Design, analysis and fabrication of linear permanent magnet synchronous machine

Similar documents
Design, analysis and fabrication of a linear permanent magnet synchronous machine

Proposal of short armature core double-sided transverse flux type linear synchronous motor

UNIT I INTRODUCTION Part A- Two marks questions

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I

Analytical Model for Sizing the Magnets of Permanent Magnet Synchronous Machines

Power density improvement of three phase flux reversal machine with distributed winding

ELECTRICALMACHINES-I QUESTUION BANK

Revision Guide for Chapter 15

Tutorial Sheet Fig. Q1

Revision Guide for Chapter 15

Regular paper. Design and FE Analysis of BLDC Motor for Electro- Mechanical Actuator

Generators for wind power conversion

Simplified Analysis Technique for Double Layer Non-overlap Multiphase Slip Permanent Magnet Couplings in Wind Energy Applications

ON THE PARAMETERS COMPUTATION OF A SINGLE SIDED TRANSVERSE FLUX MOTOR

CHAPTER 3 INFLUENCE OF STATOR SLOT-SHAPE ON THE ENERGY CONSERVATION ASSOCIATED WITH THE SUBMERSIBLE INDUCTION MOTORS

Lesson 17: Synchronous Machines

Design and Characteristic Analysis of LSM for High Speed Train System using Magnetic Equivalent Circuit

THERMAL FIELD ANALYSIS IN DESIGN AND MANUFACTURING OF A PERMANENT MAGNET LINEAR SYNCHRONOUS MOTOR

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Electronics & Communication Engineering

Analysis of Idle Power and Iron Loss Reduction in an Interior PM Automotive Alternator

Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars

Optimal Design of PM Axial Field Motor Based on PM Radial Field Motor Data

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque.

Tutorial Sheet IV. Fig. IV_2.

Designing of Double Sided Linear Induction Motor

Step Motor Modeling. Step Motor Modeling K. Craig 1

DESIGN FEATURES AND GOVERNING PARAMETERS OF LINEAR INDUCTION MOTOR

Concept Design and Performance Analysis of HTS Synchronous Motor for Ship Propulsion. Jin Zou, Di Hu, Mark Ainslie

Synchronous Machines

AXIAL FLUX INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR WITH SINUSOIDALLY SHAPED MAGNETS

3 Chapter 3 Machine design

4 Finite Element Analysis of a three-phase PM synchronous machine

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi

Prince Sattam bin Abdulaziz University College of Engineering. Electrical Engineering Department EE 3360 Electrical Machines (II)

Vehicular Suspension and Propulsion Using Double Sided Linear Induction Machines

Permanent Magnet Wind Generator Technology for Battery Charging Wind Energy Systems

6 Chapter 6 Testing and Evaluation

Lecture (20) DC Machine Examples Start of Synchronous Machines

Chapter 4. Synchronous Generators. Basic Topology

Reluctance Synchronous Machine with a Particular Cageless Segmental Rotor

STAR-CCM+ and SPEED for electric machine cooling analysis

A low cost linear induction motor for laboratory experiments

Lecture Notes ELEC A6

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Electromagnetic Induction & Inductors

Keywords: Electric Machines, Rotating Machinery, Stator faults, Fault tolerant control, Field Weakening, Anisotropy, Dual rotor, 3D modeling

Levitation and Thrust Forces Analysis of Hybrid-Excited Linear Synchronous Motor for Magnetically Levitated Vehicle

NEPTUNE -code: KAUVG11ONC Prerequisites:... Knowledge description:

Project 1: Analysis of an induction machine using a FEM based software EJ Design of Electrical Machines

Power Density Comparison for Three Phase Non-Slotted Double-Sided AFPM Motors

DESIGN AND ANALYSIS OF AXIAL-FLUX CORELESS PERMANENT MAGNET DISK GENERATOR

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008]

Dr. N. Senthilnathan (HOD) G. Sabaresh (PG Scholar) Kongu Engineering College-Perundurai Dept. of EEE

Optimisation of Inner Diameter to Outer Diameter Ratio of Axial Flux Permanent Magnet Generator

Introduction to Synchronous. Machines. Kevin Gaughan

Basics of Permanent Magnet - Machines

Design and analysis of Axial Flux Permanent Magnet Generator for Direct-Driven Wind Turbines

DESIGN AND ANALYSIS OF A THREE-PHASE THREE-STACK CLAW POLE PERMANENT MAGNET MOTOR WITH SMC STATOR

Finite Element Method based investigation of IPMSM losses

CPPM Mahine: A Synchronous Permanent Magnet Machine with Field Weakening

UNIT-I INTRODUCTION. 1. State the principle of electromechanical energy conversion.

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic

Review of Basic Electrical and Magnetic Circuit Concepts EE

DESIGN AND COMPARISON OF FIVE TOPOLOGIES ROTOR PERMANENT MAGNET SYNCHRONOUS MOTOR FOR HIGH- SPEED SPINDLE APPLICATIONS

A New Moving-magnet Type Linear Actuator utilizing Flux Concentration Permanent Magnet Arrangement

Electric Machines I Three Phase Induction Motor. Dr. Firas Obeidat

Induction Motors. The single-phase induction motor is the most frequently used motor in the world

Analytical and numerical computation of the no-load magnetic field in induction motors

Speed Sensorless Control of a Long-Stator Linear Synchronous-Motor arranged by Multiple Sections

A Permanent Magnet Linear Synchronous Motor Drive for HTS Maglev Transportation Systems

Unified Torque Expressions of AC Machines. Qian Wu

Prototype development model for conveyor using linear induction motor

PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR

The initial magnetization curve shows the magnetic flux density that would result when an increasing magnetic field is applied to an initially

EE 742 Chapter 3: Power System in the Steady State. Y. Baghzouz

High Efficiency LSM with High Flux Density for Transportation

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3. OUTCOME 3 - MAGNETISM and INDUCTION

CHAPTER 3 ENERGY EFFICIENT DESIGN OF INDUCTION MOTOR USNG GA

DESIGN OF ELECTRICAL APPARATUS SOLVED PROBLEMS

1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor

PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION

1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. magnetic. flux linkage / Wb-turns 1.

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

Analysis of an Energy Efficient Permanent Magnet Brushless Universal Motor. Mitchell Wing

Synchronous Machines

Design of the Permanent Magnet Linear Synchronous Motor for High Thrust and Low Cogging Force Performance

Lecture 24. April 5 th, Magnetic Circuits & Inductance

Flux: Examples of Devices

Equal Pitch and Unequal Pitch:

Fachgebiet Leistungselektronik und Elektrische Antriebstechnik. Test Examination: Mechatronics and Electrical Drives

Stability Analysis and Research of Permanent Magnet Synchronous Linear Motor

Retrofit design of a line-start permanentmagnet synchronous machine

Analysis, Design, Implementation of Sensorless V/f control in a Surface Mounted PMSM without damper winding

Modelling, Simulation and Nonlinear Control of Permanent Magnet Linear Synchronous Motor

EN Power Electronics and Machines

Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy

MODELING AND MODIFICATION FOR DISTRIBUTION TRANSFORMER (250 KVA, 11/0.416 KV) TO REDUCE THE TOTAL LOSSES

ACCURACY ASSESSMENT OF THE LINEAR INDUCTION MOTOR PERFORMANCE USING ADAPTIVE FEM

SYLLABUS(EE-205-F) SECTION-B

Transcription:

Design, analysis and fabrication of linear permanent magnet synchronous machine Monojit Seal Dept. of Electrical Engineering, IIEST, Shibpur, Howrah - 711103 W.B., India. email: seal.monojit@gmail.com Mainak Sengupta Dept. Electrical Engineering, IIEST, Shibpur, Howrah - 711103, W.B., India. email: mainak.sengupta@gmail.com Abstract This paper deals with design, analysis and fabrication of 320 W, 5 m/s, 4-pole permanent magnet based linear synchronous machine (LPMSM). The design deals with rigorous hand calculations, analysis using standard FEM packages and fabrication of the machine at the works of a local small machine manufacturer after procurement of imported PMs. The same will be used in a linear motor drive development research. Index Terms Linear permanent magnet synchronous machine, LPMSM, design optimisation, finite element method. I. INTRODUCTION Linear motors have been the subject of research and development for over 100 years. Though presently only a few of such companies are known to supply linear motors across the world ( [1], [2]). However, with the increase in cost of energy since 1970 s, recent trends are focusing towards use of energy efficient drives. The availability of permanent magnets (PM) with considerable energy density and the advent of power electronic converters with digital controllers led to the development of energy efficient drive with precision in motion control. Fig.1 shows how the linear AC machines can be categorized [3]. Fig. 1. Hierarchy chart illustrating types of linear machines The present paper deals with the fabrication of a short primary LSM. Compared to linear IM (LIM), where sta- Fig. 2. Single sided flat PM LSMs with slotted armature core and (a) surface PMs, (b) buried PMs. 1 - PM, 2 - mild steel pole, 3 - yoke. tor current provides both magnetising and thrust producing component; in LPMSM, the PM produces the field flux the causing mainly the thrust producing component of stator current to be drawn from supply. Since, there is no copper loss in the rotor circuit (unlike LIM), for the same output, LPMSM will operate at much higher power factor and efficiency with consequent reduction in size and weight. Primarily, two different types of construction are possible for LPMSM. A cross-sectional view of the first type having PMs on the surface as shown in Fig.2(a) and the other with PMs buried inside the mild steel pole as shown in Fig.2(b). In surface mounting arrangement of LPMSM, the yoke (back iron) is made of ferromagnetic material and the direction of magnetisation of the PMs are perpendicular to the active surface. However, for buried LPMSM, the yoke is made of non-ferromagnetic material(e.g. aluminium) and the PMs are magnetised in the direction of travelling magnetic field [4]. II. BASIC PRINCIPLES In a PMSM the DC-field is obtained from permanent magnets (PM) instead of DC-exited electromagnets. In the present work the DC-field system is kept static while the 3-phase armature has been made the linor (moving

member). A linear synchronous motor (LSM) is a variant of the conventional synchronous motor in which the mechanical speed is the same as the speed of the linearly travelling magnetic field. Hence, the thrust (propulsion force) can be generated as an action of travelling magnetic field produced by a balanced polyphase winding energised from a balanced polyphase supply. magnetic field produced by electronically switched d.c. windings The part producing the travelling magnetic field is called armature (or forcer). For PM machines, the difficulty remains in the design of the PM of minimum volume and at the same time preventing demagnetisation of the PMs. In the following sections, the design of LPMSM has been presented ( [4] [8]). III. DESIGN AND ANALYSIS OF LPMSM A. Initial specification and selection of main dimensions The nominal specifications of the machine are given in Table.I. An efficiency of η = 0.85 and fundamental p.f. cosφ = 0.9 have been taken as targeted performance indices. This gives efficiency-power factor product (η.cosφ) as 0.765. The present prototype has been developed using the existing lamination of the already made developed LIM in our laboratory. This has an advantage of reduction of overall cost since the major cost involved is the cost of die and tooling of the machine. Synchronous speed v s 5 m/s Number of primary phases m 1 3 Operating line voltage V L 100 V Operating frequency f 50 Hz Number of poles P 4 Rated power P m 320 W Air-gap length g 2 mm TABLE I TARGETED SPECIFICATIONS OF THE LINEAR PMSM B. Initial calculation steps Following Table.I, one may find that the Pole pitch (τ) = 50 mm Transverse length of primary (L τ ) = 200 mm Volt-Ampere (VA) rating of the machine, V A = P m = 418.3V A 420V A η.cosφ No-load induced e.m.f. at rated speed as obtained when excited by PMs (without armature reaction) is, E f = 45V [4]. Rated primary current I 1 is given by (assuming Y - connection), I 1 = V A = 420 = 2.41A 3.VL 3.100 Therefore, VA transferred across air-gap (S elm ), is 325.86 VA. The pitch factor (k p1 ) is 1. Distribution factor (k d1 ) is given by, k d1 = sin[ /2.m 1 ] q s.sin[ /2.m 1.q s ] sin( /2. w c τ ) = 1 Winding factor (k w1 ) = k p1 X k d1 = 1 and flux per pole is found to be, Φ m = 0.8 mwb. After repeated iterations and considering appropriate design constraints, the following values are obtained shown in Table II. Designing the effective length of armature magnet (L i ) is a little involved as it considers :- 1) Designing of high density machine for reducing the cost of magnet. 2) Prevent demagnetisation of the magnets. 3) Cheap availability of magnets of standard size. After iterations, the value of L i is obtained as 36 mm and it matches well with our requirements. Design parameter Value Specific magnetic loading B av (T) 0.445 Magnitude of transverse line current, A my (Ac/m) 25862 B mz.a my product (TA/m) 18103 Output co-efficient, σ p (VAs/m 3 ) 9052 TABLE II OBTAINED VALUES OF B mz, A my, B mz.a my AND σp C. Determination of Magnet size Determination of PM size is most critical to the entire design exercise. Designing of permanent magnet involves considering the effect of demagnetisation ATs and availability of appropriate magnet. An optimum design will ensure reduced cost. However, at the same time for lagging load currents the PMs should not get demagnetised beyond the allowed limit. The magnet has been designed considering the average air-gap flux density, B av = 0.445 T. Applying Ampere s circuital law to the closed flux line in Fig.3, we have the total ampere-turns required in the magnetic circuit is nearly 1960 AT (considering B-H characteristics of NdFeB, N- 35 at temperature 100 0 C). Leakage and fringing flux are neglected [9]. So, magnet thickness is given by, l m = T otalat H m = 5.774mm 6mm

(a) Double layer winding arrangement Fig. 3. LPMSM magnetic circuit The dimensions of the procured magnetic tablet is 12mm X 12mm X 3mm, orientation is along thickness of 3mm. D. Selection of turn per phase The transverse current density, A my is 25862 A/m. We have, A my = 2 2m 1 I 1 N 1 (1) τp where, N 1 is number of primary turns/phase. Here, total number of slots (z 1 ) and slots per pole per phase (q s ) are 12 and 1 respectively. Solving (1), N 1 is nearly 254 which gives number of conductors/phase/slot (N sl ) as 127. Current density of primary conductors (J 1 ) is assumed as 6 A/mm 2, which gives diameter of the conductor (d) as 0.813 mm (corresponding to SWG 21). E. Estimation of Electrical Parameters TABLE III CALCULATED VALUES OF ELECTRICAL PARAMETERS OF LPMSM Electrical parameters (per phase) Values Length of mean turn (L mt ) 0.267 m Primary resistance (r 1 ) 3.52 Ω Slot leakage reactance (X 1l ) 2.13 Ω Overhang leakage reactance (X 1ov ) 1.20 Ω Differential leakage reactance (X 1d ) 11.48 Ω Armature reactance (X a ) 11.47 Ω Primary leakage reactance (X 1 ) (= X 1l + X 1ov + X 1d ) 14.81 Ω F. Winding arrangement Slot per pole per phase = 12 = 1. A double layer 4 3 full-pitched winding consideration is used. Coil span = No.ofslots No.ofpoles = 12 4 = 3. (b) Winding arrangement for the one phase of LPMSM. S A is the starting end and F A is the finishing end. Fig. 4. The double layer winding arrangement in the respective slots and the winding chart for one phase is shown in (Fig.4(a)) and (Fig.4(b)) respectively. G. Calculation and design validation using standard FEM packages The LPMSM is analysed using standard FEM package. The no-load induced e.m.f. at rated speed obtained when excited by PMs (without armature reaction) of the three respective phases is shown in Fig.5(a). The induced e.m.f. reads 50 V which is with corelation with the hand-calculated value of 46 V. The flux linkages of the three phases are shown in Fig.5(b). The relation between induced e.m.f. and flux linkage and of the same phase is shown in Fig.5(c). It is clearly seen that the induced e.m.f. is leading the flux linkage by 90 o. The magnetic field density and the flux lines at 1ms at a distance of 5mm from initial position is shown in Fig.6(a) and Fig.6(b) respectively. The magnetic field in the air gap has a maximum value of 0.8T which is in excellent corelation with the calculated value. The overall design data sheet of the above 320 W, 4 pole, 3-φ, rated speed of 5 m/s LPMSM is shown in Table.IV. H. Fabrication of LPMSM The designed LPMSM at the works of a local small machine manufacturer after procurement of imported PMs. Fig.7(a) and fig.7(b) shows armature stampings and SS-short primary of the LPMSM after winding arrangement. The procured magnet dimensions are shown in fig.7(c). The dimensions of the procured magnetic tablet is 12mm X 12mm X 3mm, orientation is along thickness of 3mm.

(a) Three phase no-load induced e.m.f. in the air-gap at rated speed of 5 m/s when excited by PMs (a) Magnetic field density in air-gap, core, back-iron along with magnet at Position = 5 mm, Time = 0.001 sec from initial position (b) Three phase flux linkage of the LPMSM at rated speed of 5 m/s (b) Flux lines in air-gap, core, back-iron along with magnet at Position = 5 mm, Time = 0.001 sec from initial position Fig. 6. TABLE IV DESIGN DATA OF THE FABRICATED LPMSM (c) Variation of flux linkage and induced voltage of Phase A Fig. 5. Fig.8(a) shows the diagram of the yoke. Here, all dimensions are measured in mm. A provision has been made for starting the motor as LIM first and then switching to LPMSM. Fig.8(b) shows the wooden base over which the back-iron, magnet and aluminium will be placed. IV. CONCLUSIONS In this paper design and fabrication of a 3-Φ, 4 pole, 320 W, 5 m/s surface mounted LPMSM has been done. For ease of fabrication and for cost reduction the design starts with the available stampings used previously for Design Data Value Number of coils 12 Number of turns per coil 65 Wire diameter 0.813 mm Tooth width 6.66 mm Slot width 10 mm Length of armature (or linor/forcer) 200 mm Material of armature laminated steel M-45 0.5 mm thick Air-gap 2 mm PM material NdFeB, B r = 1.21 T PM height 3 mm PM face area 144 mm 2 fabrication of LIM which prototype exists in the laboratory ( [6], [10]). The design has been optimised and verified with the help of standard FEM packages. The linor has been fabricated and winding has been completed. The yoke (track) is fabricated with NdFeB N-35 grade permanent magnets. The fabricated LPMSM may

(a) Armature stamping of the LPMSM (a) Design of track (yoke) of the LPMSM. All dimensions are in mm. (b) SS short primary of the LPMSM (b) Wooden base for the yoke with PMs, Al sheet and back iron Fig. 8. (c) Dimension of unit NdFeB N-35 grade procured PMs Fig. 7. be used various advanced control speed drive for fast dynamic response and maximum reliability. Predicted values obtained from conventional analytical calculations are validated through FEM packages at different conditions. The predicted values and the experimented values are found to be in excellent correlation with each other. V. ACKNOWLEDGMENTS The authors wish to thank COE (MDAMD), IIEST, Shibpur and TEQIP-II for their support. The authors acknowledge Mr.Kaushik Pyne and the entire staff of G.E. Motors for their technical support in fabricating the motor. The authors also acknowledge the support received from the colleagues in the Advanced Power Electronics Lab and particularly Mr. N. Dutta, Project Technical Assistant, APE Lab, Dept. of EE and the authorities of IIEST, Shibpur towards this work. R EFERENCES [1] N.Corsi, R.Coleman, and D.Piaget, Status and new development of Linear Drives and Subsystems, International Symposium of Linear drives for Industrial applications, vol. 6, 2007. [2] J. Gieras and M. Godkin, Status of permanent magnet linear motor in US, International Symposium of Linear drives for Industrial applications, vol. 3, 2001. [3] R. Hellinger and P. Mnich, Linear Motor-Powered Transportation: History, Present Status and Future Outlook, Proceedings of IEEE, vol. 97, pp. 1892 1900, Nov 2009. [4] J.F.Gieras and Z.J.Piech, Linear Syncronous Motor: Transportation and Automation System, p. 6, 2000. [5] J. Gieras, Linear Induction Drives, Clarendon Press, Oxford, 1994. [6] B. K. Mukherjee, Design, fabrication and testing of a LIM and simulation of its Robust control, ME Thesis, vol. Dept. of EE, B.E. College (D.U.), July 2004. [7] A.K.Sawhney, Electrical Machine Design, Dhanpat Rai and Co., 2006. [8] M. G. Say, Performance and design of alternating current machines, London,M/s.Pitman.1983., 1983.

[9] R.G.Powell, Electromagnetism, vol. Foundation of Engineering Series Editor. GE Drabble, Macmillan. [10] B. Mukherjee, M. Sengupta, and A. Sengupta, Design, Fabrication, Testing and Finite element analysis of a lab-scale LIM, IEEE Indicon, vol. IIT Kharagpur, pp. 586 589, 2004.