General Properties of Approaches Maximizing Power Yield in Thermo-Chemical Systems

Similar documents
Maximization of Power Yield in Thermal and Chemical Systems

The Variance-Covariance Matrix

Consider a system of 2 simultaneous first order linear equations

t=0 t>0: + vr - i dvc Continuation

9. Simple Rules for Monetary Policy

Conventional Hot-Wire Anemometer

Chapter 13 Laplace Transform Analysis

State Observer Design

Advanced Queueing Theory. M/G/1 Queueing Systems

Effect of engine parameters on turbocharger second law efficiency in turbocharged diesel engines

FAULT TOLERANT SYSTEMS

Supplementary Figure 1. Experiment and simulation with finite qudit. anharmonicity. (a), Experimental data taken after a 60 ns three-tone pulse.

EE243 Advanced Electromagnetic Theory Lec # 10: Poynting s Theorem, Time- Harmonic EM Fields

Dynamic modeling, simulation and control of a hybrid driven press mechanism

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns

Thermodynamic Properties of the Harmonic Oscillator and a Four Level System

Convergence of Quintic Spline Interpolation

Lecture 4 : Backpropagation Algorithm. Prof. Seul Jung ( Intelligent Systems and Emotional Engineering Laboratory) Chungnam National University

ELEN E4830 Digital Image Processing

Theoretical Seismology

CIVL 8/ D Boundary Value Problems - Triangular Elements (T6) 1/8

Frequency Response. Response of an LTI System to Eigenfunction

innovations shocks white noise

"Science Stays True Here" Journal of Mathematics and Statistical Science, Volume 2016, Science Signpost Publishing

CONTINUOUS TIME DYNAMIC PROGRAMMING

Wave Superposition Principle

Safety and Reliability of Embedded Systems. (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Stochastic Reliability Analysis

Safety and Reliability of Embedded Systems. (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Stochastic Reliability Analysis

One dimensional steady state heat transfer of composite slabs

Problem 1: Consider the following stationary data generation process for a random variable y t. e t ~ N(0,1) i.i.d.

Homework: Introduction to Motion

CSE 245: Computer Aided Circuit Simulation and Verification

Ergodic Capacity of a SIMO System Over Nakagami-q Fading Channel

SIMEON BALL AND AART BLOKHUIS

Identification of the thermo-physical parameters of an anisotropic material by inverse problem

Partition Functions for independent and distinguishable particles

Surface Impedance of Superconductors and Normal Conductors in EM Simulators 1

Sun and Geosphere, 2008; 3(1): ISSN

Transient Analysis of Two-dimensional State M/G/1 Queueing Model with Multiple Vacations and Bernoulli Schedule

Solutions of the linearized Richards equation with arbitrary boundary and initial conditions: flux and soil moisture respectively

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

On the Speed of Heat Wave. Mihály Makai

Chapter 9 Transient Response

8. Queueing systems. Contents. Simple teletraffic model. Pure queueing system

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION

Chapters 2 Kinematics. Position, Distance, Displacement

Engineering Circuit Analysis 8th Edition Chapter Nine Exercise Solutions

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

Grand Canonical Ensemble

Relative controllability of nonlinear systems with delays in control

Study on Driver Model Parameters Distribution for Fatigue Driving Levels Based on Quantum Genetic Algorithm

Final Exam : Solutions

Determination of effective atomic numbers from mass attenuation coefficients of tissue-equivalent materials in the energy range 60 kev-1.

Chapter 7 Stead St y- ate Errors

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

10.5 Linear Viscoelasticity and the Laplace Transform

Chapter 7. Now, for 2) 1. 1, if z = 1, Thus, Eq. (7.20) holds

Implementation of the Extended Conjugate Gradient Method for the Two- Dimensional Energized Wave Equation

OUTLINE FOR Chapter 2-2. Basic Laws


Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Yutaka Suzuki Faculty of Economics, Hosei University. Abstract

Bethe-Salpeter Equation Green s Function and the Bethe-Salpeter Equation for Effective Interaction in the Ladder Approximation

Chap 2: Reliability and Availability Models

Mechanics Physics 151

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

Control Systems (Lecture note #6)

Mechanics Physics 151

MECE 3320 Measurements & Instrumentation. Static and Dynamic Characteristics of Signals

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization

Dynamic Power Allocation in MIMO Fading Systems Without Channel Distribution Information

Logistic equation of Human population growth (generalization to the case of reactive environment).

An analytical MOS Transistor Model Dedicated to Crosstalk Noise Evaluation

Transfer function and the Laplace transformation

Comparative Study of Finite Element and Haar Wavelet Correlation Method for the Numerical Solution of Parabolic Type Partial Differential Equations

Charging of capacitor through inductor and resistor

Guaranteed Cost Control for a Class of Uncertain Delay Systems with Actuator Failures Based on Switching Method

Chapter 12 Introduction To The Laplace Transform

arxiv: v1 [math.ap] 16 Apr 2016

Response of MDOF systems

First-order piecewise-linear dynamic circuits

EXERCISE - 01 CHECK YOUR GRASP

ELECTRONIC DEVICES BIPOLAR JUNCTION TRANSISTOR. Piotr Dziurdzia, Ph.D C-3, room 413; tel ,

Published in: Proceedings of the Twenty Second Nordic Seminar on Computational Mechanics

H is equal to the surface current J S

Bandlimited channel. Intersymbol interference (ISI) This non-ideal communication channel is also called dispersive channel

A THREE COMPARTMENT MATHEMATICAL MODEL OF LIVER

Joint State and Parameter Estimation by Extended Kalman Filter (EKF) technique

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

Mitigation of Inrush Current in Load Transformer for Series Voltage Sag Compensator

Problem analysis in MW frequency control of an Interconnected Power system using sampled data technique

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Lecture 2: Current in RC circuit D.K.Pandey

Boosting and Ensemble Methods

Motion in Two Dimensions

Analysis of influential factors responsible for the effect of tax reduction on GDP

Reduced The Complexity of Soft Input Soft Output Maximum A posteriori Decoder of Linear Block Code By Using Parallel Trellises Structure

Transcription:

Europan Assocaon or h Dvlopmn o Rnwabl Enrgs, Envronmn and Powr Qualy (EA4EPQ Inrnaonal Conrnc on Rnwabl Enrgs and Powr Qualy (ICREPQ Sanago d Composla (Span, 8h o 30h March, 0 Gnral Proprs o Approachs Maxmzng Powr Yld n hrmo-chmcal Sysms Sanslaw Snuycz Faculy o Chmcal and Procss Engnrng a Warsaw U, Waryńskgo Sr No, Warszawa, 00645 Poland (phon: 00-48856340; ax: 00-4885440; -mal: snuycz@ chp.pw.du.pl Absrac hs rsarch rprsns a hrmodynamc approach o modlng and powr opmzaon o nrgy convrrs, such lk hrmal, solar, chmcal and lcrochmcal ngns. hrmodynamcs lads o convrr s cncy and lmng gnrad powr. Ecncy quaons srv o solv problms o upgradng and downgradng o rsourcs. Ral work yld s a cumulav c oband n a sysm o a rsourc lud, ngns, and an nn bah. Whl opmzaon o sady sysms rqurs usng o drnal calculus and Lagrang mulplrs, dynamc opmzaon nds varaonal calculus and dynamc programmng. h prmary rsul o h sac opmzaon s h lmng powr, whras ha o dynamc opmzaon s a n-ra counrpar o h classcal ponal o rvrsbl work (xrgy. hs ponal dpnds on hrmal coordnas and a dsspaon ndx, h,.. h Hamlonan o h rlad problm o mnmum nropy producon. h gnralzd ponal mpls srongr bounds on work dlvrd or suppld han h rvrsbl ponal. In racng sysms h chmcal any consus a prvalng counrpar o h hrmal cncy. hror, n racng mxurs lux balancs ar appld o drv powr yld n rms o an acv par o chmcal any. Kywords: hrmal cncy, chmcal cncy, nropy producon, ngns. I. INRODUCION Applcaons o hrmodynamcs o n ras lad o soluons whch dscrb varous orms o bounds on powr and nrgy producon (consumpon ncludng n dynamcal cass n-ra gnralzaons o h sandard avalabls. In hs rsarch w ra powr lms n sac and dynamcal nrgy sysms drvn by nonlnar luds ha ar rsrcd n hr amoun or magnud o low, and, as such, play rol o rsourcs. A powr lm s an uppr (lowr bound on powr producd (consumd n h sysm. A rsourc s a valuabl subsanc or nrgy usd n a procss; s valu can b quand by spcyng s xrgy, a maxmum work ha can b oband whn h rsourc rlaxs o h qulbrum. Rvrsbl rlaxaon o h rsourc s assocad wh h classcal xrgy. Whn dsspav phnomna prval gnralzd xrgs ar ssnal. In ac, gnralzd xrgs quany dvaons o h sysm s cncy rom h Carno cncy. An xrgy s oband as h prncpal componn o soluon o h varaonal problm o xrmum work undr suabl boundary condons. Ohr componns o h soluon ar opmal rajcory and opmal conrol. In purly hrmal sysms (hos whou chmcal changs h rajcory s characrzd by mpraur o h rsourc lud, (, whras h conrol s Carno mpraur ( dnd n our prvous work [, ]. For chmcal sysms also chmcal ponal(s µ ( plays a rol. Whnvr ( and µ ( dr rom ( and µ( h rsourc rlaxs wh a n ra, and wh an cncy vcor drn rom h prc cncy. Only whn = and µ = µ h cncy s prc, bu hs corrsponds wh an nnly slow rlaxaon ra o h rsourc o h hrmodynamc qulbrum wh h nvronmnal lud. h srucur o hs papr s as ollows. Scon II dscusss varous aspcs powr opmzaon. Proprs o sady sysms ar oulnd n Sc. III, whras hos o dynamcal ons - n Sc. IV. Scon V dvlops quanav analyss o rsourc downgradng (n h rs rsrvor and oulns proprs o gnralzd ponals or n ras. Scons VI-VIII dscuss varous Hamlon-Jacob-Bllman quaons (HJB quaons or opmal work uncons, as soluons o powr yld problms. Exnsons or smpl chmcal sysms ar oulnd n Sc. IX. h sz lmaon o our papr dos no allow or ncluson o all drvaons o mak h papr sl-conand, hus h radr may nd o urn o som prvous works, [] - [5]. In vw o dculs n gng analycal soluons n complx sysms, drnc quaons and numrcal approachs ar rad n r. [3] whch also dscusss convrgnc o numrcal algorhms o soluons o HJB quaons and rol o Lagrang mulplrs n h dmnsonaly rducon. II. FINIE RESOURCES AND POWER OPIMIZAION Lmd amoun or low o a rsourc workng n an ngn causs a dcras o h rsourc ponal n m (chronologcal or spaal. hs s why suds o h rsourc downgradng apply h dynamcal opmzaon mhods. From h opmzaon vwpon, dynamcal procss s vry on wh squnc o sas, dvlopng hr n h chronologcal m or n (spaal holdup m. h rs group rrs o unsady procsss n non-saonary sysms, h scond group may nvolv sady sa sysms. In a procss o nrgy producon wo rsng rsrvors do nrac hrough an nrgy gnraor (ngn. In hs procss hps://do.org/0.4084/rpqj0.00 38 RE&PQJ, Vol., No.0, Aprl 0

powr low s sady only whn wo rsrvors ar nn. Whn on, say, uppr, rsrvor s n, s ponal mus dcras n m, whch s consqunc o h nrgy balanc. Any n rsrvor s hus a rsourc rsrvor. I s h rsourc propry ha lads o h dynamcal bhavor o h lud and s rlaxaon o h qulbrum wh an nn lowr rsrvor (usually h nvronmn. Alrnavly, lud a a sady low can rplac rsng uppr rsrvor. h rsourc downgradng s hn a sady-sa procss n whch h rsourc lud lows hrough a ppln or sags o a cascad and h lud s sa changs along a sady rajcory. As n h prvous cas h rajcory s a curv dscrbng h lud s rlaxaon owards h qulbrum bwn h lud and h lowr rsrvor (h nvronmn. hs s somms calld acv rlaxaon as s assocad wh h smulanous work producon. I should b conrasd wh dsspav rlaxaon, a wll-known, naural procss bwn a body or a lud and h nvronmn whou any powr producon. Rlaxaon (hr acv or dsspav lads o a dcras o h rsourc ponal (.. mpraur n m. An nvrs o h rlaxaon procss s h on n whch a body or a lud abandons h qulbrum. hs canno b sponanous; rahr h nvrs procss nds a supply o xrnal powr. hs s h procss rrrd o hrmal upgradng o h rsourc, whch can b accomplshd wh a ha pump. III. SEADY SYSEMS h gra dal o rsarch on powr lms publshd o da dals wh saonary sysms, n whch cas boh rsrvors ar nn. o hs cas rr sady-sa analyss o h Chambadal-Novkov-Curzon-Ahlborn ngn (CNCA ngn [6], n whch nrgy xchang s dscrbd by Nwonan law o coolng, or h San-Bolzmann ngn, a sysm wh h radaon luds and h nrgy xchang govrnd by h San-Bolzmann law [7]. Du o hr saonary (causd by h nnnss o boh rsrvors, conrols maxmzng powr ar lumpd o a xd pon n h sa spac. In ac, or h CNCA ngn, h maxmum powr pon may b rlad o h opmum valu o a r (unconsrand conrol varabl whch can b cncy η or Carno mpraur. In rms o rsrvors mpraurs and and nrnal loss acor Φ on nds / op = ( Φ [4]. Fgur. Maxmum powr rlaxaon curv or black radaon whou consran on h mpraur [8]. For h San-Bolzmann ngn xac xprsson or h opmal pon canno b drmnd analycally, y, hs mpraur can b ound graphcally rom h char P=(. Morovr, h mhod o Lagrang mulplrs can succssully b appld [8]. As hr lmnaon rom a s o rsulng quaons s qu asy, h problm s brokn down o h numrcal solvng o a nonlnar quaon or h opmal conrol. Fnally, h so-calld psudo-nwonan modl [4, 5], whch uss sa or mpraur dpndn ha xchang cocn, α( 3, oms, o a consdrabl xn, analycal dculs assocad wh h San-Bolzmann quaon. Applyng hs modl n h so-calld symmrc cas, whr boh rsrvors ar lld up wh radaon, on shows ha h opmal (powr maxmzng Carno mpraur o h radaon ngn s ha or h CNCA ngn,.. [4]. hs quaon s, n ac, a good approxmaon undr h assumpon o ransr cocns dpndn solly on bulk mpraurs o rsrvors. IV. DYNAMICAL SYSEMS h valuaon o dynamcal nrgy yld rqurs h knowldg o an xrmal curv rahr han an xrmum pon. hs s assocad wh applcaon o varaonal mods (o handl unconal xrma n plac o sac opmzaon mhods (o handl xrma o uncons. For xampl, h us o h psudo-nwonan modl o quany h dynamcal nrgy yld rom radaon, gvs rs o an xrmal curv dscrbng h radaon rlaxaon o h qulbrum. hs curv s non-xponal, h consqunc o h nonlnar proprs o h rlaxaon dynamcs. Non-xponal ar also ohr curvs dscrbng h radaon rlaxaon,.g. hos ollowng rom xac modls usng h San-Bolzmann quaon (symmrc and hybrd, [4,5]. Analycal dculs assocad wh dynamcal opmzaon o nonlnar sysms ar svr; hs s why dvrs modls o powr yld and dvrs numrcal approachs ar appld. Opmal (.g. powr-maxmzng rlaxaon curv ( s assocad wh h opmal conrol curv (; hy boh ar componns o h dynamc opmzaon soluon o a connuous problm. In h corrspondng dscr problm, ormulad or numrcal purposs, on sarchs or opmal mpraur squncs { n } and { n }. Varous dscr opmzaon mhods nvolv: drc sarch, dynamc programmng, dscr maxmum prncpl, and combnaons o hs mhods. Mnmum powr suppld o h sysm s dscrbd n a suabl way by uncon squncs R n ( n, n, whras maxmum powr producd by uncons V n ( n, n. Pro-yp prormanc uncon V and cos-yp prormanc uncon R smply dr by sgn,.. V n ( n, n = - R n ( n, n. h bgnnr may nd h chang rom symbol V o symbol R and back as unncssary and conusng. Y, ach uncon s posv n s own, naural rgm o workng (V - n h ngn rang and R - n h ha pump rang. Imporanly, nrgy lms o dynamcal procsss ar nhrnly conncd wh h xrgy uncons, h classcal xrgy and s ra-dpndn xnsons. o oban classcal xrgy rom powr uncons sucs o assum ha h hrmal cncy o h sysm s dncal wh h Carno cncy. On h ohr hand, non-carno cncs lad o hps://do.org/0.4084/rpqj0.00 39 RE&PQJ, Vol., No.0, Aprl 0

gnralzd xrgs. h lar dpnd no only on classcal hrmodynamc varabls bu also on hr ras. hs gnralzd xrgs rr o sa changs n a n m, and can b conrasd wh h classcal xrgs ha rr o rvrsbl quassac procsss volvng n m nnly slowly. h bn oband rom gnralzd xrgs s ha hy dn srongr nrgy lms han hos prdcd by classcal xrgs. Sysmac approach o xrgs (classcal or gnralzd basd on work unconals lads o svral orgnal rsuls n hrmodynamcs o nrgy sysms, n parcular allows o xplan unknown proprs o xrgy o black-body radaon or solar radaon, and o show ha h cncy o h solar nrgy lux ransormaon s qual o h Carno cncy. V. WO WORKS AND FINIE-IME EXERGY wo drn works, h rs assocad wh h rsourc downgradng durng s rlaxaon o h qulbrum and h scond wh h rvrs procss o rsourc upgradng, ar ssnal (Fg.. Durng h approach o h qulbrum ngn mod aks plac n whch work s rlasd, durng h dparur- ha-pump mod occurs n whch work s suppld. Work W dlvrd n h ngn mod s posv by assumpon ( ngn convnon. Squnc o rrvrsbl ngns (CNCA or San-Bolzmann srvs o drmn a ra-dpndn xrgy xndng h classcal xrgy or rrvrsbl, n ra procsss. Bor maxmzaon o a work ngral, procss cncy η has o b xprssd as a uncon o sa and a conrol,.. nrgy lux q or ra d/dτ, o assur h unconal propry (pah dpndnc o h work ngral. h ngraon mus b prcdd by maxmzaon o powr or work a low (h rao o powr and lux o drvng subsanc w o assur an opmal pah. h opmal work s sough n h orm o a ponal uncon ha dpnds on h nd sas and duraon. For appropra boundary condons, h prncpal uncon o h varaonal problm o xrmum work concds wh h noon o an xrgy, h uncon ha characrzs qualy o rsourcs. Fgur. wo works: Lmng work producd and lmng work consumd ar drn n an rrvrsbl procss. h da o an nn numbr o nnsmal CNCA sps, ncssary or xrgy calculaons, s llusrad n Fg.. Each sp s a work-producng (consumng sag wh h nrgy xchang bwn wo luds and h hrmal machn hrough n conducancs. For h radaon ngn ollows rom h San-Bolzmann law ha h cv ransr cocn α o h radaon lud s ncssarly 3 mpraur dpndn, α =. h scond or low- lud rprsns h usual nvronmn, as dnd n h xrgy hory. hs lud posssss s own boundary layr as a dsspav componn, and h corrspondng xchang cocn s α. In h physcal spac, h low drcon o h rsourc lud s along h horzonal coordna x. h opmzr s ask s o nd an opmal mpraur o h rsourc lud along h pah ha xrmzs h work consumd or dlvrd. oal powr oband rom an nn numbr o nnsmal ngns s drmnd as h Lagrang unconal o h ollowng srucur & [, ] = 0 (, d = Gc & ( η(, W d & ( whr 0 s powr gnraon nnsy, G & - rsourc lux, c(-spcc ha, η(, -cncy n rms o sa and conrol, urhr nlargd sa vcor comprsng sa and m, m varabl (rsdnc m or holdup m or h rsourc conacng wh ha ransr surac. Somms on uss a non-dmnsonal m τ, dncal wh h so-calld numbr o h ha ransr uns. No ha, or consan mass low o a rsourc, on can xrmz powr pr un mass lux,.. h quany o work dmnson calld work a low. In hs cas Eq. ( dscrbs a problm o xrmum work. Ingrand 0 s common or boh mods, y h numrcal rsuls gnras dr by sgn (posv or ngn mod; ngn convnon. Whn h rsourc lux s consan a work unconal dscrbng h hrmal xrgy lux pr un lux o rsourc can b oband rom Eq. ( w max d / d = = = c( d. ( d d (, / No ha h ndpndn varabl n hs quaon s,.. s drn han ha n Eq. (. h uncon 0 n Eq. ( conans hrmal cncy uncon, η, dscrbd by a praccal counrpar o h Carno ormula. Whn >, cncy η dcrass n h ngn mod abov η C and ncrass n h ha-pump mod blow η C. A h lm o vanshng ras, d/d = 0 and. hn work o ach mod smpls o h common ngral o h classcal xrgy. For h classcal hrmal xrgy = wmax = c( d = h h ( s s d / d 0. (3 = Nonlnars can hav boh hrmodynamc and knc orgns; h ormr rr, or xampl, o sa dpndn ha capacy, c(, h lar o nonlnar nrgy xchang. Problms wh lnar kncs (Nwonan ha ransr ar an mporan subclass. In problms wh lnar kncs, lud s spcc work a low, w, s dscrbd by an quaon = w[, ] W& / G& = c( d ( c( dτ (4 hps://do.org/0.4084/rpqj0.00 40 RE&PQJ, Vol., No.0, Aprl 0

whr τ x H U α avf α avfv = x = = (5 Gc & Gc & χ s non-dmnsonal m o h procss. Equaon (5 assums ha a rsourc lud lows wh vlocy v hrough cross-scon F and conacs wh h ha ransr xchang surac pr un volum a v []. Quany τ s dncal wh h so-calld numbr o h ha ransr uns. Soluons o work xrmum problms can b oband by: a varaonal mhods,.. va Eulr-Lagrang quaon o varaonal calculus L d L = 0. (6 d & In h xampl consdrd abov,.. or a hrmal sysm wh lnar kncs d d = 0 (7 dτ dτ whch corrsponds wh h opmal rajcory τ / τ (,,, = ( /. (8 τ τ (τ =0 s assumd n Eq. (8. Howvr, h soluon o Eulr-Lagrang quaon dos no conan any normaon abou h opmal work uncon. hs s assurd by solvng h Hamlon-Jacob-Bllman quaon (HJB quaon, [9]. b dynamc programmng va HJB quaon or h prncpal uncon (V or R, also calld xrmum work uncon. For h lnar kncs consdrd max ( c( ( = 0. (9 Obsrv ha all ras ( 0 and and drvavs o V ar valuad a h nal sa (h so-calld orward quaon. h xrmal work uncon V s a uncon o h nal sa and oal duraon. Ar valuaon o opmal conrol and s subsuon o Eq. (9 on obans a nonlnar quaon { ( + c / } = 0 c. (0 whch s h Hamlon-Jacob quaon o h problm. Is soluon can b ound by h ngraon o work nnsy along an opmal pah, bwn lms and. A rvrsbl (pah ndpndn par o V s h classcal xrgy A(,, 0. Modls o mulsag powr producon n squncs o nnsmal ngns []-[5] provd powr gnraon uncons 0 or hrmal Lagrangans l 0 = - 0 and dynamcal consrans. Numrcal mhods apply suabl dscr modls, or gvn ras 0 and. An mporan ssu s convrgnc o hs dscr modls o connuous ons [3]. VI. HJB EQUAIONS FOR NONLINEAR POWER SYSEMS W shall dsplay hr som Hamlon-Jacob-Bllman quaons or powr sysms dscrbd by nonlnar kncs. A suabl xampl s a radaon ngn whos powr ngral s approxmad by a psudo-nwonan modl o radav nrgy xchang assocad wh opmal uncon V (,,, max G& mcm ( Φ υ (, d ( '( whr υ =α( 3 ( -. An alrnav orm uss Carno mpraur xplc n υ [5]. Opmal powr ( can b rrrd o h ngral W& Gm chm cvm υd = 0 & ( ( G χυ υ m cvm Φ 0 & ( ( + ( d. ( ( + χυ + χυ hs procss s dscrbd by a psudolnar kncs d/d = (, conssn wh υ =α( 3 ( - and a gnral orm o HJB quaon or work uncon V s + max 0 (, (, = 0. (3 ( whr 0 s dnd as h ngrand o Eq. ( or (. A mor xac modl or radaon convrson rlaxs h assumpon o h psudo-nwonan ransr and appls h San-Bolzmann law. For a symmrc modl o radaon convrson (boh rsrvors composd o radaon Φ a a W G c β d & = & (. (4 a a ( Φ ( / + 0 h cocn s β σa c ( p s rlad o molar = v h m 0 consan o phoons dnsy p and San-Bolzmann m consan σ. In h physcal spac, powr xponn a=4 or radaon and a= or a lnar rsourc. Wh sa quaon d d β (5 a a = a ( ( / a Φ + [5] appld n gnral Eq. (9 w oban a HJB quaon a a G& ( c Φ (6 + max β = 0 ( a a ( ( / + / Φ + Dynamcs (5 s h characrsc quaon or Eq. (6. For a hybrd modl o radaon convrson (uppr rsrvor composd o h radaon and lowr rsrvor o a Nwonan lud, [5] h powr s Φ W& = G c( ud a a / a a u Φ ug g ( + β + β / τ (7 and h corrspondng Hamlon-Jacob-Bllman quaon s Gc ( ( + max ( a ( + β & (8 a Φ / a u + Φβ a u = 0 + ug / g VII. ANALYICAL ASPECS OF LINEAR AND PSEUDO-NEWONIAN KINEICS In all HJB quaons xrmzd xprssons ar som hamlonans. By applyng h dback conrol opmal drvng mpraur ' or ohr conrol s mplmnd as h hps://do.org/0.4084/rpqj0.00 4 RE&PQJ, Vol., No.0, Aprl 0

quany maxmzng h hamlonan wh rspc o a ach pon o h pah. h maxmzaon o H lads o wo quaons. h rs xprsss opmal conrol ' n rms o and z = - /. For h lnar kncs o Eq. (9 w oban (, 0 = + c( = 0 (9 whras h scond s h orgnal quaon (9 whou maxmzng opraon + ( + c( ( = 0 (0 o oban opmal conrol uncon '(z, on should solv h scond qualy n quaon (9 n rms o ', h rsul s Carno conrol ' n rms o and z = - /, / / = + c. ( hs s nx subsud no (0; h rsul s h nonlnar Hamlon-Jacob quaon + c ( + c / / = 0 ( whch conans h nrgylk (xrmum Hamlonan o h xrmal procss. V H (, = c ( + c / /. (3 For a posvly-dnd H, ach Hamlon-Jacob quaon or opmal work prsrvs h gnral orm o auonomous quaons known rom analycal mchancs and hory o opmal conrol. Exprssng xrmum Hamlonan (3 n rms o sa varabl and Carno conrol ' ylds an nrgy-lk uncon sasyng h ollowng rlaons E(, u 0 ( = 0 u = c (4 u E s h Lgndr ransorm o h work lagrangan l 0 = - 0 wh rspc o h ra u = d/dτ. Assumng a numrcal valu o h Hamlonan, say h, on can xplo h consancy o H o lmna /. Nx combnng quaon H=h wh opmal conrol (, or wh an quvaln rsul or nrgy low conrol u= - / u =. (5 c V + / ylds opmal ra u= & n rms o mpraur and h Hamlonan consan h & = { ± h / c ( ± h / c } (6 A mor gnral orm o hs rsul whch appls o sysms wh nrnal dsspaon (acor Φ and appls o h psudo-nwonan modl o radaon s hσ h & σ (7 = ± ± ξ ( hσ, Φ, Φcv ( Φcv ( whr ξ, dnd n h abov quaon, s an nnsy ndx and h σ =h/. hs rsul s oband by h applcaon o varaonal calculus o nonlnar radaon luds wh h mpraur dpndn ha capacy c v (=4a 0 3. Posv ξ rr o hang o h rsourc lud n h ha-pump mod, and h ngav - o coolng o hs lud n h ngn mod. hus psudo-nwonan rsourcs produc powr rlaxng wh h opmal ra & = ξ ( h σ,, Φ. (8 Equaons (7 and (8 dscrb h opmal rajcory n rms o sa varabl and consan h. h opmal (Carno conrol s = ( + ξ ( h, Φ, (9 σ h prsnc o rsourc mpraur n uncon ξ provs ha, n comparson wh h lnar sysms, h psudo-nwonan rlaxaon curv s no xponnal. VIII. OPIMAL WORK FUNCIONS FOR LINEAR AND PSEUDO-NEWONIAN KINEICS A soluon can now b ound o h problm o Hamlonan rprsnaon o xrmal work. L us bgn wh lnar sysms. Subsung mpraur conrol (9 wh a consan ξ no work unconal (4 and ngrang along an opmal pah ylds xrmal work uncon h V (,, h = c( c ln c ln (30 c hs xprsson s vald or vry procss mod. Ingraon o Eq (7 subjc o nd condons (τ = and (τ = allows o xprss Eq. (30 n rms o h procss duraon. For h radaon c v (=4a 0 3, whr a 0 s h radaon consan, an opmal rajcory solvng Eqs. (7 and (9 s / / -/ a Φ 3/ 3/ ± ( 4 / 3 0 hσ ln( / = τ τ (3 h ngraon lms rr o h nal sa ( and a currn sa o h radaon lud,.. mpraurs and corrspondng wh τ and τ. Opmal curv (3 rrs o h cas whn h radaon rlaxaon s subjc o a consran rsulng rom Eq. (8. Equaon (3 s assocad wh h nropy producon rm n Eq. (. h corrspondng xrmal work uncon pr un volum o lowng radaon s V hv hv ( sv sv (3 / / 3/ 3/ 3 3 (4 / 3 a h σ Φ ( + (4 / 3 a ( Φ( / 0 Also, h corrspondng xrgy uncon, oband rom (3 ar applyng xrgy boundary condons, has an xplc analycal orm. h classcal avalably o radaon a low rsds n h rsulng xrgy quaon n Jr s [0] orm A class v (, = h ( v 0,0 = hv hv ( sv sv. (33 4 / = (4/3 a0 ( / IX. WORK FUNCIONS FOR CHEMICAL SYSEMS h dvlopd mhodology can b xndd o chmcal and lcrochmcal ngns []. As opposd o hrmal machns, n chmcal ons gnralzd rsrvors ar prsn, capabl o provdng boh ha and subsanc. Whn nn rsrvors assur consancy o chmcal ponals, problms o xrmum powr (maxmum o powr producd and hps://do.org/0.4084/rpqj0.00 4 RE&PQJ, Vol., No.0, Aprl 0

mnmum o powr consumd ar sac opmzaon problms. For n rsrvors, howvr, amoun and chmcal ponal o an acv racan dcras n m, and consdrd problms ar hos o dynamc opmzaon and varaonal calculus. h smpls modl o powr producng chmcal ngn s ha wh an sohrmal and somrc racon, A +A =0 []. Powr xprsson and cncy ormula or h chmcal sysm ollow rom nropy consrvaon and nrgy balanc n h powr-producng zon. In ndorvrsbl ngns oal nropy lux s consan hrough h acv zon. Whn h consancy ormula s combnd wh nrgy balanc w nd n an sohrmal cas p = µ n ( ' µ ' (34 whr n s an nvaran molar lux o ragns. Procss cncy ζ s dnd as powr yld pr molar lux, n,.. ζ = p / n = µ µ (35 hs cncy s dncal wh h chmcal any o our racon n h chmcally acv par o h sysm. For a sady ngn h ollowng uncon dns h chmcal cncy n rms o n and mol racon x (Fg. 3 ' ' x ng ζ = ζ + 0 R ln (36 ng + x Fgur 3. Ecncy o powr producon ζ n rms o ul lux n n a chmcal ngn. Equaon (36 shows ha cv concnraon o racan n uppr rsrvor x = x g - n s dcrasd, whras cv concnraon o produc n lowr rsrvor x = x + g - n s ncrasd du o h n mass lux. hror cncy ζ dcrass nonlnarly wh n. Whn c o rssancs g s gnorabl or lux n s vry small, k rvrsbl cncy, ζ C, s aand. Powr uncon, dscrbd by h produc ζ(nn, xhbs a maxmum or a n ul lux, n. Exnsons o Eq. (36 ar avalabl []. Applcaon o Eq. (36 o an unsady sysm lads o a work uncon dscrbng h dynamcal lm o h sysm τ W = τ X /( + X + dx / dτ dx ζ 0 + R ln dτ x jdx / dτ dτ (37 (X=x/(-x. h pah opmaly condon may b xprssd n rms o h consancy o h ollowng Hamlonan x + jx( X + X j H ( X, X& = RX& = RX& +. (38 x( X x X x For low ras and larg concnraons X (mol racons x clos o h uny opmal rlaxaon ra s approxmaly consan. Y, n an arbrary suaon opmal ras ar sa dpndn so as o prsrv h consancy o H n Eq. (38. Ful cll xampls and hr hory ar analyzd n our prvous papr prsnd a h ICREPQ [3]. X. CONCLUSIONS Opmal powr daa show ha h daa dr or powr gnrad and consumd, and dpnd on paramrs o h sysm,.g.: lux nnsy, numbr o ransr uns, polarzaons, surac ara, avrag procss ra, rao o sram lows, sram drcons, c. h daa provd bounds or powr gnraors ha ar mor xac and srongr han rvrsbl bounds. As opposd o classcal hrmodynamcs, our bounds dpnd no only on changs o h hrmodynamc sa o parcpang rsourcs bu also on procss rrvrsbls, procss drcon and mchansm o ha and mass ransr. Only n hrmosacs h bound on h work producd concds wh ha on h work consumd. h gnralzd hrmo-knc bounds, oband hr, do no sasy h rvrsbly propry. Only or nnly long duraons or or procsss wh xclln ransr (an nn numbr o ransr uns h hrmoknc bounds rduc o classcal hrmosac bounds [4]. hus, wh rrvrsbl hrmodynamcs, w can conron and surmoun h lmaons o applyng classcal hrmodynamcs o ral procsss. hs s a drcon wh many opporuns. Rrncs [] S. Snuycz, Powr gnraon lms n hrmal, chmcal and lcrochmcal sysms, ICREPQ'0: Inrnaonal Conrnc on Rnwabl Enrgs and Powr Qualy, Granada, Span, 3-5 March, 00, hp://www.crpq.com [] S. Snuycz, Carno conrols o uny radonal and work-asssd opraons wh ha & mass ransr, Inrnaonal J. o Appld hrmodynamcs, 6 (003, 59-67. [3] S. Snuycz, Dynamc programmng and Lagrang mulplrs or acv rlaxaon o luds n non-qulbrum sysms, Appld Mahmacal Modlng, 33 (009, 457-478. [4] S. Snuycz and P. Kuran, Nonlnar modls or mchancal nrgy producon n mprc gnraors drvn by hrmal or solar nrgy, Inrn. J. Ha Mass ransr, 48 (005, 79-730. [5] S. Snuycz and P. Kuran, Modlng hrmal bhavor and work lux n n-ra sysms wh radaon, Inrn. J. Ha and Mass ransr 49 (006, 364-383. [6] F.L. Curzon and B. Ahlborn, Ecncy o Carno ngn a maxmum powr oupu, Amrcan J. Phys. 43 (975, -4. [7] A. d Vos, Endorvrsbl hrmodynamcs o Solar Enrgy Convrson, Oxord Unvrsy Prss, Oxord, 994, pp.30-4. [8] P. Kuran, Nonlnar Modls o Producon o Mchancal Enrgy n Non-Idal Gnraors Drvn by hrmal or Solar Enrgy, PhD hss, Warsaw Unvrsy o chnology, 006. [9] R. E. Bllman, Adapv Conrol Procsss: a Gudd our, Prncon, Unvrsy Prss, 96, pp.-35. [0] J. Jr, Maxmum convrson cncy or h ulzaon o drc solar radaon, Solar Enrgy 6 (98, 3-36. [] S. Snuycz, An analyss o powr and nropy gnraon n a chmcal ngn, Inrn. J. o Ha and Mass ransr 5 (008 5859 587. [] S. Snuycz, Complx chmcal sysms wh powr producon drvn by mass ransr, Inrn. J. o Ha and Mass ransr, 5 (009 453-465. [3] P. Kuran and S. Snuycz, Modlng and smulaon o powr yld n chmcal and lcrochmcal sysms, ICREPO: Elvnh Inrnaonal Conrnc on Rnwabl Enrgs and Powr Qualy, Las Palmas GC, 3-5 Aprl, 0, hp://www.crpq.com. hps://do.org/0.4084/rpqj0.00 43 RE&PQJ, Vol., No.0, Aprl 0