Astronomy. Optics and Telescopes

Similar documents
What are the most important properties of a telescope? Chapter 6 Telescopes: Portals of Discovery. What are the two basic designs of telescopes?

Optics and Telescope. Chapter Six

Why Use a Telescope?

Telescopes. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. Key Ideas:

Astronomical Tools. Optics Telescope Design Optical Telescopes Radio Telescopes Infrared Telescopes X Ray Telescopes Gamma Ray Telescopes

Optics and Telescopes

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes

Collecting Light. In a dark-adapted eye, the iris is fully open and the pupil has a diameter of about 7 mm. pupil

Chapter 6 Lecture. The Cosmic Perspective Seventh Edition. Telescopes Portals of Discovery Pearson Education, Inc.

Chapter 6 Lecture. The Cosmic Perspective. Telescopes Portals of Discovery Pearson Education, Inc.

Refraction is the bending of light when it passes from one substance into another. Your eye uses refraction to focus light.

Chapter 6 Light and Telescopes

Universe. Chapter 6. Optics and Telescopes 11/16/2014. By reading this chapter, you will learn. Tenth Edition

Chapter 6 Telescopes: Portals of Discovery

Universe. Chapter 6. Optics and Telescopes 8/12/2015. By reading this chapter, you will learn. Tenth Edition

Chapter 6 Telescopes: Portals of Discovery. Agenda. How does your eye form an image? Refraction. Example: Refraction at Sunset

Telescopes. Astronomy 320 Wednesday, February 14, 2018

How Light Beams Behave. Light and Telescopes Guiding Questions. Telescopes A refracting telescope uses a lens to concentrate incoming light at a focus

AST 101 Intro to Astronomy: Stars & Galaxies

Telescopes: Portals of Discovery Pearson Education, Inc.

Telescopes. Optical Telescope Design. Reflecting Telescope

7. Telescopes: Portals of Discovery Pearson Education Inc., publishing as Addison Wesley

Final Announcements. Lecture25 Telescopes. The Bending of Light. Parts of the Human Eye. Reading: Chapter 7. Turn in the homework#6 NOW.

ASTR 2310: Chapter 6

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Telescopes. Optical Telescope Design. Reflecting Telescope

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5

Telescopes, Observatories, Data Collection

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

III. ASTRONOMY TOOLS:

ASTR 1120 General Astronomy: Stars & Galaxies

Astronomy 1 Fall 2016

Agenda Announce: Visions of Science Visions of Science Winner

Light and Telescopes

1. Using, scientists can use a few smaller telescopes to take images with the. 2. To double the resolving power of a telescope, you must.

On to Telescopes. Imaging with our Eyes. Telescopes and cameras work much like our eyes. ASTR 1120 General Astronomy: Stars & Galaxies !

Ground- and Space-Based Telescopes. Dr. Vithal Tilvi

Optical Telescopes. Telescopes. Refracting/Reflecting Telescopes. Physics 113 Goderya

Assignments. For Mon. 1 st Midterm is Friday, Oct. 12. Read Ch. 6 Optionally do MT1-sample-problems

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Astro 1010 Planetary Astronomy Sample Questions for Exam 3

Telescopes: Portals of Discovery

Chapter 5 Light: The Cosmic Messenger. Copyright 2012 Pearson Education, Inc.

Summary. Week 7: 10/5 & 10/ Learning from Light. What are the three basic types of spectra? Three Types of Spectra

Measuring Light waves

Chapter 5 Telescopes

Universe Now. 2. Astronomical observations

Coursework Booklet 2

Telescopes. Telescopes Key Concepts. glass

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation.

A Question. Simple Magnifier. Magnification by a Lens 11/29/2011. The last lecture

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Properties of Thermal Radiation

Chapter 23. Light, Astronomical Observations, and the Sun

More Optical Telescopes

How do they work? Chapter 5

Optical Instruments. Chapter 25. Simple Magnifier. Clicker 1. The Size of a Magnified Image. Angular Magnification 4/12/2011

Telescopes. Lecture 7 2/7/2018

Earth s Atmosphere & Telescopes. Atmospheric Effects

Tools of Astronomy: Telescopes

Todays Topics 3/19/2018. Light and Telescope. PHYS 1403 Introduction to Astronomy. CCD Camera Makes Digital Images. Astronomical Detectors

Chapter 3 Telescopes The tools of Astronomy

9/19/ Basic Properties of Light and Matter. Chapter 5: Light: The Cosmic Messenger. What is light? Lecture Outline

PhysicsAndMathsTutor.com 1

The well-composed image was recorded over a period of nearly 2 hours as a series of 30 second long, consecutive exposures on the night of October 5.

Parallel Rays From Distant Objects. 6. Optics and Telescopes. Refraction & Reflection

Topics for Today. Clicker Q: Radio Waves. Radios. Discussion of how do ROTATING STARS yield Doppler-broadened spectral emission lines

It will cover material up to, but not including, Will consist of a few short-answers, 1-2 short essay, and a few problems + extra credit.

Astr 2310 Thurs. March 3, 2016 Today s Topics

PHYS 160 Astronomy Test #2 Fall 2017 Version A

Chapter 5. Telescopes. Dr. Tariq Al-Abdullah

Optical Telescopes. Not *INVENTED* by Galileo, but he was the first to point it at the sky in 1609.

The Main Point. Familiar Optics. Some Basics. Lecture #8: Astronomical Instruments. Astronomical Instruments:

Light Pollution. Atmospheric Seeing. Seeing Through the Atmosphere. Atmospheric Absorption of Light

Fig. 2 The image will be in focus everywhere. It's size changes based on the position of the focal plane.

Talk about. Optical Telescopes and Instrumentation. by Christian Clemens

Lecture Fall, 2005 Astronomy 110 1

Learning aim B: Astronomical measurements and observations

Chapter 5: Telescopes

Astronomy 1504/15014 Section 20

Chapter 3 Telescopes 2/19/2014. Lecture Outline. 3.1 Optical Telescopes. 3.1 Optical Telescopes. Units of Chapter Optical Telescopes

ASTR-1010: Astronomy I Course Notes Section VI

Chapter 3 Telescopes The tools of Astronomy

Lecture Outlines. Chapter 5. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

What do we do with the image?

Light and Telescope 10/24/2018. PHYS 1403 Introduction to Astronomy. Reminder/Announcement. Chapter Outline. Chapter Outline (continued)

Telescopes (Chapter 6)

Observational Astronomy - Lecture 3 Telescopes and the Electromagnetic Spectrum

Review. PHYS 162 Lecture 5a 1

Earth based radio telescopes

How does your eye form an Refraction

ABOUT SPOTTINGSCOPES Background on Telescopes

Focus Question: How do astronomers study light?

Astro 1050 Wed. Feb. 18, 2015

4. Our eyes can only see a small band of the entire spectrum of light. A) True B) False

Telescopes and estimating the distances to astronomical objects

Discussion Review Test #2. Units 12-19: (1) (2) (3) (4) (5) (6)

Telescopes... Light Buckets

Lecture Outline: Chapter 5: Telescopes

Astronomy is remote sensing

Transcription:

Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Optics and Telescopes - Refraction, lenses and refracting telescopes - Mirrors and reflecting telescopes - Diffraction limit, telescope size and atmospheric distortion - CCDs - Telescopes and spectra - Telescopes from radio waves to gamma rays - Space telescopes http:// physics.wm.edu/~hancock/171/ Page 1

Refraction of Light In vacuum, the speed of light is c = 3 x 108 m/s. When light travels through a transparent medium, the speed is no long c but some other smaller speed, v. This speed depends on the material. The ratio of the these speeds is called the index of refraction, n. (When it reflects, the light comes off at the same angle on the opposite side.) When light passes from a medium with an index of refraction, n1 to a second medium with an index of refraction of index, n2, the direction of the light is changed. 2

Lenses On a flat glass plate parallel light 'ray's will refract going in and coming out and emerge parallel to the original direction. If you curve the both sides of the glass, the light will bend so that it all passes through one point called the focal point. The distance from the lens to the focal point is called the focal 3 length.

A Lens: converts angle of light to position on the focal plane All the light from a particular direction hits at single point in the focal plane 4

A Lens Creates an extended image Light from an extended object is focused with a lens, the image at the focal plane is also extended. The shape of the original object is preserved. 5

Two Lenses make a Refracting Telescope Like Galileo's telescope, when you use two lenses (the objective lenses and an eyepiece), you see an enlarged image. The distance between the two lenses is the sum of the focal lengths. The magnification is given by: f objective 6 magnification= f eyepiece

Light Gathering power As important as the magnification is the light gathering power of a telescope. The light gathering power is proportional to the area of the objection lens or the square of the lens diameter. More light into the telescope means more detailed images. 7

The Largest Refracting Telescope Chicago Yerkes Refracting Telescope 1 meter diameter lens Construction finished on the observatory and telescope in 1897 The telescope is 19.5 meters (63.5 ft) long. 8

Disadvantages of Refracting Telescopes Lenses have disadvantages in large telescopes! > Large lenses are extremely expensive to fabricate > A large lens will sag in the center since it can only be supported on the edges (light has to get through the lens) > Many lens materials absorb short-wavelength light > Chromic aberration = colored fringes to images This is just the prism effect 9

Chromic aberration = different color at different places (think prism s effect) Happens for lens but not for mirrors 10

Reflecting Telescopes use Curved Mirrors Text A concave, parabolic mirror reflects incoming parallel light rays back to a focal point with a focal length much like a lenses but without the chromic aberrations of a lens. 11

Spherical vs Parabolic Mirrors Large mirrors can be made with a spherical or parabolic curvature. Light hitting a spherical shaped mirror surface do not all come to the same focal point. (For observing distant point like objects such as stars this is not a major problem.) Parabolic shaped mirror surfaces do have a single focal point for all incoming parallel rays. 12

Newtonian Reflector Invented by Issac Newton, the Newtonian reflector uses an objective mirror and a flat secondary mirror. The sum of the focal lengths of the objective mirror and eyepiece lens are folded to the side to make the telescope more compact. Compare with the Yerkes telescope. 13

Other Reflecting Telescope designs Other types of reflecting telescope designs include the 'prime focus' where the observer or instruments are located inside the telescope tube, the Cassegrain with a hole in the objective mirror and the Coude with a focal point outside of the tube. The Cassegrain is particularly compact and easy to focus. There is some small reduction of light gathering power because of the secondary 14 mirror.

Large Mirrors are Spin Cast 15

Large Mirrors This mirror for the European Southern Observatory in Chile is 8.1 meters and is polished to a precision of 8.5 nm! 16

A mirror for the Large Synoptic Survey 8.4m diameter Polished to within 1x10-7m (100nm) 17

8m mirror one of two Gemini telescopes Mt Mauna Kea, HI Page 18

Angular Size We frequently talk about the size of objects in the sky by referring to the angle they subtend This measurement will depend on the actual size of the object and the distance to the object Page 19

Angular Size (A), Distance (D) & Linear Size (L) To see this, we can use the geometry of circles Page 20

Aperture limit size is roughly the wavelength wavelength aperture If the aperture is too small the waves spread out on the other side Page 21

Example of aperture limit with light Page 22

Diffraction Diffraction limits the ability of any telescope to resolve two closely Text objects. This angular size spaced limits for resolving two objects is given by: λ θ=2.5 x 10 D 5 where θ is the diffraction limit in arc seconds λ is the wavelength of the light in meters D is the diameter of the telescope 23 in meters

Atmospheric distortion Turbulence in the atmosphere limits a telescopes imaging. Getting above the atmosphere is Hawaii (4100m) and Chile 24 helps improve the viewing conditions.

Active and Adaptive Optics Active optics are adjustments made to the telescope due to temperature changes or the slight sagging of the mirror because of gravity. Active optics slowly (seconds or minutes) adjust the mirror shape. 25

Adaptive Optics Adaptive optics use high speed actuators (10 100 times per second) to change the shape of a secondary mirror to improve the image. This can remove the twinkling due to the atmosphere and other sources of distortion. This requires a calibration target in the field of view. It can be a bright star. It can also be an artificial 'guide star' which uses a laser to excite certain atoms high in the atmosphere (90 km). 26

Interferometry beating the diffraction limit 27

Interferometers It is like having parts of a much larger lens Gets around the aperture limit by making a giant composite lens > The aperture is now the span of the lenses (D) > The light collection power is the combined area of these individual lenses > It requires very carefully combining the signals from different telescopes D Page 28

Large binocular telescope 8.4 m mirrors Produces images with a resolution of a 23 m telescope Page 29

Future Telescopes Page 30

Light Pollution Light pollution is a major problem for astronomy. Light from cities can interfere with telescope observation. The Page 31 US as seen from space gives you an idea of the problem.

Charge Coupled Device (CCD) A CCD is a solid state electronic imaging chip. CCD contain millions of pixels. Many CCDs may be used in the focal plane of a large telescope. The main advantage of a CCD is the 'quantum efficiency'. If a photon hits your retina (or photographic film), only about 1 in four (25%) will be detected by the retina. CCD will recorded 95-100% of the photons that strike a pixel. A CCD can be read out into a computer for storage and later analysis. 32

The Large Synoptic Survey Telescope The large synoptic survey telescope is currently being constructed in Chile. 'First light' is expected in 2019.The telescope is funded by the NSF. The telescope mirror will be 8.4 m. The camera will be 3.2 gigapixel camera. The telescope will be able to record the entire sky each night 33

Spectroscopy Using a spectrometer, the spectral lines of elements can be observed. Using this method, the composition of a planet's atmosphere, a star or a gas cloud can be determined. A 34 diffration grating is used because of better transmission than a prism.

Spectroscopy A diffraction grating spreads the light into a spectrum without transmission losses and nonlinear dispersion. The absorption lines from an astronomical object (planet, star or gas cloud) can be compared with the emission spectrum of an element in the laboratory. 35

Telescopes that use EM waves Telescopes that use electromagnetic waves other than visible light started with radio waves in the 1930s. Radio telescopes use a parabolic dish antenna much like the mirrors for visible light but are much larger. Because the wavelength of radio waves are much longer than visible light, the surface of the antenna does not have to be as accurate as for a visible light telescope. Many astronomical objects like the36 Milky Way emit radio waves.

Radio Telescopes A disadvantage to radio telescopes is the wavelength of the radio waves. Their resolution is limited by the diffraction limit. To overcome this problem, interferometry is used. The Very Large Array in New Mexico uses this idea to achieve good resolution of radio sources. In fact, it is common practice to use radio telescopes that are on different continents. This gives an effective size to the combined information like a radio telescope with a diameter of thousands of miles. 37

Radio Waves from a Planet These images show Saturn with its famous rings in visible wavelengths (a) and in radio waves (b). The radio wave image was made with the VLA at λ= 2 cm 38

Telescopes in Space You can see from the chart why visible light and radio telescope are ground based. But that are many parts of the electromagnetic spectrum which can not be seen through the atmosphere. Infrared, ultraviolet, x-rays and gamma rays do no penetrate the Earth's atmosphere. To see the universe at these wavelength's, you have to go above the atmosphere. 39

The sun in different wavelengths from Solar Dynamics Observatory Red = 30 nm Magenta = 170 nm Gold = 17 nm Orange = visible 40

In the Infrared Wavelengths The replacement for the Hubble is the James Webb telescope which will observe in the infrared spectrum. It is scheduled to be placed in space in 2018. It will be placed 1.5 million km from Earth directly opposite the Sun.

The Chandra X-ray observatory and the XMMNewton observe the sky in the x-ray portion of the spectrum.

In γ-ray Wavelengths The Fermi Gamma ray space telescope looks at the universe in high energy gamma rays

The sky in different Wavelengths