Review of Vector Algebra and Vector Calculus Operations

Similar documents
Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41.

Scalars and Vectors Scalar

UNIVERSITÀ DI PISA. Math thbackground

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it

COORDINATE SYSTEMS, COORDINATE TRANSFORMS, AND APPLICATIONS

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

Rigid Bodies: Equivalent Systems of Forces

Chapter IV Vector and Tensor Analysis IV.2 Vector and Tensor Analysis September 29,

Rotary motion

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

PHY126 Summer Session I, 2008

CSU ATS601 Fall Other reading: Vallis 2.1, 2.2; Marshall and Plumb Ch. 6; Holton Ch. 2; Schubert Ch r or v i = v r + r (3.

Set of square-integrable function 2 L : function space F

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o?

Chapter IV Vector and Tensor Analysis IV.2 Vector and Tensor Analysis September 23,

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Kinematics of Rigid Bodies in Three Dimensions. Seventh Edition CHAPTER

Capítulo. Three Dimensions

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Tensor. Syllabus: x x

One-dimensional kinematics

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

Dynamics of Rigid Bodies

1. Starting with the local version of the first law of thermodynamics q. derive the statement of the first law of thermodynamics for a control volume

Chapter Fifiteen. Surfaces Revisited

Stress, Cauchy s equation and the Navier-Stokes equations

(read nabla or del) is defined by, k. (9.7.1*)

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4

Chapter 23: Electric Potential

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS

Chapter 8. Linear Momentum, Impulse, and Collisions

iclicker Quiz a) True b) False Theoretical physics: the eternal quest for a missing minus sign and/or a factor of two. Which will be an issue today?

Chapter 3 Vector Integral Calculus

Physics 202, Lecture 2. Announcements

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

24-2: Electric Potential Energy. 24-1: What is physics

Physics 121: Electricity & Magnetism Lecture 1

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics

Vectors Serway and Jewett Chapter 3

Chapter 12 Equilibrium and Elasticity

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles

Part V: Velocity and Acceleration Analysis of Mechanisms

COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER /2017

VEKTORANALYS FLUX INTEGRAL LINE INTEGRAL. and. Kursvecka 2. Kapitel 4 5. Sidor 29 50

Physics 201 Lecture 4

Falls in the realm of a body force. Newton s law of gravitation is:

So far: simple (planar) geometries

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Physics Exam II Chapters 25-29

The Divergence Theorem

Fluid flow in curved geometries: Mathematical Modeling and Applications

7.2.1 Basic relations for Torsion of Circular Members

The Forming Theory and the NC Machining for The Rotary Burs with the Spectral Edge Distribution

Units, Physical Quantities and Vectors

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT

BASIC ALGEBRA OF VECTORS

10/15/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101

COMPLEMENTARY ENERGY METHOD FOR CURVED COMPOSITE BEAMS

PHY121 Formula Sheet

Static equilibrium requires a balance of forces and a balance of moments.

Rotating Disk Electrode -a hydrodynamic method

Energy in Closed Systems

A Tutorial on Multiple Integrals (for Natural Sciences / Computer Sciences Tripos Part IA Maths)

gravity r2,1 r2 r1 by m 2,1

3.1 Electrostatic Potential Energy and Potential Difference

Physics 201 Lecture 18

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. "Flux": = da i. "Force": = -Â g a ik k = X i. Â J i X i (7.

Multipole Radiation. March 17, 2014

UNIT10 PLANE OF REGRESSION

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk

LINEAR MOMENTUM. product of the mass m and the velocity v r of an object r r

A. Thicknesses and Densities

Physics 111 Lecture 11

Section 26 The Laws of Rotational Motion

Chapter 3 Waves in an Elastic Whole Space. Equation of Motion of a Solid

3D-Central Force Problems II

Electric field generated by an electric dipole

Math Notes on Kepler s first law 1. r(t) kp(t)

Physics 1: Mechanics

, the tangent line is an approximation of the curve (and easier to deal with than the curve).

Solving the Dirac Equation: Using Fourier Transform

Chapter 13 - Universal Gravitation

Complex atoms and the Periodic System of the elements

Spring 2002 Lecture #13

DonnishJournals

Vector Calculus Identities

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

1 Fundamental Solutions to the Wave Equation

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6

Potential Theory. Copyright 2004

Remember: When an object falls due to gravity its potential energy decreases.

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

PHYS 705: Classical Mechanics. Newtonian Mechanics

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1

Review for Midterm-1

MATH Homework #1 Solution - by Ben Ong

Welcome to Physics 272

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

PHYS 1444 Lecture #5

Transcription:

Revew of Vecto Algeba and Vecto Calculus Opeatons Tpes of vaables n Flud Mechancs Repesentaton of vectos Dffeent coodnate sstems Base vecto elatons Scala and vecto poducts Stess Newton s law of vscost Stess at a pont Stess epesentaton Foce on a suface Pessue and vscous components Eamples Vecto calculus Gadent opeato Gadents of scalas & vectos Dvegence of vecto and 2 nd ode tensos Othe vecto calculus opeatons

Impotant Vaable Tpes n Flud Mechancs Scalas A value (1 component); no decton Speed, vscost, pessue, othe Vectos Magntude and decton 3 component epesentaton Veloct, foce, momentum, toque, gavt, othe Second ode quanttes (tensos) 2 dectons, 9 components Stess, veloct gadents, ate of defomaton, othe

Geneal Repesentaton of a Vecto 3 v 3 Unt base vectos: v 1 3 2 1 v v 2 2,, v v v 1 2 3 v 1 1 1 v 2 2 2 v 3 3 3 1 vv + v + v 1 2 3 v v + v + v v v v 11 2 2 33 3 1 (mpled summaton conventon) Summaton conventon: Repeated ndces mpl summaton fom 1 to 3

Vecto Repesentaton n Rectangula Coodnates v k j,,,, 1 2 3,,, j, k 1 2 3 1, j 1, k 1 Othonomal base vectos Fo eample, the veloct vecto s gven b: 3 v v v v + v + v whee o 1 11 2 2 3 3 v v + v j+ v k v v(,,, t) v v (,,, t) v v (,,, t)

k Clndcal Coodnates Repesentaton e e,,,, 1 2 3,, e, e, k 1 2 3 e 1, e 1, k 1 Othonomal base vectos The veloct s then epesented b: v and 3 v v v e + v e + v 1 v v (,,, t) v v (,,, t) v v (,,, t) k

2D Clndcal Coodnates e j cos e e sn j cos e sn Relatons: e cos + sn j e sn + cos j cos e sn e j sn e + cos e

Sphecal Coodnates e,,,, φ 1 2 3,, e, e, e 1 2 3 Othonomal base vectos φ φ e e φ e e φ e In decton of coodnate n plane and pependcula to e In decton pependcula to e and e φ

Rectangula and Sphecal Base Vecto Relatons sn cosφ e + cos cosφ e sn φ e j sn snφ e + cos snφ e + cos φ e k cos e sn e e sn cosφ + sn snφ j + cos k e cos cosφ + cos snφ j sn k e snφ + cosφ j φ φ φ

Impotant Vecto Opeatons Scala Poduct (o Dot Poduct) a b a b cos a Note: 1, j j 1, k k 1 j j j k k j k k 0 ( ) Fnd n tems of components: ab ( a + a j+ ak) ( b+ b j+ bk) ab + ab + ab a a ( a a) [( a + a j+ a k) ( a + a j+ a k)] 1/2 1/2 ( a + a + a ) 2 2 2 1/2 a ( a + a j+ ak) a b a a + a j+ a k a

The Dot Poduct Geneal Catesan Coodnates But Then 3 3 ab a b j j 1 j 1 a b ab j j j j δ 1 f j j 0 f j j j 1 3 ab abδ ab ab ab + a b + ab j 1 1 2 2 3 3

Scala (Dot) Poduct (cont) Dot Poduct useful n man was, e.g., detemnng elatons between vecto components n dffeent coodnate sstems. In the eample below we detemne the component of the veloct n tems of the clndcal and components v v ( ve+ v e+ vk) v cos v sn e j e e cos + sn j e sn + cos j cos e sn e j sn e + cos e

Unt Nomal to a Suface 2D: n n + n j n n n cos, n j cos(90 ) sn n cos + sn j Eample of use: Detemnng flow ate acoss a suface j n [ ] ( ) ( ) ( cos sn) Q v n A v+ vj ( n+ nj) A v + v j (cos + sn j) A v + v A v A n

Dffeental Aea: Dffeental Aea Vecto da Dffeental Aea Vecto: dsd n n + n k sn + cos k da nda sn da + cos da k da sn dsd + cos dsd k d sn, cos ds d ds da dd + dd k da n n d ds d ds d 2D: da da + da k, da dd, da dd 3D: da da + da j+ da k, da dd, da dd, da dd

The Vecto Poduct (o Coss Poduct) Defnton a b a b sn e Hee e s a unt vecto pependcula to a and b and n the decton of a ght hand ule. Useful n detemnng moments, angula momentum Τ F and H m v What s ( j)? ( e )?

Local Inteactons and Stesses n Flow Felds V Smple Shea Flow: Fed Flud fcton between laes A aea between laes and to F Δv Δ ~ A o F A dv μ d o τ dv μ d Smple fom of Newton s Law of Vscost τ s the shea stess (fst nde- aea oentaton; second, decton of foce)

Inteactons n a Convegng Flow v v (, ), v v (, ) decton: Elements ae beng stetched: Elements ae beng sheaed: decton: Elements ae beng squeeed: Elements ae beng sheaed: τ?? τ Geneal 3 D Flow How man components?

Newton s Law of Vscost Movng Plate V B F A τ V μ B dv μ d Hgh μ : Thck flud (e.g., molasses) Low μ : Thn flud (e.g., a) Fo a geneal flow, we would have 9 stess components: τ, τ, τ, τ, τ, τ, τ, τ, τ

Stess at a Pont n a Flud n ΔA ΔF ΔF T lm n n ΔA 0 ΔA df da Two dectons: n (suface oentaton) ΔF (decton of foce actng on suface)

Calculaton of Foce on a Suface Fom T n df da F n o df n T da Suface Hee T can be dvded nto a pessue pat and a pat due to the defomaton of the flud,.e., T pnn+ τ o nt pn+ nτ Then F pnda+ da A n τ A If the flud s statc, o n non-defomng moton, then τ 0.

Rect. Cood: Repesentaton of the Stess τ τ τ + τ j + τ k + τ j + τ jj + τ jk+ τ k+ τ kj + τ kk Note: j j (ode counts) Cl. Cood: τ τ ee + τ ee + τ ek+ τ ee... + τ ke + τ kk How do we fnd τ fom τ, τ,... τ? τ e τ e Mess, but smple eecse (HW)...

Smple Eample: Calculaton of Foce on Suface Smple shea flow wth v V B Detemne F and F on bottom plate. Assume pessue on bottom plate to be p. At bottom plate: n j Then F ( pj) da+ ( j τ) da A 0 0 A 0 V B Fed dv V and F F ( jτ ) da τ 0 da μ da μ A 0 d B A A A 0 and F Fj p da p A A 0 0

Vecto Calculus Opeatons 1. The gadent opeato: 3 + j + k (ectangula cood.) 1 1 e + e + k (clndcal cood.) 2. Gadent of a scala funton: p p p p p + j + k Late n couse we shall use the Eule equaton of moton: v ρ + v v p + τ + ρg t What does v epesent? v v? τ?

3. Gadent of a vecto Vecto Calculus Opeatons (cont) v j v ( v j j) j? (9 components) 4. Dvegence of a vecto v v v v ( v j j) ( j) δj v v v + + j j 5. Dvegence of 2nd ode quantt ( τ) τ jk τ jk τ ( τ jk jk) ( j) k δjk τ τ k τ τ τ τ τ τ k + + + + + j+ τ τ τ + + + k

6. The tem v v Vecto Calculus Opeatons (cont) v v ( v) j ( vkk) vδj ( vkk) j j v v k v v v v v vj k v + v + v + v + v + v + j j + v v v + v + v v k