Heavy Vector Searches at the LHC

Similar documents
arxiv: v2 [hep-ph] 12 Apr 2017

Higgs Searches at CMS

Probing Higgs in Type III Seesaw at the Large Hadron Collider

LHC resonance searches in tt Z final state

Top quark effects in composite vector pair production at the LHC

Tutorial 8: Discovery of the Higgs boson

Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University

HIGGS + 2 JET PRODUCTION AT THE LHC

A Search for Vector Diquarks at the CERN LHC

Measurements of the Higgs Boson at the LHC and Tevatron

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Measurements of Fermionic Couplings of the Standard Model Higgs Boson using the bb, ττ and µµ Decay Channels with the ATLAS Detector

The inert doublet model in light of LHC and XENON

Higgs Property Measurement with ATLAS

Distinguishing Z' physics with early LHC data

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet

Search for Higgs beyond the Standard Model with the ATLAS & CMS Detectors Rencontres du Vietnam, Quy Nhon Nikolina Ilic on behalf of the ATLAS and

A Minimal Composite Goldstone Higgs model

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN

Higgs and New Physics at ATLAS and CMS

Top properties and ttv LHC

SEARCH FOR RARE & EXOTIC HIGGS DECAY AND PRODUCTION: STATUS AND PERSPECTIVES

ATLAS Run II Exotics Results. V.Maleev (Petersburg Nucleare Physics Institute) on behalf of ATLAS collaboration

Searching for the Higgs at the LHC

Dark Matter and Gauged Baryon Number

Dark Matter Phenomenology

Hints from Run 1 and Prospects from Run 2 at CMS. Qiang Li Peking University, Beijing, China

µ = (15.4 ± 0.2) 10 10

ATLAS Discovery Potential of the Standard Model Higgs Boson

Exotic W + W Z Signals at the LHC

5. Higgs Searches. The Higgs-mechanism in the SM Yukava-coupling, masses of fermions Higgs Production: Higgs decay channels. Higgs search at the LHC

Discovery potential of the SM Higgs with ATLAS

D0 Higgs Results and Tevatron Higgs Combination

Higgs Production at LHC

Combination of Higgs boson searches at ATLAS

The HL-LHC physics program

Phenomenology of the Higgs Triplet Model at the LHC

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA

Constraining total width of Higgs boson at the LHC. Kajari Mazumdar Tata Institute of Fundamental Research Mumbai

Search for tt(h bb) using the ATLAS detector at 8 TeV

Baryon and Lepton Number Violation at the TeV Scale

Composite Higgs Phenomenology at the LHC and Future Colliders

Baryonic LHC

ATLAS Di-fermion Results. Koji Nakamura (KEK) on behalf of ATLAS Collaboration

Higgs Production at LHC

From the Discovery of the Higgs Boson to the Search for Dark Matter -New results from the LHC-

Searches for heavy neutrinos and high-mass ditau resonances with CMS

Nonthermal Dark Matter & Top polarization at Collider

mh = 125 GeV and SUSY naturalness

Searches for Beyond SM Physics with ATLAS and CMS

The Higgs boson. Marina Cobal University of Udine

Kinematics in Higgs Fits

Summary Introduction Description of the Resonances s-channel Processes Fusion Processes Drell-Yan Processes Conclusions

Dark Matter searches in ATLAS: Run 1 results and Run 2 prospects

Single Higgs production at LHC as a probe for an anomalous Higgs self coupling

2 ATLAS operations and data taking

New Higgs Production Mechanism in Composite Higgs Models

Probing the charged Higgs boson at the LHC in the CP-violating type-ii 2HDM

Exotic scalars. Stefania Gori. Second MCTP Spring Symposium on Higgs Boson Physics. The University of Chicago & Argonne National Laboratory

Higgs Signals and Implications for MSSM

DIRAC vs MAJORANA? Neutrinos are the only electrically neutral fermions. ff (quarks, charged leptons) If a fermion is charged, ff

Walking Technihadrons at the LHC

Physics Department, Ankara University, Tandoğan, Ankara, TURKEY. Physics Department, Ankara University,

Search for Invisible Decay of Higgs boson at LHC

ATLAS+CMS Higgs run 1 Combinations

Looking through the Higgs portal with exotic Higgs decays

Motivation: Strongly-coupled Dark Sectors near the Weak Scale

Adam Falkowski. 750 GeV discussion. LAL Orsay, 18 January 2016

Higgs search in WW * and ZZ *

Pseudoscalar Higgs boson signatures at the LHC

Phenomenology for Higgs Searches at the LHC

Search for BSM Higgs bosons in fermion decay modes with ATLAS

Search for a new spin-zero resonance in diboson channels at 13 TeV with the CMS experiment

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements

BSM Higgs Searches at ATLAS

Higgs Bosons Phenomenology in the Higgs Triplet Model

Higgs couplings and mass measurements with ATLAS. Krisztian Peters CERN On behalf of the ATLAS Collaboration

Accidental Composite Dark Matter

The Higgs discovery - a portal to new physics

Probing the Majorana nature in radiative seesaw models at collider experiments

Combined Higgs Results

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Search for the exotic decays of the Higgs boson

Physics at Photon Colliders. Prof. Mayda M. Velasco Northwestern University

Recent Developments in Little Higgs Searches. at LHC

The production of additional bosons and the impact on the Large Hadron Collider

HIGGS Bosons at the LHC

Probing p p WWW production and anomalous quartic gauge couplings at CERN LHC and future collider

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ.

Dark Matter in ATLAS

Junichi TANAKA ICEPP, the University of Tokyo. 13 Feb, 2013 in Japan

Phenomenology of a light singlet-like scalar in NMSSM

Higgs Boson Measurements from ATLAS and CMS. Giacinto Piacquadio on behalf of the ATLAS and CMS Collaborations. ICHEP Seoul July 10th, 2018

Large Hadron Electron Collider

VBF SM Higgs boson searches with ATLAS

Search for new dilepton resonances using ATLAS open data

Discussion of QCD aspects of multi boson production measured with the ATLAS detector

Pair production of heavy Q = 2/3 singlets at LHC

Search for Fermionic Higgs Boson Decays in pp Collisions at ATLAS and CMS

The study of the properties of the extended Higgs boson sector within hmssm model

Transcription:

BLV, 15 Ma 17 Heav Vector Searches at the LHC Andrea Thamm JGU Mainz in collaboration with D. Pappadopulo, R. Torre and A. Wulzer based on arxiv:1.31 and work in progress

Heav Vector Resonances heav vectors among the most motivated direct searches since the appear in man NP models Weakl coupled SPIN 1 Strongl coupled Z models, sequential W, Composite Higgs models various colourless vectors SU(3) C SU() L U(1) Y B µ 1 1 Bµ 1 1 1 1 L µ 1 3/ W µ 1 3 Wµ 1 1 3 1 singlets (work in progress) no coupling to quarks studied here! no coupling to fermions [del Aguila, de Blas, Perez-Victoria, arxiv:15.3998 ] simplified model approach

Bridge explicit models Simplified Lagrangian can be matched to explicit models Theor c( p) Ls L( c) Data limit on BR Simplified Lagrangian parameters c fixed in terms of explicit model parameters p translate limits into bounds on simplified model parameters

Bridge bounds are extremel general can be easil used in everone s favorit model explicit models Simplified Lagrangian can be matched to explicit models Theor c( p) Ls L( c) Data limit on BR Simplified Lagrangian parameters c fixed in terms of explicit model parameters p translate limits into bounds on simplified model parameters

Phenomenological Lagrangian L V = 1 D [µv a ] D[µ V ] a + m V V a µ V µa + ig V c H Vµ a H a D $ µ H + g c F Vµ a J µa F g V + g V c VVV abc V a µ V b D [µ V ] c + g V c VVHH V a µ V µa H H V = V +,V,V g c VVW abc W µ a V b µ V c Coupling to SM Vectors Coupling to SM fermions J µa F = X f f L µ a f L W L,Z L,h f g V c H V µ W L,Z L,h V µ f g g V c F c F V J F! c l V J l + c q V J q + c 3 V J 3

Phenomenological Lagrangian L V = 1 D [µv a ] D[µ V ] a + m V V a µ V µa + ig V c H Vµ a H a D $ µ H + g c F Vµ a J µa F g V + g V c VVV abc V a µ V b D [µ V ] c + g V c VVHH V a µ V µa H H V = V +,V,V g c VVW abc W µ a V b µ V c Couplings among vectors do not contribute to V decas do not contribute to single production onl effects through (usuall small) VW mixing irrelevant for phenomenolog onl need (c H,c F )

Phenomenological Lagrangian L V = 1 D [µv a ] D[µ V ] a + m V V a µ V µa + ig V c H Vµ a H a D $ µ H + g c F Vµ a J µa F g V + g V c VVV abc V a µ V b D [µ V ] c + g V c VVHH V a µ V µa H H V = V +,V,V g c VVW abc W µ a V b µ V c Weakl coupled model Strongl coupled model g V tpical strength of V interactions g V g 1 c H g /g V and c F 1 1 <g V apple dimensionless coefficients c i ch cf 1

Production rates DY and VBF production DY = X i,j p V! ij M V 3 dl ij dŝ ŝ=m V VBF = X i,j p can compute production rates analticall easil rescale to different points in parameter space V! W Li W Lj M V model dependent 8 dl W LiW Lj dŝ ŝ=m V model independent quark initial state vector boson initial state dlêds` @pbd 1 1 3 1 1 1 1 1-1 1-1 -3 1-1 -5 1-6 1-7 1-8 1-9 1 TeV u i d j HV + L u i u j HV L d i d j HV L d i u j HV - L CTEQ6L1 Hm = s`l 6 8 1 dlêds` @pbd 1 1-1 1-1 -3 1-1 -5 1-6 1-7 1-8 1-9 1-1 1-11 1-1 1-13 1-1 1-15 1 TeV W L + Z L HV + L W L + W L - HV L W L - Z L HV - L CTEQ6L1 Hm = M W L 6 8 1 s` = M V @TeVD s` = M V @TeVD

V ±!ff ' V!ff ' N c[f] V!W + L W L Deca widths relevant deca channels: di-lepton, di-quark, di-boson ' V ±!W ± L Z L g c F g V MV 96, ' g V c H M V 19 V!Z L h ' V ±!W ± L h ' g V c H M V 19 1+O( ) 1+O( ) Weakl coupled model Strongl coupled model g V c H ' g c F /g V ' g /g V g V c H ' g V, g c F /g V ' g /g V BRHV Æ XL.1.1.8.6. Model A W + W - Zh uu dd g V = 1 ll è nn bb tt è BRHV Æ XL 1-1 1 - Model B W + W - Zh uu dd ll è nn bb tt è. 1-3 g V = 3 5 1 15 5 3 35 M @GeVD 5 1 15 5 3 35 M @GeVD

LHC bounds Weakl coupled model Strongl coupled model 1 1 shpp Æ VL @pbd 1 3 1 1 1 1 1-1 1-1 -3 theoreticall excluded 1-1 3 M V @GeVD excluded for masses < 3 TeV di-lepton most stringent di-boson searches < 1- TeV CMS A gv =1 σ(pp V) [pb] 1 3 1 1 1 1 1-1 1-1 -3 theoreticall excluded V Æ tt V ± Æ tb V Æ ll V ± Æ l ± n V ± Æ W ± Z Æ 3l ± n V ± Æ W ± Z Æ jj V Æ WW Æ jj V Æ WW Æ lnqq _ ' V Æ tt pp Æ V pp Æ V + 1-1 3 M V [GeV] CMS B gv =3 similar bounds for ATLAS excluded for masses < 1.5 TeV unconstrained for larger g V di-boson most stringent in excluded region G F, m Z not reproduced

Heav Vector Resonances man searches at 8 and 13 TeV

Limits on parameter space experimental limits converted into (c H,c F ) plane ellow: CMS l + analsis dark blue: CMS light blue: CMS WZ! jj black: bounds from EWPT WZ! 3l 6 6 6 c F - * B gv =1 A gv =1 c F - * B gv =3 A gv =3 c F - * B gv =6 A gv =6 - - - -6 M V = TeV g V =1-6 M V = TeV g V =3-6 M V = TeV g V =6-1. -.5..5 1. -1. -.5..5 1. -1. -.5..5 1. c H c H c H l dominates EWPT not competitive onl 1. c F. 1 allowed EWPT become comparable di-bosons more and more relevant strongl coupled model evades bounds from direct searches [Pappadopulo, Thamm, Torre, Wulzer, arxiv:1.31 ]

Limits on parameter space ATLAS: W to WZ ellow: CMS l + analsis dark blue: CMS light blue: CMS WZ! jj black: bounds from EWPT WZ! 3l [ATLAS, arxiv:16.56 ] [Pappadopulo, Thamm, Torre, Wulzer, arxiv:1.31 ] ATLAS: V to HV to (bb)(lep lep) [ATLAS, arxiv:153.889 ] CMS: Z to HZ to (tau tau)(qq) [CMS, arxiv:15.99 ]

Combination of searches simplified model makes combination of searches eas arxiv:1.31 to appear Triplet of SU()L Singlet of SU()L Singlet of SU()L

Limit setting

Limit setting SM s SM Hpp Æ l + l - L Signal onl shpp Æ V Æ l + l - L Signal BW shpp Æ V L â BRHV Æ l + l - L SM + Signal Hwêo interferencel shpp Æ V Æ l + l - L + s SM Hpp Æ l + l - L SM + BW Hwêo interferencel shpp Æ V L â BRHV Æ l + l - L + s SM Hpp Æ l + l - L Effect of interference -1 < < 1 want limits on BR since model-independent can be easil reinterpreted but depends on details of analsis (assumed total width of resonance) discuss two (well known, but often forgotten) effects example: di-lepton invariant mass distribution TeV resonance 3.5 TeV resonance dsêdml + l - @1-7 pbêgevd 8 6 M V = TeV G êm V = 1 % 1-1 - -1. -.5..5 1. dsêdml + l - @1-7 pbêgevd 3 1-5 -1-15 - -1. -.5..5 1. M V = 3.5 TeV G êm V = 11 % 1 1 16 18 6 8 3 3 3 36 38

Limit setting 1. Interference with SM background SM s SM Hpp Æ l + l - L Signal onl shpp Æ V Æ l + l - L Signal BW shpp Æ V L â BRHV Æ l + l - L SM + Signal Hwêo interferencel shpp Æ V Æ l + l - L + s SM Hpp Æ l + l - L SM + BW Hwêo interferencel shpp Æ V L â BRHV Æ l + l - L + s SM Hpp Æ l + l - L Effect of interference -1 < < 1 dsêdml + l - @1-7 pbêgevd 8 6 M V = TeV G êm V = 1 % 1-1 - -1. -.5..5 1. constructive dsêdml + l - @1-7 pbêgevd 3 1-5 -1-15 - -1. -.5..5 1. M V = 3.5 TeV G êm V = 11 % 1 1 16 18 destructive (pp! V ) BR (V! ll) depends on S/B ratio dashed green: signal + background with no interference green shaded region: constructive and destructive interference can be large effect interference vanishes exactl at, is odd around this point [M V,M V + ] less sensitive ŝ = M V background 6 8 3 3 3 36 38 ˆI(ŝ) / (ŝ M V ) (ŝ M V ) + M V [Accomando, Becciolini, Balaev, Moretti, Shepherd, arxiv:13.67 ] [Accomando, Becciolini, de Curtis, Dominici, Fedeli, Shepherd, arxiv:111.713]

Limit setting 1. Interference with SM background SM s SM Hpp Æ l + l - L Signal onl shpp Æ V Æ l + l - L Signal BW shpp Æ V L â BRHV Æ l + l - L SM + Signal Hwêo interferencel shpp Æ V Æ l + l - L + s SM Hpp Æ l + l - L SM + BW Hwêo interferencel shpp Æ V L â BRHV Æ l + l - L + s SM Hpp Æ l + l - L Effect of interference -1 < < 1 dsêdml + l - @1-7 pbêgevd 8 6 M V = TeV G êm V = 1 % 1-1 - -1. -.5..5 1. constructive dsêdml + l - @1-7 pbêgevd 3 1-5 -1-15 - -1. -.5..5 1. M V = 3.5 TeV G êm V = 11 % 1 1 16 18 destructive parameterize interference as inset plot: (pp! V ) BR (V! ll), 1 Full() BW 6 8 3 3 3 36 38 background within mass window, deviation is < 1% d Full dm l + l () = d B dm l + l + d S dm l + l + d I dm l + l [Accomando, Becciolini, Balaev, Moretti, Shepherd, arxiv:13.67 ] [Accomando, Becciolini, de Curtis, Dominici, Fedeli, Shepherd, arxiv:111.713]

dsêdml + l - @1-7 pbêgevd. Distortion from BW 8 6 M V = TeV G êm V = 1 % 1-1 - -1. -.5..5 1. Limit setting 1 1 16 18 dsêdml + l - @1-7 pbêgevd 3 1-5 -1-15 SM s SM Hpp Æ l + l - L Signal onl shpp Æ V Æ l + l - L Signal BW shpp Æ V L â BRHV Æ l + l - L SM + Signal Hwêo interferencel shpp Æ V Æ l + l - L + s SM Hpp Æ l + l - L SM + BW Hwêo interferencel shpp Æ V L â BRHV Æ l + l - L + s SM Hpp Æ l + l - L Effect of interference -1 < < 1 [Accomando, Becciolini, Balaev, Moretti, Shepherd, arxiv:13.67 ] [Accomando, Becciolini, de Curtis, Dominici, Fedeli, Shepherd, arxiv:111.713] - -1. -.5..5 1.! due to steep fall of parton luminosities at large energies total BW cross section d S dm l + l = X i,j 3 in peak region onl M l + l M V V!q i q j M V = 3.5 TeV G êm V = 11 % 6 8 3 3 3 36 38 V!l + l (M l + l M V ) + M V M l + l M V BW dl ij dŝ ŝ=m l + l ' dl ij dŝ ŝ=m V d S dm l + l = BR V!l+ l BW(M l + l ; M V, )

dsêdml + l - @1-7 pbêgevd. Distortion from BW 8 6 M V = TeV G êm V = 1 % 1-1 - -1. -.5..5 1. Limit setting 1 1 16 18 dsêdml + l - @1-7 pbêgevd 3 1-5 -1-15 SM s SM Hpp Æ l + l - L Signal onl shpp Æ V Æ l + l - L Signal BW shpp Æ V L â BRHV Æ l + l - L SM + Signal Hwêo interferencel shpp Æ V Æ l + l - L + s SM Hpp Æ l + l - L SM + BW Hwêo interferencel shpp Æ V L â BRHV Æ l + l - L + s SM Hpp Æ l + l - L Effect of interference -1 < < 1 [Accomando, Becciolini, Balaev, Moretti, Shepherd, arxiv:13.67 ] [Accomando, Becciolini, de Curtis, Dominici, Fedeli, Shepherd, arxiv:111.713] - -1. -.5..5 1.! assumption depends on variation of parton luminosities M V = 3.5 TeV G êm V = 11 % 6 8 3 3 3 36 38 BW M l + l M V dl ij dŝ ŝ=m l + l agreement better for small width parton luminosities decrease faster at larger masses however, in peak region deviation < 1% ' dl ij dŝ ŝ=m V

dsêdml + l - @1-7 pbêgevd Conclusion 8 6 M V = TeV G êm V = 1 % 1-1 - -1. -.5..5 1. Limit setting 1 1 16 18 dsêdml + l - @1-7 pbêgevd 3 1-5 -1-15 SM s SM Hpp Æ l + l - L Signal onl shpp Æ V Æ l + l - L Signal BW shpp Æ V L â BRHV Æ l + l - L SM + Signal Hwêo interferencel shpp Æ V Æ l + l - L + s SM Hpp Æ l + l - L SM + BW Hwêo interferencel shpp Æ V L â BRHV Æ l + l - L + s SM Hpp Æ l + l - L Effect of interference -1 < < 1 [Accomando, Becciolini, Balaev, Moretti, Shepherd, arxiv:13.67 ] [Accomando, Becciolini, de Curtis, Dominici, Fedeli, Shepherd, arxiv:111.713] - -1. -.5..5 1.! M V = 3.5 TeV G êm V = 11 % 6 8 3 3 3 36 38 BW onl limits set on peak region give model independent bounds (give bounds on BR for each mass and width) searches sensitive to the tail onl valid in the assumed model, not reusable

Conclusions model independent strateg to stud heav spin-1 triplets extremel useful to present results in terms of simplified model parameters allows eas reinterpretation limits should be set on BR b focussing on the on-shell region