ON GENERIC POLYNOMIALS FOR DIHEDRAL GROUPS

Similar documents
Journal of Algebra 368 (2012) Contents lists available at SciVerse ScienceDirect. Journal of Algebra.

CSIR - Algebra Problems

Geometric Generalization of Gaussian Period Relations with Application to Noether s Problem for Meta-Cyclic Groups

An Additive Characterization of Fibers of Characters on F p

SOLVING SOLVABLE QUINTICS. D. S. Dummit

Section X.55. Cyclotomic Extensions

Galois theory (Part II)( ) Example Sheet 1

ALGEBRA PH.D. QUALIFYING EXAM SOLUTIONS October 20, 2011

ALGEBRA PH.D. QUALIFYING EXAM September 27, 2008

THE MODULE STRUCTURE OF THE COINVARIANT ALGEBRA OF A FINITE GROUP REPRESENTATION

Generic Picard-Vessiot extensions for connected by finite groups Kolchin Seminar in Differential Algebra October 22nd, 2005

On metacyclic extensions

Introduction to Algebraic Geometry. Franz Lemmermeyer

Math 121 Homework 2 Solutions

Degree Bounds in the Nonmodular Case Invariant Theory

Math 201C Homework. Edward Burkard. g 1 (u) v + f 2(u) g 2 (u) v2 + + f n(u) a 2,k u k v a 1,k u k v + k=0. k=0 d

GENERATORS OF FINITE FIELDS WITH POWERS OF TRACE ZERO AND CYCLOTOMIC FUNCTION FIELDS. 1. Introduction

Page Points Possible Points. Total 200

IUPUI Qualifying Exam Abstract Algebra

Math 429/581 (Advanced) Group Theory. Summary of Definitions, Examples, and Theorems by Stefan Gille

Sign changes of Fourier coefficients of cusp forms supported on prime power indices

MEMORIAL UNIVERSITY OF NEWFOUNDLAND

GALOIS GROUPS AS PERMUTATION GROUPS

1 The Galois Group of a Quadratic

Introduction to finite fields

1. Group Theory Permutations.

Pseudo Sylow numbers

Counting points on genus 2 curves over finite

ABSTRACT INVESTIGATION INTO SOLVABLE QUINTICS. Professor Lawrence C. Washington Department of Mathematics

Galois Theory. This material is review from Linear Algebra but we include it for completeness.

15. Polynomial rings Definition-Lemma Let R be a ring and let x be an indeterminate.

Galois Theory TCU Graduate Student Seminar George Gilbert October 2015

Determining elements of minimal index in an infinite family of totally real bicyclic biquadratic number fields

1 Rings 1 RINGS 1. Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism

be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism

Part II Galois Theory

FIELD THEORY. Contents

g(x) = 1 1 x = 1 + x + x2 + x 3 + is not a polynomial, since it doesn t have finite degree. g(x) is an example of a power series.

Recursive definitions on surreal numbers

Lecture 6.3: Polynomials and irreducibility

Homework 4 Algebra. Joshua Ruiter. February 21, 2018

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

Geometry. Relations in SO(3) Supported by Geodetic Angles. J. H. Conway, 1 C. Radin, 2 and L. Sadun Introduction and Results

where c R and the content of f is one. 1

Graduate Preliminary Examination

Theorem 5.3. Let E/F, E = F (u), be a simple field extension. Then u is algebraic if and only if E/F is finite. In this case, [E : F ] = deg f u.

A short proof of Klyachko s theorem about rational algebraic tori

NOTES ON FINITE FIELDS

PRACTICE FINAL MATH , MIT, SPRING 13. You have three hours. This test is closed book, closed notes, no calculators.

University of Southern California, Los Angeles, University of California at Los Angeles, and Technion Israel Institute of Technology, Haifa, Israel

Pacific Journal of Mathematics

Solutions for Field Theory Problem Set 5

Explicit solution of a class of quartic Thue equations

but no smaller power is equal to one. polynomial is defined to be

Domains over which polynomials split

55 Separable Extensions

4. Noether normalisation

SEVERAL PROOFS OF THE IRREDUCIBILITY OF THE CYCLOTOMIC POLYNOMIALS

Section 33 Finite fields

QUADRATIC TWISTS OF AN ELLIPTIC CURVE AND MAPS FROM A HYPERELLIPTIC CURVE

GALOIS THEORY. Contents

Homework 4 Solutions

Homework Problems, Math 200, Fall 2011 (Robert Boltje)

Math 553 Qualifying Exam. In this test, you may assume all theorems proved in the lectures. All other claims must be proved.

ALGEBRA QUALIFYING EXAM SPRING 2012

Local root numbers of elliptic curves over dyadic fields

Definable henselian valuation rings

ESSENTIAL DIMENSION IN MIXED CHARACTERISTIC

THE HALF-FACTORIAL PROPERTY IN INTEGRAL EXTENSIONS. Jim Coykendall Department of Mathematics North Dakota State University Fargo, ND.

Algebra Exam Topics. Updated August 2017

Solutions of exercise sheet 11

arxiv: v1 [math.gr] 3 Feb 2019

Five peculiar theorems on simultaneous representation of primes by quadratic forms

Lecture 7: Polynomial rings

Math 121. Fundamental Theorem and an example

Part VI. Extension Fields

50 Algebraic Extensions

MATH 431 PART 2: POLYNOMIAL RINGS AND FACTORIZATION

A Proof of the Lucas-Lehmer Test and its Variations by Using a Singular Cubic Curve

arxiv: v1 [math.nt] 28 Feb 2018

ON THE DISTRIBUTION OF CLASS GROUPS OF NUMBER FIELDS

CHARACTERIZING INTEGERS AMONG RATIONAL NUMBERS WITH A UNIVERSAL-EXISTENTIAL FORMULA

How many units can a commutative ring have?

GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2)

NUMBER FIELDS WITHOUT SMALL GENERATORS

DICKSON INVARIANTS HIT BY THE STEENROD SQUARES

Field Theory Problems

Factorization in Integral Domains II

ON THE ELEMENTS OF THE CONTINUED FRACTIONS OF QUADRATIC IRRATIONALS

ON 2-CLASS FIELD TOWERS OF SOME IMAGINARY QUADRATIC NUMBER FIELDS

Section III.6. Factorization in Polynomial Rings

Twists of elliptic curves of rank at least four

Practice problems for first midterm, Spring 98

Hamburger Beiträge zur Mathematik

Chapter 4. Fields and Galois Theory

Certain monomial characters of p -degree

Quasi-reducible Polynomials

ALGORITHMS FOR ALGEBRAIC CURVES

Section V.8. Cyclotomic Extensions

Automorphism Polynomials in Cyclic Cubic Extensions

Transcription:

ON GENERIC POLYNOMIALS FOR DIHEDRAL GROUPS ARNE LEDET Abstract. We provide an explicit method for constructing generic polynomials for dihedral groups of degree divisible by four over fields containing the appropriate cosines. 1. Introduction Given a field K and a finite group G, it is natural to ask what a Galois extension over K with Galois group G looks like. One way of formulating an answer is by means of generic polynomials: Definition. A monic separable polynomial P (t, X) K(t)[X], where t = (t 1,..., t n ) are indeterminates, is generic for G over K, if it satsifies the following conditions: (a) Gal(P (t, X)/K(t)) G; and (b) whenever M/L is a Galois extension with Galois group G and L K, there exists a 1,..., a n L) such that M is the splitting field over L of the specialised polynomial P (a 1,..., a n, X) L[X]. The indeterminates t are the parameters. Thus, if P (t, X) is generic for G over K, every G-extension of fields containing K looks just like the splitting field of P (t, X) itself over K(t). This concept of a generic polynomial was shown by Kemper [Ke2] to be equivalent (over infinite fields) to the concept of a generic extension, as introduced by Saltman in [Sa]. For examples and further references, we refer to [JL&Y]. The inspiration for this paper came from [H&M], in which Hashimoto and Miyake describe a one-parameter generic polynomial for the dihedral group D n of degree n (and order 2n), provided that n is odd, that char K n, and that K contains the n th cosines, i.e., ζ + 1/ζ K for a primitive n th root of unity ζ. 1991 Mathematics Subject Classification. 12F12, 12E10. 1

2 ARNE LEDET A more general but considerably less elegant construction of generic polynomials for odd-degree dihedral groups in characteristic 0 was given in [Le1]. Also, a construction of generic polynomials for dihedral groups of even degree, assuming the appropriate roots of unity to be in the base field, is given by Rikuna in [Ri]. Remark. In this paper, the dihedral group of degree n, n 3, is the group D n of symmetries of a regular n-sided polygon. Thus, it has order 2n, and is generated by elements σ and τ, with relations σ n = τ 2 = 1 and τσ = σ 1 τ. For dihedral groups of even degree, it is not possible to construct a one-parameter generic polynomial, since the essential dimension is at least 2, cf. [B&R]. However, assuming the appropriate cosines are in the base field, it is possible to produce a two-parameter polynomial. We will consider the case where the degree is a multiple of four, showing: Theorem. Let K be a field of characteristic not dividing 2n, and assume that K contains the 4n th cosines, n 1. Also, let be given by Then the polynomial q(x) = X 4n + 2n 1 i=1 a i X 2i Z[X] q(x + 1/X) = X 4n + 1/X 4n 2. P (s, t, X) = X 4n + 2n 1 i=1 a i s 2n i X 2i + t is generic for D 4n over K, with parameters s and t. Remark. It is a well-known folklore result from algebra that X m + 1/X m is an integral polynomial in X + 1/X for all natural numbers m. Also, expressing X m + 1/X m in terms of X + 1/X is a simple recursive procedure. Thus, finding q(x) for any given n is straightforward. That q(x) has no terms of odd degree follows directly from the procedure for producing it: If m is even, the expression for X m +1/X m will involve only even powers of X+1/X, and if m id odd, it will involve only odd power of X + 1/X. That q(x) has no constant term is clear, since q(0) = q(i + 1/i) = 0.

ON GENERIC POLYNOMIALS FOR DIHEDRAL GROUPS 3 Example. If char K 2, the polynomial X 4 4sX 2 + t is generic for D 4 over K. This is also easily seen directly. Example. If char K 2 and 2 K, the polynomial is generic for D 8 over K. X 8 8sX 6 + 20s 2 X 4 16s 3 X 2 + t Remark. The dihedral group D 8 has a generic polynomial over any field of characteristic 2, cf. [Bl] and [Le2]. In the general case, however, the polynomial is considerably more complicated. Example. If char K 2, 3 and 3 K, the polynomial X 12 12sX 10 + 54s 2 X 8 112s 3 X 6 + 105s 4 X 4 36s 5 X 2 + t is generic for D 12 over K. Example. If char K 2 and X 16 16sX 14 + 104s 2 X 12 352s 3 X 10 + is generic for D 16 over K. 2 + 2 K, the polynomial 660s 4 X 8 672s 5 X 6 + 336s 6 X 4 64s 7 X 2 + t Remark. If n is odd, the dihedral group D 2n is isomorphic to D n C 2, and can thus be described using the result by Hashimoto and Miyake. 2. The proof We let K be a field of characteristic not dividing 2n containing the 4n th cosines for an n 1. For convenience, we let ζ denote a primitive 4n th root of unity, and define C = 1 (ζ + 1/ζ), S 2 = 1 i(1/ζ ζ), 2 where i = 1 = ζ n. C and S are then elements in K, and we get a two-dimensional faithful representation of D 4n over K by ( C S σ S C ), τ ( ) 1 0. 0 1 Correspondingly, we get a linear action of D 4n on the rational function field K(u, v) by σ : u Cu + Sv, v Su + Cv

4 ARNE LEDET and τ : u u, v v. The Galois extension K(u, v)/k(u, v) D 4n is an example of a linear Noether extension, and by a general result (which we will recapitulate below), the fixed field K(u, v) D 4n is rational: K(u, v) D 4n = K(s, t). Theorem 7 in [K&Mt] then gives us that any polynomial over K(s, t) with splitting field K(u, v) will be generic. We will find s and t as follows: D 4n acts (non-faithfully) on the subfield K(u/v), and by Lüroth s Theorem the fixed field is rational: K(u/v) D 4n = K(w). Additionally, by [Ke1, Prop.1.1(a)], the extension K(u, v) D 4n /K(u/v) D 4n is rational, generated by any homogeneous invariant element of minimal positive degree, with this degree equal to the order of the kernel of D 4n s action on K(u/v). In this case, the kernel has order 2, and as our invariant homogeneous element we can take s = u 2 + v 2. As w, we pick w = (u2 + v 2 ) 2n σj u : It is clearly homogeneous of degree 0, i.e., in K(u/v), and it is trivial to check that numerator and denominator are D 4n -invariant. Moreover, if we write it in terms of u/v, as w = [(u/v)2 + 1] 2n σj u/v, it has numerator and denominator of degree 4n, meaning that the extension K(u/v)/K(w) has degree 4n. On the other hand, K(w) K(u/v) D 4n, and K(u/v)/K(u/v) D 4n has degree 4n. If follows that K(u/v) D 4n = K(w). All in all, we therefore have that and with K(u, v) D 4n = K(s, w), t = 2 4n σ j 4n s2n u = 2 w, we also have K(u, v) D 4n = K(s, t). As our generic polynomial, we take the minimal polynomial for 2u over K(s, t): P (s, t, X) = (X 2σ j u).

ON GENERIC POLYNOMIALS FOR DIHEDRAL GROUPS 5 It is clear that this polynomial has some of the properties from the Theorem: It is monic of degree 4n, the constant term is t, and it is a polynomial having no terms of odd degree. This last part follows from σ 2n u = u. To complete the proof, we now need to prove: Lemma. For 1 k < 2n, we have (1) e 2k ({ 2σ j u} ) = a 2n ks k, where a 2n k is the degree-(4n 2k) coefficient in q(x), and e 2k denotes the elementary symmetric symbol of degree 2k. Proof. For simplicity, we will simply conduct all computations over R. This is permissible, since the algebraic behaviour of C and S matches that of cos 2π 2π and sin, and since the results here will give integer 4n 4n coefficients. First of all, we prove that q(x) = (X 2 cos 2πj 4n ) : Let q 2 (X) be the polynomial on the right-hand side. Then q 2 (X + 1/X) = (X + 1/X 2 cos 2πj 4n ) = X 4n (X 2 2 cos 2πj X + 1) 4n = X 4n [(X e 2πij/4n )(X e 2πij/4n )] = X 4n (X e 2πij/4n ) 2 = X 4n (X 4n 1) 2 = X 4n + X 4n 2 = q(x + 1/X). This proves q(x) = q 2 (X). Now, both the left and right hand sides of (1) are homogeneous polynomials in u and v of degree 2k. To show that they are equal, it is therefore enough to show that they coincide on more than 2k ray classes.

6 ARNE LEDET Note that over R, (1) takes the form (2) e 2k ({ 2(cos 2πj 2πj u + sin 4n 4n v)} ) = e 2k ({ 2 cos 2πj 4n } )(u2 + v 2 ) k. First, consider the ray classes through (cos 2πl 2πl, sin ), 0 l < 2n: 4n 4n Here, (2) becomes e 2k ({ 2 cos 2π(j l) } 4n ) = e 2k({ 2 cos 2πj 4n } ), which is trivially true. This provides us with 2n ray classes. Next, consider the ray class through (cos 2π(2l+1), sin 2π(2l+1) ), 0 l < 2n: Here, (2) reduces to e 2k ({ 2 cos 2π(2(j l) 1) } ) = e 2k({ 2 cos 2πj 4n } ), or e 2k ({ 2 cos 2π(2j 1) } ) = e 2k({ 2 cos 2πj 4n } ). The claim is then that q(x) and r(x) = differ only in their constant term. Since r(x + 1/X) = (X 2 cos 2π(2j 1) ) (X + 1/X 2 cos 2π(2j 1) ) = X 4n (X 2 2 cos 2π(2j 1) X + 1) = X 4n [(X e 2πi(2j 1)/ )(X e 2πi(2j 1)/ )] = X 4n (X e 2πi(2j 1)/4n ) 2 = X 4n( X 4n + 1) 2 = X 4n + X 4n + 2, this is in fact true. Thus, we get another 2n ray classes on which (2) holds, and can conclude that the polynomials are equal. Remark. As a consequence of these results, we note that K[u, v] D 4n = K[s, t] : Clearly, K[u, v] is integral over K[s, t], and K[s, t] is integrally closed. Therefore, K[u, v] D 4n = K(s, t) K[u, v] = K[s, t]. This is an explicit

ON GENERIC POLYNOMIALS FOR DIHEDRAL GROUPS 7 special case of general results by Shephard Todd and Chevalley about polynomial invariants for reflection groups, cf. [N&S, Thm. 7.1.4]. References [Bl] E. V. Black, Deformations of dihedral 2-group extensions of fields, Trans. Amer. Math. Soc. 351 (1999), 3229 3241. [B&R] J. Buhler & Z. Reichstein, On the essential dimension of a finite group, Compositio Mathematica 106 (1997), 159 179. [H&M] K. Hashimoto & K. Miyake, Inverse Galois problem for dihedral groups, Developments in Mathematics 2, Kluwer Academic Publishers, 1999, 165 181. [JL&Y] C. U. Jensen, A. Ledet & N. Yui, Generic Polynomials: Constructive Aspects of the Inverse Galois Problem, MSRI Publication Series 45, Cambridge University Press, 2002. [Ke1] G. Kemper, A constructive approach to Noether s Problem, Manuscripta Math. 90 (1996), 343 363. [Ke2], Generic polynomials are descent-generic, Manuscripta Math. 105 (2001), 139 141. [K&Mt] G. Kemper & E. Mattig, Generic polynomials with few parameters, J. Symbolic Computation 30 (2000), 843 857. [Le1] A. Ledet, Dihedral extensions in characteristic 0, C. R. Math. Rep. Canada 21 (1999), 46 52. [Le2], Generic polynomials for quasi-dihedral, dihedral and modular extensions of order 16, Proc. Amer. Math. Soc. 128 (2000), 2213-2222. [N&S] M. D. Neusel & L. Smith, Invariant theory of finite groups, Mathematical Surveys and Monographs 94, AMS, 2002. [Ri] Y. Rikuna, Explicit constructions of generic polynomials for some elementary groups, Galois Theory and Modular Forms (eds. K. Hashimoto, K. Miyake & H. Nakamura), Developments in Mathematics 11, Kluwer Academic Publishers, 2004, 173 194. [Sa] D. J. Saltman, Generic Galois extensions and problems in field theory, Adv. Math. 43 (1982), 250 283. Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409 1042 E-mail address: arne.ledet@ttu.edu