Lab 4.3 Vector Addition and Resolution The Force Table

Similar documents
School Date. The Force Table Vector Addition and Resolution

The Force Table Vector Addition and Resolution

Force Table. IA. Addition of Two-Dimensional Vectors Experimental Addition; the Equilibrant

Otterbein University Department of Physics Physics Laboratory Partner s Name: EXPERIMENT D FORCE VECTORS

Unit 1: Equilibrium and Center of Mass

Experiment 2 Vectors. using the equations: F x = F cos θ F y = F sin θ. Composing a Vector

LAB 4: FORCE AND MOTION

Purpose: The purpose of this lab is to study the equilibrium of a body acted on by concurrent forces, and to practice the addition of vectors.

Experiment 3 Forces are Vectors

An Introduction to Forces Forces-part 1. Forces are Interactions

PHYSICS 220 LAB #3: STATIC EQUILIBRIUM FORCES

Lab #2: Newton s Second Law

Consider two students pushing with equal force on opposite sides of a desk. Looking top-down on the desk:

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

Newton s Law of Motion

Chapter 4: Newton s First Law

Name: Unit 4 Newton s 1 st & 3 rd Law

Figure Two. Then the two vector equations of equilibrium are equivalent to three scalar equations:

Chapter 5: Forces in Two Dimensions. Click the mouse or press the spacebar to continue.

MITOCW MIT8_01F16_w02s05v06_360p

Chapter Four Holt Physics. Forces and the Laws of Motion

Student Content Brief Advanced Level

School Date. Dynamics Freefall, Apparent Weight, and Friction (Honors)

AP/Honors Lab 18.1 Coulomb s Law

Summary for last week: Newton s 2 nd Law + 1 st Law

MITOCW MIT8_01F16_w02s07v03_1_360p

Lab 3: Equilibrium of a Particle

Engage I 1. What do you think about this design? If the car were to suddenly stop, what would happen to the child? Why?

Lecture 5. Dynamics. Forces: Newton s First and Second

Equilibruim of a particle

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates.

An Introduction to Forces Identifying Forces. An Introduction to Forces Forces-part 1. Forces are Interactions. What Is a Force? Identifying Forces

Teacher Content Brief

Welcome back to Physics 211

In the y direction, the forces are balanced, which means our force equation is simply F A = F C.

Lab: Vectors. You are required to finish this section before coming to the lab. It will be checked by one of the lab instructors when the lab begins.

PH 2213 : Chapter 05 Homework Solutions

Free-Body Diagrams: Introduction

Chapters 5-6. Dynamics: Forces and Newton s Laws of Motion. Applications

Vector Addition INTRODUCTION THEORY

What is a force? How can a force be measured? How do balanced and unbalanced forces affect objects?

A N D. c h a p t e r 1 2 M O T I O N F O R C E S

Recognizing Forces: Does the floor know when you put on weight?

Lesson 1: Force as an Interaction

Forces and Motion in One Dimension

Chapter 4: Newton s Second Law F = m a. F = m a (4.2)

Chapter 5. Forces in Two Dimensions

Force Vectors and Static Equilibrium

Chapter 7 Newton s Third Law

Forces I. Newtons Laws

Exam II: Solutions. UNIVERSITY OF ALABAMA Department of Physics and Astronomy. PH 125 / LeClair Spring 2009

Unit 2 Part 2: Forces Note 1: Newton`s Universal Law of Gravitation. Newton`s Law of Universal Gravitation states: Gravity. Where: G = M = r =

SECTION NUMBER: LAB PARTNERS: VECTORS (FORCE TABLE) LAB II

MITOCW MIT8_01F16_L12v01_360p

Acceleration and Force: I

LAB 2 - ONE DIMENSIONAL MOTION

LAB: FORCE AND MOTION

FORCE TABLE INTRODUCTION

Static and Kinetic Friction

Please read this introductory material carefully; it covers topics you might not yet have seen in class.

Section /07/2013. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 7, pgs.

Acceleration, Free Fall, Symmetry

Forces as Interactions

PHYSICS - CLUTCH CH 13: ROTATIONAL EQUILIBRIUM.

Forces and Newton s Second Law

STEP Support Programme. Mechanics STEP Questions

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds?

Lab 6 Forces Part 2. Physics 225 Lab

Review: Newton s Laws

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

Section 1 Changes in Motion. Chapter 4. Preview. Objectives Force Force Diagrams

Name: Lab Partner: Section: In this experiment vector addition, resolution of vectors into components, force, and equilibrium will be explored.


Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION

AP Physics 1 Review. On the axes below draw the horizontal force acting on this object as a function of time.

Chapter 4. Forces in One Dimension

4 VECTOR ADDITION ON THE FORCE TABLE. To study vector addition and resolution using forces.

A Question about free-body diagrams

Student Exploration: Roller Coaster Physics

Lecture PowerPoints. Chapter 4 Physics: for Scientists & Engineers, with Modern Physics, 4th edition Giancoli

Newton s Laws and Free-Body Diagrams General Physics I

Dynamics; Newton s Laws of Motion

General strategy for using Newton's second law to solve problems:

PHYSICS 211 LAB #3: Frictional Forces

Study Guide. Physics 3104A. Science. Force, Motion and Energy. Adult Basic Education. Prerequisite: Physics 2104B or Physics 2204.

Force Table: Force Vector Components

Newton s Third Law Tug-of-War

Chapter 5: Applications of Newton's laws Tuesday, September 17, :00 PM. General strategy for using Newton's second law to solve problems:

3rd Grade. Forces and Motion Review. Slide 1 / 106 Slide 2 / 106. Slide 4 / 106. Slide 3 / 106. Slide 5 / 106. Slide 6 / 106. Motion and Stability

PHY2048 Physics with Calculus I

Physics 101 Lecture 5 Newton`s Laws

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors

3rd Grade Motion and Stability

Projectile Motion and 2-D Dynamics

I. AXN/RXN W.S. In the example below, the action-reaction pair is shown by the arrows (vectors), and the action-reaction described in words.

MITOCW free_body_diagrams

Newton s Wagon. Materials. friends rocks wagon balloon fishing line tape stopwatch measuring tape. Lab Time Part 1

Experiment 7 : Newton's Third Law

Transcription:

Name School Date Lab 4.3 Vector Addition and Resolution The Force Table Vectors? I don't have any vectors, I'm just a kid. From Flight of the Navigator Explore the Apparatus/Theory We ll use the Force Table Apparatus in this lab activity. Before starting this activity you need to watch the introductory video located at the address below. You ll find a link there to open the video. This will give you an introduction to the use of the apparatus as well as an overview of vector addition and resolution, and vector components. You can get quick access help by rolling your mouse over most objects on the screen. Figure 1 The Force Table Apparatus Note: When you re asked to provide a figure you may sketch it; or you may create it with the force table apparatus, print it out and paste it into the space provided. If the printed figure is too large to fit in the space provided, just attach it at the end of the lab. Make sure you label it to match the number of the figure. Ex. The figure above is Figure 1. Lab 4.3 Vector Addition and Resolution 1 September 1, 2011

A. Addition of Two Dimensional Vectors In this part you ll add two forces to find their resultant using experimental addition, graphical addition, and analytical addition. The two forces you ll work with are: F 2 =.300 g N at 320 F 4 =.180 g N at 60 You should know three things about the way these forces are stated from the introductory video. The subscripts refer to the hanger numbers..180 g N is a short hand for.180 kg g. So F 2 =.180 kg 9.81 N/kg = 1.77 N. We ll refer to the forces using the more convenient.180 g N system just for this apparatus..180 g N is the total weight of the hanger system including the hanger itself. So 130 grams were added. A1. Experimental Addition By experimental addition we mean that we will actually apply the forces to an object and measure their total, resultant effect. We'll do that by first finding the equilibrant, E, the force that exactly balances them. When this happens the ring will be centered. The resultant, R, is the single force that exactly balances the equilibrant. Enable pulleys 2 and 4 and disable pulleys 1 and 3 using their check boxes. Add masses to hangers 2 and 4 to produce forces F 2 and F 4 and then adjust the angles as specified. Use the purple and blue pointers of the pulley systems, not the strings, to set the angles. You can zoom in to set the angles more precisely. Enable pulley 3. Using pulley 3, find the equilibrant, E to just balance (cancel) F 2 and F 4. You ll need to adjust the mass on the hanger and the angle until the ring is approximately centered on the central pin. You can add and remove masses to home in on it. 1. Experimental Equilibrant, E: g N, From your value of E, what should be the resultant of F 2 and F 4? 2. Predicted Resultant, R: g N, Disable Pulleys 2 and 4 and enable pulley 1. Experimentally determine the resultant by adjusting the mass on pulley 1 and its angle until it balances the equilibrant. That is, the ring should not move substantially when you change between F 2 and F 4, and just F 1. 3. Experimental Resultant, R: g N, A2. Graphical Addition Using the default 2 10 2 g vector scale, create vector arrows (± 3 grams) for F 2, F 4. For example, drag the purple vector by its body and drop it when its tail (the square end) is near the central pin. It should snap in place. Then drag the head (tip) of the arrow in the direction of F 2 and increase its length until its magnitude is approximately equal to 180 g. Repeat for F 4 with the blue arrow. The resultant, R, is the vector sum of F 2 and F 4. Add F 2 and F4 graphically by dragging the body of say, F 4 until its tail is over the tip of F 2 and releasing it. Form the resultant, R, by creating an orange vector from the tail of the first (F 2 ), to the head of the last, (F 4 ). This works the same in either order. 1. Graphical Resultant, R: g N, The equilibrant, E should be the same magnitude as R, but in the opposite direction. Produce E with the green vector arrow. 2. Graphical Resultant, E: g N, Lab 4.3 Vector Addition and Resolution 2 September 1, 2011

Draw each of the four vector arrows on Figure 2 OR print out and paste your figure over Figure 2. Label each vector with its total force value. Ex. Label the blue F 4 vector.180 g N. Vectors F 2 and F 4 should still be in their tail to head arrangement. Figure 2 3: Describe what we mean by the terms resultant and equilibrant in relation to the forces acting in this experiment? 4: From your figures, which two forces, when added would equal zero? Circle two F 2 F 4 E R 5. Show this graphical addition in the space to the right. You ll want to offset them a bit since they should be on top of one another. Figure 3 6. What three vectors, when added would equal zero? Circle three F 2 F 4 E R 7. Show this graphical addition in the space to the right. 8. Vector E should appear in both Figure 3 and Figure 4. Why? Figure 4 Lab 4.3 Vector Addition and Resolution 3 September 1, 2011

Put all four vectors back at the center of the force table with their tails snapped to the central pin. Click the check boxes beside the purple and blue arrows under Show Components. This will give you a visual check on your analytical calculations in part A3. A3. Analytical addition with components 1. You ve found experimentally and graphically that the sum of forces F 2 and F 4 is equal to the resultant, R. Using the table provided, find the components of F 2 and F 4 and add them to find the components of R. Use these components of R to determine the magnitude and direction of R. Note that one of the four components will have a negative sign. The components now displayed on the force table should make it clear why. x-components y-components F 2x = g N F 2y = g N F 4x = g N F 4y = g N R x = g N R y = g N R = g N, 2. Show all your calculations leading to your value for R below. Remember, a vector has both a magnitude and a direction. B. Simulation of a slackwire problem. Let s model a realistic system similar to what you might find in your homework. Below you see a crude figure of slackwire walker, Elvira, making her way across the wire. She weighs 450 N. (About 100 lbs.) At a certain instant the two sides of the rope are at the angles shown. Only friction allows her to stay in place. The gravitational force is acting to pull here down the hill. It s complicated. The single rope acts like two separate sections of rope in this situation with different tension forces on either side of her. The steeper rope has the greater tension. To understand this it helps to imagine her at the extreme left where the left section of rope is almost vertical and the right one is much less steep. In this case T 3 is providing almost all of the vertical support, while T 1 pulls her a little to the right. It helps to just try it. Attach a string between two objects in the room. Leave a little slack in it. Now pull down at various points. You ll feel the big frictional tug on the more vertical side and less from the more horizontal side. We want to explore this by letting her move along the rope. Lab 4.3 Vector Addition and Resolution 4 September 1, 2011

Figure 5 B1. Experimental Determination of T 1 and T 2 First send all of your vectors home by clicking on each of their four little houses. Then remove all the masses from your four pulleys by clicking in the total mass/mass removal boxes beside each hanger. Elvira weighs 450 N. We ll let one gram represent 1 N on our force table and set our vector scale to 4 10 2 N. We ll picture our force table as if it were in a vertical plane with 270 downward and 90 upward. We ll use pulleys 1 and 3 to provide your two tensions, T 1 and T 3. 1. Prediction: Since θ 3 = 2 θ 1, do you think T 3 will be about twice T 1? For Elvira, move hanger 2 to 270 and set its total mass to 450 g to represent 450 N. Move Pulleys 3 and 1 to match the angles in Figure 5. Adjust the masses on each pulley until you achieve equilibrium. It s best to alternate adding one mass to each side in turn until you get close to equilibrium. 2. T 3 = N at 160 3. T 1 = N at 10 How d that prediction go? If trig functions were linear we wouldn t need them. B2. Graphical Check of our Results Using the vector scale of 4 10 2 N, create vector arrows for each force, T 3, T 1, and W (Elvira s weight). Draw your three vectors on Figure 6 or print out your force table image and paste it on top of the figure. Figure 6 1. How can we graphically check to see if our values for T 1 and T 3 are reasonably correct? How are T 1, T 2, and W related? What would happen if any one of them suddenly went away? Elvira would no longer be in. Lab 4.3 Vector Addition and Resolution 5 September 1, 2011

Thus the three vectors are in equilibrium and must add to equal zero! What would that look like? The sum, resultant, of three vectors is a vector from the tail of the first to the head of the last. If they add up to zero, then the resultant s magnitude would be zero which means that the tip of the final vector would lie at the tail of the first vector. Try it. Leave your T 1 vector where it is and then add T 3 to it. Then add W to the end of T 3. 2. What about your new figure says (approximately) that the three forces are in equilibrium? 3. Again draw your new figure with the three vectors added together on figure 7 or print out your force table image and paste it on top of the figure. Figure 7 B3. Analytical Check of Your Results If our three vectors add up to zero, then what about their components? 1. When you add up the x-components of all three vectors the sum should be 2. When you add up the y-components of all three vectors the sum should be 3. Test your predictions using the following table. x-components y-components F 1x = N F 1y = N F 3x = N F 3y = N W x = N W y = N ΣF x = N ΣF y = N 2. Show your calculations of the eight values in the table in the space provided below. Lab 4.3 Vector Addition and Resolution 6 September 1, 2011

Before we continue Why all the tension? Why does the tension on each side have to be so much larger than the weight actually being supported? All the extra tension is being supplied by the x-components. Then why not just get rid of it? That would be what we call the boringly slackwire walk and frankly nobody would pay to see such an act, even if they tried calling it Xtreme Urban Slackwire. There s also the similar situation with traffic lights. A huge amount of tension is required to support a fairly light traffic light. The simpler solution of a pole in the middle of the intersection wasn t appreciated much more than the Xtreme Urban Slackwire performers. Next time you see large structures supporting large electrical wires look for places where the wire has to change direction. The support structures in straight stretches don t have to be really sturdy since they have horizontal forces pulling equally in opposite directions. Thus they just have to support the weight of the wire. The corner structures have to provide these horizontal forces and they have to support it in two different directions. Thus they re much sturdier and larger to give them a wider base. C. Simulation of a symmetrical slackwire problem. Here s our final situation. Elvira has reached the center. This is where she would be if she rode a unicycle and just let it take her to the bottom. The angle values are just guesses. They d be between the 10 and 20 we had before, but the actual value would depend on the wire. Figure 8 Without changing the masses, adjust both angles to 15. 1. What does the symmetry of the figure suggest about how the tensions T 1, and T 3 should compare? 2. Similarly what can you say about comparative values of the x-components T 1 x and T 3 x? (Ex. T 1x = 2 T 3x ) 3. What can you say about comparative values of the y-components T 1y and T 3y? 4. Knowing that the weight being supported is 450 N, what can you say about actual values of the y-components T 1y and T 3y? 5. T 1 y = T 2 y = N 6. T 1 = N at 15 Show the calculation of T 1 below. Lab 4.3 Vector Addition and Resolution 7 September 1, 2011

7. Change each T to as close as you can get to this amount. Does this produce equilibrium? 8. Create the two vector arrows to match this amount - one for T 1 and one for T 3. Add T 1 + T 3 + W graphically. Draw or paste a copy of this graphical addition below. 8. Create the two vector arrows to match this amount - one for T 1 and one for T 3. Add T 1 + T 3 + W graphically. Draw or paste a copy of this graphical addition in Figure 9. Figure 9 You ll notice that this figure doesn t differ much from the previous one. The graphical tool we re using is not very precise. The same goes for the real world. Measuring the tension in a heavy electrical cable or bridge support cable is very difficult. One good method involves whacking it with a hammer and listening for the note it plays! D. A Quick look at vector subtraction. Here s the scenario. We have a three-person kinder, gentler tug-o-war. The goal is to reach consensus, stalemate. Two of our contestants are already at work. Darryl 1 = 800 N at 0 Darryl 2 = 650 N at 240 The question is - how hard, and in what direction, must Larry 3 pull to achieve equilibrium? 1. As usual, set up pulleys 1 and 2 to represent these forces using 1 gram/1 newton. 2. Create orange and purple vectors to match using the 4 10 2 N for your vector scale. Attach them to the central pin. (These won t appear in Figure 10 in their current form.) Lab 4.3 Vector Addition and Resolution 8 September 1, 2011

One method of solving the problem is to add the Daryl forces and complete the triangle to find the resultant. Larry s force would be the equilibrant in the other direction. Here s another way. The vector equation shown describes the result when the system is in equilibrium. Σ F = Darryl 1 + Darryl 2 + Larry 3 = 0 We can find Larry 3 by subtracting Darryl 1 and Darryl 2 giving us Larry 3 = Darryl 1 Darryl 2 Remember, these are all vectors. We re doing vector subtraction. So how do we subtract them? One way is to interpret the negative signs as indications of direction and then add them in the usual manner tail to head. So if Darryl 1 = 800 N at 0 Darryl 2 = 650 N at 240 then the negatives of these are vectors of the same lengths but in the opposite directions. Thus, Darryl 1 = 800 N at 180 Darryl 2 = 650 N at 60 3. Create these two vector arrows radiating from the center of the force table. You ll do this by just reversing the directions of both arrows. Leaving Darryl 1 pointing at 180, add Darryl 2 in the usual tail to head fashion. Larry 3 is the sum of these two. Create the green Larry 3 vector from the tail of Darryl 1 to the head of Darryl 2. (Sorry.) Draw or paste a copy of this graphical addition in Figure 10. Label your three vectors Larry 3, Darryl 1, Darryl 2. Figure 10 4. Larry 3 (graphical) = N (from the length and direction of your green vector) Move pulley 3 to the position indicated by the direction of Larry 3. Place the necessary mass on hanger three to produce the Larry 3 force. 5. Larry 3 (experimental) = N Lab 4.3 Vector Addition and Resolution 9 September 1, 2011

This page intentionally left blank. Lab 4.3 Vector Addition and Resolution 10 September 1, 2011