MODELLING AND EXPERIMENTAL INVESTIGATION ON PERFORATED PLATE MOBILITY CHEAH YEE MUN UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Similar documents
EFFECT OF NOZZLE ANGLE ON JET IMPINGEMENT COOLING SYSTEM KHAIDER BIN ABU BAKAR

EXPERIMENTAL STUDY ON THE NOISE REDUCTION OF HYDRAULIC BENCH MUHAMMAD SAUFI BIN ABDUL

ANOLYTE SOLUTION GENERATED FROM ELECTROCHEMICAL ACTIVATION PROCESS FOR THE TREATMENT OF PHENOL

THE DEVELOPMENT OF PORTABLE SENSOR TO DETERMINE THE FRESHNESS AND QUALITY OF FRUITS USING CAPACITIVE TECHNIQUE LAI KAI LING

OPTIMIZATION OF CHROMIUM, NICKEL AND VANADIUM ANALYSIS IN CRUDE OIL USING GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY NURUL HANIS KAMARUDIN

A COMPARISO OF MODAL FLEXIBILITY METHOD A D MODAL CURVATURE METHOD I STRUCTURAL DAMAGE DETECTIO OOR SABRI A ZAHARUDI

ULTIMATE STRENGTH ANALYSIS OF SHIPS PLATE DUE TO CORROSION ZULFAQIH BIN LAZIM

MULTISTAGE ARTIFICIAL NEURAL NETWORK IN STRUCTURAL DAMAGE DETECTION GOH LYN DEE

A COMPUTATIONAL FLUID DYNAMIC FRAMEWORK FOR MODELING AND SIMULATION OF PROTON EXCHANGE MEMBRANE FUEL CELL HAMID KAZEMI ESFEH

SYSTEM IDENTIFICATION MODEL AND PREDICTIVE FUNCTIONAL CONTROL OF AN ELECTRO-HYDRAULIC ACTUATOR SYSTEM NOOR HANIS IZZUDDIN BIN MAT LAZIM

CORRELATION STUDY OF THE STRAIN AND VIBRATION SIGNALS OF A BEAM HAMIZATUN BINTI MOHD FAZI

DYNAMIC SIMULATION OF COLUMNS CONSIDERING GEOMETRIC NONLINEARITY MOSTAFA MIRSHEKARI

ALTERNATIVE STRIP METHOD FOR A LATERALLY DRIFTING SHIP IN WAVES MUHAMAD BIN RAMLI

EFFECT OF SOIL TYPE ON SEISMIC PERFROMANCE OF REINFORCED CONCRETE SCHOOL BUILDING

DESIGN OPTIMIZATION FOR THE ACTIVE BUMPER SYSTEM TEST RIG MUHAMMAD SYUKRI B. ISMAIL UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MATERIAL SELECTION IN MECHANICAL DESIGN OF CAR BUMPER NURUL AZWAN BIN ADNAN BACHELOR OF ENGINEERING UNIVERSITI MALAYSIA PAHANG

DETECTION OF STRUCTURAL DEFORMATION FROM 3D POINT CLOUDS JONATHAN NYOKA CHIVATSI UNIVERSITI TEKNOLOGI MALAYSIA

MODELING AND SIMULATION OF BILAYER GRAPHENE NANORIBBON FIELD EFFECT TRANSISTOR SEYED MAHDI MOUSAVI UNIVERSITI TEKNOLOGI MALAYSIA

THE EFFECT OF PLATE GEOMETRY ON FLOW AND HEAT TRANSFER ACROSS A PARALLEL PLATE HEAT EXCHANGER

MATHEMATICAL MODELLING OF UNSTEADY BIOMAGNETIC FLUID FLOW AND HEAT TRANSFER WITH GRAVITATIONAL ACCELERATION

HYDROGEN RECOVERY FROM THE REFORMING GAS USING COMMERCIAL ACTIVATED CARBON MEHDI RAHMANIAN

FINITE ELEMENT METHOD FOR TWO-DIMENSIONAL ELASTICITY PROBLEM HANIMAH OTHMAN

A LOW NOISE DUCT VENTILATION USING C-TRANSITION CURVE DESIGN OR KHAI HEE

EFFECTS OF SURFACE ROUGHNESS USING DIFFERENT ELECTRODES ON ELECTRICAL DISCHARGE MACHINING (EDM) MOHD ABD LATIF BIN ABD GHANI

MODELLING AND ANALYSIS OF SOCCER HEADING AND PROTECTIVE HEADGEAR TO UNDERSTAND AND PREVENT MILD TRAUMATIC BRAIN INJURY

RAINFALL SERIES LIM TOU HIN

EMPIRICAL STRENQTH ENVELOPE FOR SHALE NUR 'AIN BINTI MAT YUSOF

An Analytical Study of the Weak Radiating Cell as a Passive Low Frequency Noise Control Device

POSITION CONTROL USING FUZZY-BASED CONTROLLER FOR PNEUMATIC-SERVO CYLINDER IN BALL AND BEAM APPLICATION MUHAMMAD ASYRAF BIN AZMAN

UNIVERSITI PUTRA MALAYSIA

UNCERTAINTY ANALYSIS OF TWO-SHAFT GAS TURBINE PARAMETER OF ARTIFICIAL NEURAL NETWORK (ANN) APPROXIMATED FUNCTION USING SEQUENTIAL PERTURBATION METHOD

NUMERICAL INVESTIGATION OF TURBULENT NANOFLUID FLOW EFFECT ON ENHANCING HEAT TRANSFER IN STRAIGHT CHANNELS DHAFIR GIYATH JEHAD

MONTE CARLO SIMULATION OF NEUTRON RADIOGRAPHY 2 (NUR-2) SYSTEM AT TRIGA MARK II RESEARCH REACTOR OF MALAYSIAN NUCLEAR AGENCY

MATHEMATICAL MODELING FOR TSUNAMI WAVES USING LATTICE BOLTZMANN METHOD SARA ZERGANI. UNIVERSITI TEKNOLOGI MALAYSIAi

SOLAR RADIATION EQUATION OF TIME PUNITHA A/P MARIMUTHOO

EFFECTS OF Ni 3 Ti (DO 24 ) PRECIPITATES AND COMPOSITION ON Ni-BASED SUPERALLOYS USING MOLECULAR DYNAMICS METHOD

SHAPE-BASED TWO DIMENSIONAL DESCRIPTOR FOR SEARCHING MOLECULAR DATABASE

OPTICAL TWEEZER INDUCED BY MICRORING RESONATOR MUHAMMAD SAFWAN BIN ABD AZIZ

ADSORPTION OF ARSENATE BY HEXADECYLPYRIDINIUM BROMIDE MODIFIED NATURAL ZEOLITE MOHD AMMARUL AFFIQ BIN MD BUANG UNIVERSITI TEKNOLOGI MALAYSIA

WELLBORE PRESSURE PREDICTION AFTER PIPE CONNECTION OPERATION IN UNDERBALANCED DRILLING REZA CHERAGHI KOOTIANI

STABILITY OF TRIAXIAL WEAVE FABRIC COMPOSITES EMPLOYING FINITE ELEMENT MODEL WITH HOMOGENIZED CONSTITUTIVE RELATION NORHIDAYAH RASIN

MECHANICAL PROPERTIES OF CALCIUM CARBONATE AND COCONUT SHELL FILLED POLYPROPYLENE COMPOSITES MEHDI HEIDARI UNIVERSITI TEKNOLOGI MALAYSIA

STABILITY AND SIMULATION OF A STANDING WAVE IN POROUS MEDIA LAU SIEW CHING UNIVERSTI TEKNOLOGI MALAYSIA

EVALUATION OF DYNAMIC CHARACTERISTICS ON PRT AND THERMOCOUPLE SENSORS IN AN AUTOMATED TEMPERATURE CALIBRATION SYSTEM

DEVELOPMENT OF PROCESS-BASED ENTROPY MEASUREMENT FRAMEWORK FOR ORGANIZATIONS MAHMOOD OLYAIY

A STUDY ON THE CHARACTERISTICS OF RAINFALL DATA AND ITS PARAMETER ESTIMATES JAYANTI A/P ARUMUGAM UNIVERSITI TEKNOLOGI MALAYSIA

A STUDY OF DYNAMIC CHARATERISTICS FOR CRACK IDENTIFICATION MOHD SHAFIQ AZRUL BIN AZMI

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction

MEASUREMENT AND VALIDATION OF FLUID STRUCTURE INTERFACE MOHAMAD NORFAIZA ANUAR BIN MAHMOOD MA09049 SUPERVISOR: MRS MIMINORAZEAN SUHAILA BT LOMAN

ARTIFICIAL NEURAL NETWORK AND KALMAN FILTER APPROACHES BASED ON ARIMA FOR DAILY WIND SPEED FORECASTING OSAMAH BASHEER SHUKUR

MODELING AND CONTROL OF A CLASS OF AERIAL ROBOTIC SYSTEMS TAN ENG TECK UNIVERSITI TEKNOLOGY MALAYSIA

UTILIZING CLASSICAL SCALING FOR FAULT IDENTIFICATION BASED ON CONTINUOUS-BASED PROCESS MIRA SYAHIRAH BT ABD WAHIT

LEAK DETECTION IN PIPELINES USING WAVELET AND CEPSTRUM ANALYSIS ABDUL KADIR BIN SAMTA

Experimental Modal Analysis of a Flat Plate Subjected To Vibration

INFLUENCES OF GROUNDWATER, RAINFALL, AND TIDES ON BEACH PROFILES CHANGES AT DESARU BEACH FARIZUL NIZAM BIN ABDULLAH

INDIRECT TENSION TEST OF HOT MIX ASPHALT AS RELATED TO TEMPERATURE CHANGES AND BINDER TYPES AKRIMA BINTI ABU BAKAR

A GENERALIZED POWER-LAW MODEL OF BLOOD FLOW THROUGH TAPERED ARTERIES WITH AN OVERLAPPING STENOSIS HUDA SALMI BINTI AHMAD

THE DESIGN OF AN ADAPTIVE TUNED VIBRATION ABSORBER AINATUL MARDIAH IBRAHIM

CHARACTERISTICS OF SOLITARY WAVE IN FIBER BRAGG GRATING MARDIANA SHAHADATUL AINI BINTI ZAINUDIN UNIVERSITI TEKNOLOGI MALAYSIA

ONLINE LOCATION DETERMINATION OF SWITCHED CAPACITOR BANK IN DISTRIBUTION SYSTEM AHMED JAMAL NOORI AL-ANI

NUMERICAL SIMULATIONS ON THE EFFECTS OF USING VENTILATION FAN ON CONDITIONS OF AIR INSIDE A CAR PASSENGER COMPARTMENT INTAN SABARIAH BINTI SABRI

DEVELOPMENT OF GEODETIC DEFORMATION ANALYSIS SOFTWARE BASED ON ITERATIVE WEIGHTED SIMILARITY TRANSFORMATION TECHNIQUE ABDALLATEF A. M.

WIND TUNNEL TEST TO INVESTIGATE TRANSITION TO TURBULENCE ON WIND TURBINE AIRFOIL MAHDI HOZHABRI NAMIN UNIVERSITI TEKNOLOGI MALAYSIA

PRODUCTION OF POLYHYDROXYALKANATE (PHA) FROM WASTE COOKING OIL USING PSEUDOMONAS OLEOVORANS FARZANEH SABBAGH MOJAVERYAZDI

ROOFTOP MAPPING AND INFORMATION SYSTEM FOR RAINWATER HARVESTING SURAYA BINTI SAMSUDIN UNIVERSITI TEKNOLOGI MALAYSIA

COMPUTATIONAL ANALYSIS OF HEAT TRANSFER RATE USING THERMAL RESPONSE FACTOR METHOD TENGKU FAKHRUZZAMAN BIN TENGKU YUSOFF

FOURIER TRANSFORM TECHNIQUE FOR ANALYTICAL SOLUTION OF DIFFUSION EQUATION OF CONCENTRATION SPHERICAL DROPS IN ROTATING DISC CONTACTOR COLUMN

HIGH RESOLUTION DIGITAL ELEVATION MODEL GENERATION BY SEMI GLOBAL MATCHING APPROACH SITI MUNIRAH BINTI SHAFFIE

MODELING AND CONTROLLER DESIGN FOR AN INVERTED PENDULUM SYSTEM AHMAD NOR KASRUDDIN BIN NASIR UNIVERSITI TEKNOLOGI MALAYSIA

THE EFFECT OF FREQUENCY ON FLOW AND HEAT TRANSFER OF A HEAT EXCHANGER IN AN OSCILLATORY FLOW CONDITION

Design of an Innovative Acoustic Metamaterial

UNIVERSITI PUTRA MALAYSIA GENERATING MUTUALLY UNBIASED BASES AND DISCRETE WIGNER FUNCTION FOR THREE-QUBIT SYSTEM

Determination of Natural Frequency of Transportation Container by Experimental Modal Analysis

DEVELOPMENT OF AERODYNAMIC SMOKE TUNNEL UNIT FOR TEACHING AND LEARNING AHMAD SOBRI BIN ISHAK

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14

SPRAY DRIED PRODIGIOSIN FROM Serratia marcescens AS A FOOD COLORANT SHAHLA NAMAZKAR UNIVERSITI TEKNOLOGI MALAYSIA

DEVELOP DRAG ESTIMATION ON HYBRID ELECTRIC VEHICLE (HEV) MODEL USING COMPUTATIONAL FLUID DYNAMICS (CFD) REDZUAN BIN AHMAD

MODELLING OF SINGLE LINK FLEXIBLE MANIPULATOR WITH FLEXIBLE JOINT NOORFADZLI BIN ABDUL RAZAK

ENGINEERING PROPERTIES OF OLDER ALLUVIUM BADEE ABDULQAWI HAMOOD ALSHAMERI. Universiti Teknologi Malaysia

NONLINEAR STRUCTURAL DYNAMICS USING FE METHODS

COMPUTATIONAL STUDY OF PROTON TRANSFER IN RESTRICTED SULFONIC ACID FOR PROTON EXCHANGE MEMBRANE FUEL CELL SITI NADIAH BINTI MD AJEMAN

ISOLATION AND CHARACTERIZATION OF NANOCELLULOSE FROM EMPTY FRUIT BUNCH FIBER FOR NANOCOMPOSITE APPLICATION

CLASSIFICATION OF MULTIBEAM SNIPPETS DATA USING STATISTICAL ANALYSIS METHOD LAU KUM WENG UNIVERSITITEKNOLOGI MALAYSIA

EVALUATION OF FUSION SCORE FOR FACE VERIFICATION SYSTEM REZA ARFA

COVRE OPTIMIZATION FOR IMAGE STEGANOGRAPHY BY USING IMAGE FEATURES ZAID NIDHAL KHUDHAIR

GAS PHAS E GLYCEROL DEHYDRATION TO ACROLEIN OVER SUPPORTED SILICOT UNGSTIC ACID CATALYST AMIN TALEBIAN KIAKALAIEH

SEDIMENTATION RATE AT SETIU LAGOON USING NATURAL. RADIOTRACER 210 Pb TECHNIQUE

EXPERIMENTAL STUDY OF HEAT TRANSFER CHARACTERISTICS OF ROUND AIR JET IMPINGING ON CONVEX SURFACE HASAN ABDUALLATIF MUHALHAL

THE EFFECTIVENESS OF RECTANGULAR BLOCK AS ENERGY DISSIPATION STRUCTURE ADAM BIN ISMAIL B.ENG (HONS.) CIVIL ENGINEERING UNIVERSITI MALAYSIA PAHANG

SIMULATION OF NEUTRON FLUX IN SILICON, CADMIUM AND PLUMBUM USING MONTE CARLO METHOD HAFIDA BINTI HAMZAH

PEMBANGUNAN SISTEM BERSEPADU ULTRASONIK UNTUK MENGUKUR UNSUR DAN CIRI-CIRI MEKANIKAL DAN AKUSTIK BAHAN PEPEJAL ABSTRAK

EFFECTS OF TEMPERATURE IN REACTIVE DISTILLATION OF VAPOR FROM NON-CATALYTIC PENTAERYTHRITOL TETRADODECANOATE (PETD) REACTOR SHAHRULNIZAM JAMEN

INDEX SELECTION ENGINE FOR SPATIAL DATABASE SYSTEM MARUTO MASSERIE SARDADI UNIVERSITI TEKNOLOGI MALAYSIA

SQUEAL SUPPRESSION APPROACHES OF A DISC BRAKE ASSEMBLY SAW CHUN LIN UNIVERSITI TEKNOLOGI MALAYSIA

OPTIMIZATION OF ENGINE MOUNTING BRACKET LOCATION ILYAS BIN ISHAK

THE DEVELOPMENT OF A HYDRAULIC FLOW METER AZAM BIN AHMAD

ROOT FINDING OF A SYSTEM OF NONLINEAR EQUATIONS USING THE COMBINATION OF NEWTON, CONJUGATE GRADIENT AND QUADRATURE METHODS

FLOOD MAPPING OF NORTHERN PENINSULAR MALAYSIA USING SAR IMAGES HAFSAT SALEH DUTSENWAI

COMPUTATIONAL STUDY OF TURBULENT UNCONFINED SWIRL FLAMES ANIS ATHIRAH BINTI MOHD AZLI

QUASI-STATIC INDENTATION FORCE ON COMPOSITE MATERIAL SYED HAMZAH BIN SYED OTHMAN

Transcription:

MODELLING AND EXPERIMENTAL INVESTIGATION ON PERFORATED PLATE MOBILITY CHEAH YEE MUN UNIVERSITI TEKNIKAL MALAYSIA MELAKA

SUPERVISOR DECLARATION I hereby declare that I have read this thesis and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical engineering (Structure and Materials) Signature: Supervisor: Date:.. Dr. Azma Putra..

MODELLING AND EXPERIMENTAL INVESTIGATION ON PERFORATED PLATE MOBILITY CHEAH YEE MUN This report is submitted in fulfillment of the requirements for the award Bachelor of Mechanical Engineering (Structure and Materials) Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka JUNE 2013

ii DECLARATION I hereby declare that the work in this report s my own except for summaries and quotations which have been duly acknowledged. Signature: Author: Date:.. Cheah Yee Mun..

iii You have to learn the rules of the game. And then you have to play better than anyone else. Albert Einstein

iv ACKNOWLEDGEMENT First and foremost, I would like express my sincere gratitude to my supervisor, Dr Azma Putra. Without fail, he has provided me detailed guidance and encourage throughout the project. He has always been enthusiastic in solving, reflecting, and advising my problems. I appreciate for the countless time he had spent having discussion with me regarding my final year project and offering numerous suggestions to improve my work. Secondly, I would like to acknowledge and give my appreciation to a senior, Wai Chee Mun, for giving suggestions, sharing knowledge and provided guidance throughout the modeling analysis using Finite Element method. His knowledge has helped me completing the first part of analysis of my project successfully. My appreciate goes to a dedicated lab assistant from Fasa B, Encik Hairul Nizam for his kindness and patient in giving suggestions and techniques throughout the experiment analysis. With the help from Encik Hairul, the second part of my project s analysis was done successfully. My thanks go to my course-mates for their support, patience, encouragement, and useful suggestion. Lastly, special thanks to my family for their good-natured forbearance with the process and for their pride in this accomplishment.

v ABSTRACT Porous materials are usually applied to noise control. The application of perforated plate is widely used in sound absorption purposes as it reduces sound radiation. However, perforation of the plate has a decreasing effect on the plate stiffness thus increasing its vibration. Therefore, a modeling and experimental investigation on perforation s effects is performed. This report discusses the effect of the perforation on the plate mobility. The perforation ratio could be affected by the numbers of holes, diameter of the holes, and arrangement of the perforation. In this project, Finite Element Analysis Patran and Nastran was employed to obtain the discrete surface vibration velocity on a single analytical model. The natural frequency of the Finite Element Analysis solid plate model was compare with the theoretical calculation to validate the accuracy of the modeling. The result obtained from the Finite Element Analysis was compared with the solid plate to show the effect of perforation on plate mobility, which increases as the perforation ratio increases. An experimental investigation was carried out to validate the results from the analysis earlier.

vi ABSTRAK Bahan berliang biasanya digunakan untuk mengawal tahap bunyi. Aplikasi plat berlubang digunakan secara meluas dalam tujuan penyerapan bunyi kerana ia mengurangkan radiasi bunyi. Walaubagaimanapun, perlubangan plat meninggalkan kesan pengurangan kekakuan plat dan menyebabkan getarannya meningkat. Dengan itu, satu analisis pemodelan dan eksperimen terhadap kesan perlubangan panel telah dilaksanakan. Laporan ini membincangkan kesan perlubangan terhadap tahap getaran plat. Kadar nisbah perlubangan boleh dipengaruhi oleh pelbagai factor, seperti bilangan lubang, diameter lubang, dan susunan perlubangan. Dalam projek ini, Finite Element Analysis - Patran dan Nastran telah digunakan untuk mendapatkan halaju diskret getaran permukaan pada model analisis tunggal. Frekuensi tabii model plat pepejal FEM telah dibandingkan dengan pengiraan teori untuk mengesahkan ketepatan model. Hasil yang diperolehi dari FEM akan bandingkan dengan plat yang tidak berlubang untuk menunjukkan kesan penembusan terhadap pergerakan plat, yang meningkat apabila nisbah penembusan meningkat. Satu eksperimen telah dijalankan untuk mengesahkan keputusan dari analisis yang dijalankan sebelum ini.

vii CONTENT CHAPTER CONTENT PAGES ACKNOWLEDGEMENT ABSTRACT ABSTRAK LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF ABBREVATION LIST OF APPENDICES iv v vi ix x xiv xv xvi CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND 1 1.2 PROBLEM STATEMENT 3 1.3 OBJECTIVES 3 1.4 SCOPE OF PROJECT 3 CHAPTER 2 LITERATURE REVIEW 5 2.1 INTRODUCTION 5 2.2 MOBILITY 7 2.3 THE EFFECT OF PERFORATIO ON 9 MATERIAL PROPERTIES 2.4 DIRECT FREQUENCY ANALYSIS USING FINITE ELEMENT METHOD 12 CHAPTER 3 METHODOLOGY 15 3.1 INTRODUCTION 15 3.2 PROBLEM IDENTIFICATION 15 3.3 LITERATURE REVIEW 16 3.4 MODELLING OF PERFORATED PLATE MOBILITY USING FEA 17 3.4.1 MATERIAL PROPERTY 17 3.4.2 PERFORATION PATTERN 17

viii 3.4.3 ELEMENT TYPE 20 3.4.4 BOUNDARY CONDITION 20 3.4.5 LOAD CONDITION 21 3.4.6 RESONANCE FREQUENCY VALIDATION 22 3.5 PLATE PARAMETERS 25 3.6 EXPERIMENTAL SETUP 27 CHAPTER 4 RESULT AND DISCUSSION 35 4.1 INTRODUCTION 35 4.2 FEM MOBILITY RESULT 36 4.2.1 VALIDATION OF FE MODEL AND 36 ANALYTICAL CALCULATION 4.2.2 EFFECT OF HOLE DIAMETER AND 37 NUMBER OF HOLES AT FIX PERFORATION RATIO 4.2.3 EFFECT OF HOLE ARRAYS AT FIX 39 PERFORATION RATIO 4.2.4 EFFECT OF PERFORATION RATIO AT FIX 41 HOLES DIAMETER OR FIX NUMBER OF HOLES 4.2.5 EFFECT OF HOLES ARRANGEMENT AT 42 FIX PERFORATION RATIO 4.3 EXPERIMENTAL RESULT 45 4.3.1 VALIDATION OF FE MODEL AND 45 EXPERIMENTAL RESULT 4.3.2 EFFECT OF HOLE DIAMETER AND 46 NUMBER OF HOLES AT FIX PERFORATION RATIO (EXPERIMENT) 4.3.3 EFFECT OF HOLES ARRAYS AT FIX 48 PERFORATION RATIO 4.3.4 EFFECT OF PERFORATION RATIO AT FIX 49 HOLES DIAMETER OR FIX NUMBER OF HOLES 4.3.5 EFFECT OF HOLES ARRANGEMENT AT 51 FIX PERFORATION RATIO CHAPTER 5 CONCLUSION AND RECOMMENDATION 54 5.1 CONCLUSION 54 5.2 RECOMMENDAION 55 REFERENCES 56 APPENDIX A 58 APPENDIX B 59

ix LIST OF TABLES NO TITLE PAGES 2.1 Coefficient for the cubic expression in Eq. (2.28) 12 3.1 Material properties for mild steel plate 17 3.2 Comparison between theoretical result and FEM 22 3.3 Parameters of the perforated panel with fixed hole diameter 25 and different number of holes and perforation ratio 3.4 Parameters of the perforated panel with different hole 25 diameter and number of holes and fix perforation ratio 10% 3.5 Parameters of the perforated panel with different hole 25 diameter and number of holes and fix perforation ratio 21% 3.6 Parameters of the perforated panel with different hole 26 diameter and number of holes and fix perforation ratio 30% 3.7 Parameters of the perforated panel with fix number of holes 26 and different holes diameter and perforation ratio 3.8 Parameters of the perforated panel with fix perforation 26 ratio 10% and different arrangement of holes 3.9 Parameters of the perforated panel with fix perforation 26 ratio 20% and different arrangement of holes 3.10 Parameters of the perforated panel with different arrays and 27 fix perforation ratio 10% 3.11 Parameters of the perforated panel with different arrays and 27 fix perforation ratio 20% 3.12 Experiment equipment and apparatus 28

x LIST OF FIGURES FIGURE TITLE PAGES 1.1 Example of vibrating System 1 1.2 Example of perforated structure used in machinery 2 2.1 A spring-mass-damper system 6 2.2 Sign convention and coordinate systems for a rectangular 7 plate excited by a point force 2.3 The dimension of the perforated panel 10 2.4 Diagonal and rectangular array geometries 11 2.5 Comparison of surface mobility between theoretical and 14 FEA model 3.1 Flow of problem identification 15 3.2 Methodology flow chart for FYP I and FYP II 16 3.3 Plan view of different perforation patterns: square and 17 triangular (diagonal) 3.4 Finite Element Model of perforated plates with fix diameter 18 10mm 3.5 Finite Element Model of perforated plates with fix 18 perforation ratio 10% 3.6 Finite Element Model of perforated plates with fix 18 perforation ratio 21% 3.7 Finite Element Model of perforated plates with fix 19 perforation ratio 30% 3.8 Finite Element Model of perforated plates with fix number of holes 40 holes 19

xi FIGURE TITLE PAGES 3.9 Finite Element Model of perforated plates with fix 19 perforation ratio 10% and different arrangement of holes 3.10 Finite Element Model of perforated plates with fix 19 perforation ratio 21% and different arrangement of holes 3.11 Finite Element Model of perforated plates with fix 20 perforation ratio 10% and different perforation arrays 3.12 Finite Element Model of perforated plates with fix 20 perforation ratio 21% and different perforation arrays 3.13 Coordinate system of the FE model 21 3.14 FEM solid plate boundary condition 21 3.15 Location of the applied load 1N 22 3.16 Validation of the Mode 1 natural frequency for solid plate 23 3.17 Perforated plate at Mode 1 and its resonance frequency 23 3.18 General schemes for plate frequency response analysis 24 3.19 Experimental setup for mobility measurement using impact 29 hammer 3.20 Experimental setup for free-free boundary condition 29 3.21 Solid Plate with the locations of the force excitation 30 3.22 Experiment model of perforated plates with fix diameter 30 10mm 3.23 Experiment model of perforated plates with fix perforation 30 ratio 10% 3.24 Experiment model of perforated plates with fix perforation 30 ratio 21% 3.25 Experiment model of perforated plates with fix perforation 31 ratio 30% 3.26 Experiment model of perforated plates with fix number of 31 holes 40holes 3.27 Finite Element Model of perforated plates with fix perforation ratio 10% and different arrangement of holes 31

xii FIGURE TITLE PAGES 3.28 Finite Element Model of perforated plates with fix 31 perforation ratio 21% and different arrangement of holes 3.29 Finite Element Model of perforated plates with fix 32 perforation ratio 10% and different perforation arrays 3.30 Finite Element Model of perforated plates with fix 32 perforation ratio 10% and different perforation arrays 3.31 DEWESOFT FRF Analyzer Software Layout 33 3.32 General schemes for plate frequency response experimental 34 measurement 4.1 Comparison of the mobility of a solid panel from FE model 36 and from analytical calculation 4.2 Mobility of the perforated panel with different hole 38 diameter and number of holes and fix perforation ratio 10% 4.3 Mobility of the perforated panel with different hole 38 diameter and number of holes and fix perforation ratio 21% 4.4 Mobility of the perforated panel with different hole 39 diameter and number of holes and fix perforation ratio 30% 4.5 Mobility of the perforated panels with different arrays and 40 fix perforation ratio 10% 4.6 Mobility of the perforated panels with different arrays and 40 fix perforation ratio 21% 4.7 Mobility of the perforated panels with fixed hole diameter 41 and different number of holes and perforation ratio 4.8 Mobility of the perforated panels with fix number of holes 42 and different holes diameter and perforation ratio 4.9 Mobility of the perforated panels with different pattern 43 arrangement at fix perforation ratio 10% 4.10 Mobility of the perforated panels with different pattern arrangement at fix perforation ratio 20% 43

xiii FIGURE TITLE PAGES 4.11 The first mode of simply supported boundary condition plate from FE simulation for the holes concentrated at the center of the plate 4.12 The first mode of simply supported boundary condition plate from FE simulation for the holes aligned the edges of the plate. 4.13 Comparison of the mobility of a solid panel from FE model and from experiment 4.14 Mobility of the perforated panel with different hole diameter and number of holes and fix perforation ratio 10% 4.15 Mobility of the perforated panel with different hole diameter and number of holes and fix perforation ratio 21% 4.16 Mobility of the perforated panel with different hole diameter and number of holes and fix perforation ratio 30% 4.17 Mobility of the perforated panels with different arrays and fix perforation ratio 10% 4.18 Mobility of the perforated panels with different arrays and fix perforation ratio 21% 4.19 Mobility of the perforated panels with fixed hole diameter and different number of holes and perforation ratio 4.20 Mobility of the perforated panels with fix number of holes and different holes diameter and perforation ratio 4.21 Mobility of the perforated panels with different pattern arrangement at fix perforation ratio 10% 4.22 Mobility of the perforated panels with different pattern arrangement at fix perforation ratio 21% 4.23 The first mode of free-free boundary condition plate from FE simulation for the holes concentrated at the center 4.24 The first mode of free-free boundary condition plate from FE simulation for the holes arranged at the edges of the plate 44 44 45 46 46 47 48 48 50 50 51 52 52 53

xiv LIST OF STYMBOL A a B B * B b c d E Cross section area Length of plate Damping matrix Bending stiffness Effective bending stiffness Width of plate Damping coefficient Holes diameter Damping factor Damping loss factor Young s Modulus E * Effective Young s Modulus F Excitation force i 1 Imaginary unit K Stiffness matrix k L M M Stiffness Lengt Mass matrix Total mass of plate

xiv m m a Mass of the system Mass per unit area p x Perpendicular pitch p y Parallel pitch Density * Effective density p, q Vibration mode S x t Area of plate surface Thickness Poisson s ratio * Effective Poisson s ratio U Complex displacement vector Frequency n Natural frequency Natural frequency for the mode ( p, q) p,q * p,q Effective natural frequency for the mode ( p, q) x x x n Displacement First derivatives of x Second derivatives of x N-th mass-normalized mode shape Phase Matrix

xv LIST OF ABBREVATION DAQ FE FEA FEM FRF FYP XLE YLE Data Acquisition System Finite Element Finite Element Analysis Finite Element Method Frequency Response Function Final Year Project Perpendicular ligament efficiencies Parallel ligament efficiencies

xvi LIST OF APPENDICES NO TITLE PAGES A Gantt Chart Final Year Project II 58 B Gantt Chart Final Year Project II 59

1 CHAPTER 1 INTRODUCTION 1.1 Background Sound is an audible sense that perceived by human brain through ears. Sound travels through matter by wave. Wave is an oscillation of pressure that can be reflected, refracted or attenuated. The difference between sound and noise is the desired and undesired waveform respectively. Noise is mean by any unwarranted disturbance within a useful frequency band (NIOSH, 1991). Despite that, noise can be varies according to the human ears sensitivity. Noise is generated from vibrating structures as show in Figure 1.1. Figure 1.1: Example of vibrating structure

2 Noise can be present in any human activity, e.g., occupational noise and environmental noise. In the United States, occupational hearing loss is the most common work-related injury where there is approximately 22 million U.S. workers exposed to hazardous noise level at work (WHO, 2004). It is recommends that all work expose to noise should be controlled below a level equivalent to 85 dba for eight hours to minimize the risk of hearing loss (NIOSH, 2012). Therefore, in order to prevent hearing loss, noise control technology is introduced to aim to reduce noise to an acceptable level. Prior to the design of noise control, the noise sources must be identified and evaluated. Occupational noises are usually generated from sources that associated with structural vibration. Mechanical vibration noise occurs when the components resonating at their natural frequencies. Thin-plate like structure is one of the significant sources of noise in structural vibration. One of the common noise control technique is to introduce holes into the structure. Perforated plates can be seen in industrial applications, for example, the solid protective cover over the belt drive and flywheel is replaced with a wire mesh cover as seen in Figure 1.2. Porous material applies the sound absorption principal, where it is used to absorb the sound by reducing its intensity. The holes allow the sound waves to pass right through it. The potential for using these alternative structures allows the ability to blend into different situation to ensure adequate performance. Figure 1.2: Example of perforated structure used in machinery

3 1.2 Problem Statement Noise characteristic of structures are determined by mass, stiffness and damping. Perforated panels are commonly used in sound absorption purposes. It is important in reducing the noise level in order to create an adequate working environment. However, the introduction of perforation into the solid panels significantly reduces the stiffness of the plate. Stiffness is defined as the rigidity of a structure. Now consider the area of the plate significantly decreases due to the perforation effect, the rigidity of the panel decreases. Hence, when the panel is excited by an external force, this will results an increase of vibration in the panel itself. The effect of the dynamics of the plate after perforation is rarely discussed. This project is conducted to analyze and to discuss the effect of perforation on the plate mobility. 1.3 Objectives To investigate and to model the effect of perforation on the plate mobility using Finite Element Method (FEM) 1.4 Scope of project As there is no established analytical model is available to calculate the mobility of the perforated panels, the dynamics of the perforated panel will be investigated using the result obtained from Finite Element Method (FEM). FEM will be employed to obtain the discrete surface vibration velocity. Direct frequency response analysis is used as the solution. Different holes geometries are stimulated to investigate their effect on the plate mobility. The perforation ratio can be affected by the number of the holes, diameter of the holes and arrangement of the perforation patterns. The mobility of the perforated panel is then compared against that of the solid plate in one-third octave band frequency. Experimental work will be conducted to validate the results from FEM.

4 The effect of perforation into a solid panel will change the dynamic properties of the panel. Many had discussed the effective Young s modulus, the Poisson s ratio, and the density after the perforation effect. However, this project will not concentrate on these dynamic properties. This project aims to investigate the change of vibration level due to the instruction of holes into a solid panel.

5 CHAPTER 2 LITERATURE REVIEW 2.1 Introduction Stiffness is the measurement of rigidity of an object. Stiffness arises from any structural component that deforms elastically under action of forces. For an elastic structure with a single degree of freedom, stiffness is F k (2.11) x Equation (2.11) shows the relationship between stiffness of the structure and the displacement response of the structure. Hooke s Law define that stiffness is the deflection that proportional to the load applied. A decrease in the stiffness, result an increases in the displacement response, if the force applied on the structure remain constant. Introduction of perforation into the panel significantly reduces the cross section area. The material property Young s modulus and length of the panel remained constant; stiffness of the plate is directly proportional to the cross-section area. A reduction in cross-section results in a decreases in stiffness. This is lead to a higher amplitude as the panel has a lower resistant to the applied load. When a structure is excited with force, the result of the motion of the structure may be expressed in terms of the level of vibration. The resulting motion