and Rewards Providence, RI: American Mathematics Society 32 The Mathematics Educator

Volume 5 Number 1 33