Courtesy of Marc De Graef. Used with permission.

Similar documents
3.012 PS 7 Thermo solutions Issued: Fall 2003 Graded problems due:


The Second Law of Thermodynamics (Chapter 4)

Electrochemical System

Electrochemistry objectives

Electron Transfer Reactions

We can see from the gas phase form of the equilibrium constant that pressure of species depend on pressure. For the general gas phase reaction,

Part One: Introduction. a. Chemical reactions produced by electric current. (electrolysis)

CHEM J-12 June 2013

Oxidation number. The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred.

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Oxidation and Reduction. Oxidation and Reduction


Thermodynamic condition for equilibrium between two phases a and b is G a = G b, so that during an equilibrium phase change, G ab = G a G b = 0.

Chemistry 2000 Lecture 15: Electrochemistry

Topic 19 Redox 19.1 Standard Electrode Potentials. IB Chemistry T09D04

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS

3. Potentials and thermodynamics

MS212 Thermodynamics of Materials ( 소재열역학의이해 ) Lecture Note: Chapter 7

Chapter 19: Electrochemistry

Chapter 8 Phase Diagram, Relative Stability of Solid, Liquid, and Gas

CHAPTER 4 Physical Transformations of Pure Substances.

Review: Balancing Redox Reactions. Review: Balancing Redox Reactions

Electrode Potentials and Their Measurement

Electrochemistry. The study of the interchange of chemical and electrical energy.

Electrochemistry 1 1

FUEL CELLS: INTRODUCTION

ln( P vap(s) / torr) = T / K ln( P vap(l) / torr) = T / K

Q1. Why does the conductivity of a solution decrease with dilution?

Thermodynamics Free E and Phase D. J.D. Price

CHEM J-14 June 2014

Chapter 17. Electrochemistry

Physics 360 Review 3

ΔG T,P = - w electrical. = - nfe joules

ELECTROCHEMISTRY OXIDATION-REDUCTION

Oxidation-Reduction (Redox)

CHAPTER 6 - Chemical Equilibrium. b. composition when equilibrium is reached.

We can use chemistry to generate electricity... this is termed a Voltaic (or sometimes) Galvanic Cell

Phase Equilibria in a One-Component System I

CHAPTER 17 ELECTROCHEMISTRY

17.1 Redox Chemistry Revisited

CHEM J-14 June 2014

Review. Chapter 17 Electrochemistry. Outline. Voltaic Cells. Electrochemistry. Mnemonic

Name (Print) Section # or TA. 1. You may use a crib sheet which you prepared in your own handwriting. This may be

Chapter Nineteen. Electrochemistry

i i ne. (1) i The potential difference, which is always defined to be the potential of the electrode minus the potential of the electrolyte, is ln( a

CHEM J-8 June /01(a)

Lecture 14. Thermodynamics of Galvanic (Voltaic) Cells.

Lecture 4-6 Equilibrium

Introduction to electrochemistry

Chapter 7 PHASE EQUILIBRIUM IN A ONE-COMPONENT SYSTEM

A + B C +D ΔG = ΔG + RTlnKp. Me n+ + ne - Me. Me n n

How to Assign Oxidation Numbers. Chapter 18. Principles of Reactivity: Electron Transfer Reactions. What is oxidation? What is reduction?

3.012 Quiz Fall points total (50 in thermo + 50 in bonding)

EMA4303/5305 Electrochemical Engineering Lecture 02 Equilibrium Electrochemistry

Chapter 19 ElectroChemistry

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc.

Chapter 20 Electrochemistry

Chemistry: The Central Science. Chapter 20: Electrochemistry

Ch 18 Electrochemistry OIL-RIG Reactions

AP CHEMISTRY NOTES 12-1 ELECTROCHEMISTRY: ELECTROCHEMICAL CELLS

Electrochemistry C020. Electrochemistry is the study of the interconversion of electrical and chemical energy

Chapter 17 Electrochemistry

Effect of adding an ideal inert gas, M

Chapter 18 problems (with solutions)

Phase Diagrams. NC State University

Liquids and Solids. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Dry Cell: a galvanic cell with the electrolyte contained in a paste thickened by starch. anode and an inert graphite cathode.

Lecture 11: Models of the chemical potential

Chemistry II Midterm Exam April 24, 2009

Solutions to Problem Set 9

concentrations (molarity) rate constant, (k), depends on size, speed, kind of molecule, temperature, etc.

Thermodynamic Variables and Relations

Chapter 11 Spontaneous Change and Equilibrium

Application of Thermodynamics in Phase Diagrams. Today s Topics

CHM 2046 Test #4 Review: Chapter 17 & Chapter 18

Chem 152 Final. You will have 1 hour and 50 minutes. Do not begin the exam until you are instructed to start. Best of luck.

CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials. Compiled by. Dr. A.O. Oladebeye

Electrochemistry. Outline

Electrochemistry. Galvanic Cell. Page 1. Applications of Redox

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics. Fall Semester Homework Problem Set Number 12 Solutions

Chapter 18. Electrochemistry

Lecture Phase transformations. Fys2160,

Electrochemical Cells

Ch 11 Practice Problems

The Chemical Potential

At this point, we've developed the tools and basic concepts necessary to apply

Thermodynamics. Thermodynamically favored reactions ( spontaneous ) Enthalpy Entropy Free energy

2013 AP CHEMISTRY FREE-RESPONSE QUESTIONS

CHEMISTRY 443, Fall, 2014 (14F) Section Number: 10 Examination 2, November 5, 2014

Fundamentals of Electrochemistry

dg = V dp - S dt (1.1) 2) There are two T ds equations that are useful in the analysis of thermodynamic systems. The first of these

Quantities and Variables in Thermodynamics. Alexander Miles

Class 12 Important Questions for Chemistry Electrochemistry

Chapter 18. Electrochemistry

What s free about Gibbs free energy?

Chapter 18 Electrochemistry. Electrochemical Cells

Types of Cells Chemical transformations to produce electricity- Galvanic cell or Voltaic cell (battery)

WEEK 6. Multiphase systems

Physical transformations of pure substances Boiling, freezing, and the conversion of graphite to diamond examples of phase transitions changes of

Transcription:

Courtesy of Marc De Graef. Used with permission.

3.01 PS 5 3.01 Issued: 10.31.04 Fall 005 Due: 10..04 1. Electrochemistry. a. What voltage is measured across the electrodes of a Zn/Cu Daniell galvanic cell once its electrochemical reaction comes to equilibrium? (Show why. The Nernst equation shows that the electrostatic potential on the battery derives from the free energy change occurring in the electrochemical reactions: " = $ "G rxn F At equilibrium, the free energy change is zero; thus, the potential drops to zero as the reactions reach completion. b. Engel and Reid, problem P11.13. o "G rxn = RT lnk E o = "G o rxn F o "G rxn = FE o = (96,485 C kj (0.19V = 36.7 mole mole K = e "G o rxn RT =.67 $10 6. Thermodynamics of a car battery. The standard lead-acid rechargeable battery used throughout the automotive industry is shown schematically below. It consists of a lead and lead oxide electrode immersed in aqueous sulfuric acid. The reactions at each electrode are: + Pb (s + H SO 4(aq " PbSO 4(s + H (aq + PbO (s + H SO 4(aq + H (aq The overall reaction for this galvanic cell is: + e + e " PbSO 4(s + H O (l PbO (s + Pb (s + H SO 4(aq " PbSO 4(s + H O (l 3.01 PS 5 1 of 10 11/11/05

Load e - e - + Pb H SO 4 PbO Anode Cathode Figure by MIT OCW. After Treptow, 00. a. Write an expression for the EMF of the lead acid battery as a function of physical constants, temperature, and the activities of components. The EMF is given by the Nernst equation: E = " G rxn F = " 1 $ F G o rxn + RT ln % a PbSO4 a H O ( l a PbO( s a Pb( s a H SO 4 (aq Taking the standard approximation for the activities of the solid electrodes, we have: E = " 1 $ F G o rxn + RT ln a H O ( l % a H SO 4 (aq ( = E o " RT F ln a H O( l ( a H SO 4 (aq b. The standard potential of the lead-acid battery E o =.09V at 98 K. If the activity coefficient of 0.1 M H SO 4 is 0.039 and the water present in the sulfuric acid solution can be assumed to have an activity ~1, determine the voltage expected across the terminals of a battery containing 0.1 M sulfuric acid as the liquid electrolyte. From the given information about the electrolyte, we can calculate the activity of the sulfuric acid: X = n H SO 4 (aq H SO 4 (aq n + n = H O H SO 4 (aq 0.1 " % ( 1L 1000cm3 " $ 1 g % $ mole =1.8 (10 3 " % L cm 3 $ + 0.1 18g a H SO 4 (aq = * H SO 4 (aq X H SO 4 (aq = (0.039(1.8 (103 = 5.9 (10 5 3.01 PS 5 of 10 11/11/05

E = E o " RT F ln a J (8.3144 H O( l =.09V " mole K (98K (1 a H SO 4 (aq (96,485 C ln mole 5.9 $10 "5 [ ] =1.84V 3. Stability of a closed system at constant temperature and pressure. a. Let s determine the shape of G (Gibbs free energy vs. P (pressure curves. What thermodynamic parameter(s are related to the slope of G vs. P? "G $ "P? From this relationship, what is have: From the algebraic definition of dg and the combined first/second law form of dg, we dg = "G $ "P dp + "G $ "T dg = VdP SdT +... dt +... The matching terms in front of the differential dp give us: "G $ "P = V Because volume is always a positive quantity, the slope of G vs. P is positive. b. Now, what about the curvature of G vs. P: What thermodynamic parameters are related to " G $ "P, and what can you say about the curvature of G vs. P, based on your knowledge of property requirements for stability? Draw a qualitative sketch of what G vs. P must look like using your information from (a and (b. " G $ "P = % "V $ "P ( = * T V where " T is the isothermal compressibility. Because " T is always positive for stability, the curvature of G vs. P is negative. Combining these two results, we have for G vs. P, qualitatively: 3.01 PS 5 3 of 10 11/11/05

c. What are the two inequalities that must be satisfied by the Gibbs free energy for a system to be at a stable equilibrium with respect to fluctuations in temperature (all other variables held constant or pressure (all other variables held constant? To guarantee stable equilibrium, we need: " G $ "T = "S $ "T = C P T * 0 We know from stability considerations for internal energy that heat capacities are positive, and temperature must be positive. Thus, the second derivative with respect to temperature must be negative. Note that this inequality can be predicted without relying on the prior proof of positive C p values by relating the stability requirements for internal energy to those of Gibbs free energy (using Legendre transformation relationships this is discussed in the reading from Callen. For fluctuations in pressure: " G $ "P = "V $ "P = * T V + 0 where the inequality is again set by the required positivity of compressibility (as we have already shown using internal energy considerations and volume, or alternatively, by relating the stability requirement for Gibbs free energy to the requirements on internal energy via Legendre transformation relations. You may be confused by the requirement that the curvature of the Gibbs free energy with respect to temperature is negative, given that we must minimize G for equilibrium. Recall that we minimize Gibbs free energy at constant temperature and pressure: thus, in calculations we are minimizing G with respect to other extensive parameters of the system (e.g., moles of a certain component in one phase or another. 3.01 PS 5 4 of 10 11/11/05

d. For the system to be stable against arbitrary simultaneous fluctuations in both temperature and pressure, what inequality must the second derivative of Gibbs free energy, d G satisfy? NOTE: Parts (d and (e were not graded for credit. We did not cover in lecture the subtlety in determining the sign of the inequality in this problem. However, here is the solution: We know that under conditions of constant temperature and pressure, the Gibbs free energy is minimized. Minimization would require: ( d G T,P " 0 Recall that when T and P are constant, the terms we would include in the inequality above would be partial derivatives with respect to extensive variables like the number of moles of a given component in a given phase i.e., we minimize the Gibbs free energy with respect to the distribution of chemical species among different phases present in the system. Now, considering the general case where fluctuations in temperature or pressure are allowed to occur, we have: d G = " G $ "T dt + " G $ "P dp + " G dtdp 0 $ "T"P assuming the simple case of a system where n is fixed (no partial derivatives with respect to n needed. This inequality arises because thermodynamic functions are always concave functions of their intensive variables, and convex functions (the first inequality above of the extensive variables. This is determined by the Legendre transformation used to change variables from (S,V,n in internal energy to (T, in Gibbs free energy. The mathematics of this transformation are discussed in the text by Callen. e. Write out the expression for d G and show that the stability requirement on d G is equivalent to the condensed expression: " G " G " G $ "T $ "P $ "T"P * 0 The stability requirement: 3.01 PS 5 5 of 10 11/11/05

d G = " G $ "T dt + " G $ "P dp + " G dtdp 0 $ "T"P Is algebraically identical to: 1 " G $ "T 0 " G 1 + * + $ "T 3 dt + " G, dp. $ "T"P -. + " G + * + $ "T " G $ "P / " G, 4. $ "T"P -. dp 5 6 7 0 Multiplying both sides of the inequality by " G $ "T simplifies this expression to: " G + * + $ "T dt + " G, dp. $ "T"P -. + " G + * + $ "T " G $ "P / " G,. $ "T"P -. dp 0 0 Note the change in direction of the inequality because we have multiplied both sides by a negative quantity. The first term in brackets in this expression is always positive because it is squared. Thus in order to satisfy the inequality, we need only: " G " G " G $ "T $ "P $ "T"P * 0 4. Understanding single-component phase diagrams. The phase diagram of carbon is shown below, along with some physical data for two different forms of carbon, diamond and graphite. Use this data to answer the questions below. a. The phase boundary between diamond and graphite at T = 98 K occurs at P = 14,300 atm. What is the free energy change to transform 1 mole of graphite to diamond at this temperature and pressure? At the phase boundary, diamond and graphite are in equilibrium: "G graphite diamond = G diamond $ G graphite = 0 %G diamond = G graphite 3.01 PS 5 6 of 10 11/11/05

"G $ "G b. Recall that = V, and thus = V for a process where volume $ "P % "P ( change occurs. Calculate the free energy change to transform 1 mole of graphite to diamond at 98 K, assuming the volume change in transforming from graphite to diamond is approximately independent of pressure at this temperature. The difference in molar volumes of graphite and diamond at 98 K and 1 atm is related to the change in free energy with pressure: $ % $ % "G "P ( = V "G graphite *diamond "P ( = V = V diamond +V graphite We can calculate ΔV from the given density data: " cm 3 %" V diamond = $ 1g % $ = 3.41 cm3 3.515g mole mole " V graphite = cm 3 %" $ 1g % $ = 5.41 cm3.g mole mole V diamond (V graphite = (1.99 cm 3 If ΔV is approximately independent of pressure, then we can rearrange this expression and integrate: % "G graphite $diamond "P ( * = V dg graphite $diamond = VdP + dg graphite $diamond = V 14,300atm + dp 1atm G graphite $diamond (T = 98K,P =14,300atm, G graphite $diamond (T = 98K,P =1atm = V (14,300atm,1atm mole 0, G graphite $diamond (T = 98K,P =1atm = V (14,300atm,1atm We set the free energy change for the transformation at 98K P = 14,300 atm to zero because this (T, P lies on the diamond/graphite phase boundary, indicating that the two phases are in equilibrium under these conditions. Finally: $ "G graphite diamond (T = 98K,P =1atm = (1.99 cm 3 mole $ L (14,99atm % 1000cm 3 ( % 8.3144 J mole * K 0.08057 L * atm mole * K ( =,883 J mole 3.01 PS 5 7 of 10 11/11/05

As expected, because the transformation of graphite to diamond is not stable at 1 atm 98 K, the free energy change is positive. c. Using the information provided in the phase diagram, draw a qualitatively correct diagram G vs. T of the molar free energies of all relevant phases of carbon at a fixed pressure of 1x10 5 atm over the temperature range 1000-5000 K. We approximately determine the positions of the coexistence curves where phase transitions occur: 10 3 Solid III Liquid 10 Diamond c b pressure, atm 10 1 Graphite 10-1 a Vapor 10-0 1000 000 3000 4000 5000 Temperature, K Figure by MIT OCW. Then the free energy vs. T diagram is, qualitatively: 3.01 PS 5 8 of 10 11/11/05

The slopes must increase in the order of diamond < graphite < liquid, in keeping with the steadily increasing entropy of higher-temperature phases. d. Does liquid carbon have a greater molar volume than graphite at the melting point of graphite at 1 atm pressure? Does liquid carbon have a greater molar volume than graphite at the melting point of graphite at 100 atm? Show why. As discussed in lecture, the difference in molar volumes between two phases determines the sign on the slope of coexistence curves on P vs. T phase diagrams for single component materials, via the Clausius-Clapeyron equation: dp dt coexistence= "S trans "V trans because the sign on the entropy change at any phase transition moving from the low temperature phase to the high temperature phase is positive. Looking at the phase diagram, the slope dp/dt at P =1 atm is positive for the graphite/liquid phase transition, while at P = 100 atm, the slope is negative. Thus, the molar volume of liquid carbon is greater than graphite at 1 atm, but less than graphite at the higher pressure. (Gaskell 3.01 PS 5 9 of 10 11/11/05

" graphite (98K =. g cm 3 " diamond (98K = 3.515 g cm 3 Modified from Gaskell, Introduction to Metallurgical Thermodynamics (Hemisphere, New York, 1981 Ch. 7 p. 185 3.01 PS 5 10 of 10 11/11/05