The effect of discontinuities on stability of rock blocks in tunnel

Similar documents
Structurally controlled instability in tunnels

Introduction and Background

Rock slope failure along non persistent joints insights from fracture mechanics approach

Stability Analysis of A Railway Trench By Using Stereographical Projection

ON THE FACE STABILITY OF TUNNELS IN WEAK ROCKS

TWO DIMENSIONAL MODELING AND STABILITY ANALYSIS OF SLOPES OVERLAYING TO SHAHID RAGAEE POWER PLANT

ROCK MASS CHARACTERISATION IN ENGINEERING PRACTICE

An introduction to the Rock Mass index (RMi) and its applications

MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY SUBJECT CODE: COMRMC MODERATOR: H YILMAZ EXAMINATION DATE: OCTOBER 2017 TIME:

Correlation of Revised BQ System in China and the International Rock Mass Classification Systems

THE VOUSSOIR BEAM REACTION CURVE

BLOCK SIZE AND BLOCK SIZE DISTRIBUTION

The effect of dip of joints on the axial force of rock bolts

Influence of rock mass properties on TBM penetration rate in Karaj-Tehran water conveyance tunnel

Numerical analysis of K0 to tunnels in rock masses exhibiting strain-softening behaviour (Case study in Sardasht dam tunnel, NW Iran)

Finite difference modelling in underground coal mine roadway

Session 3: Geology and Rock Mechanics Fundamentals

COMPARING THE RMR, Q, AND RMi CLASSIFICATION SYSTEMS

Evaluation of Structural Geology of Jabal Omar

SIMULATION AND MECHANISM ANALYSIS OF WATER INRUSH FROM KARSTIC COLLAPSE COLUMNS IN COAL FLOOR

Underground Excavation Design Classification

Collection and use of geological data in rock engineering

The importance of both geological structures and mining induced stress fractures on the hangingwall stability in a deep level gold mine

Mining-Caused Activation of Fault

EOSC433: Geotechnical Engineering Practice & Design

Table of Contents Development of rock engineering 2 When is a rock engineering design acceptable 3 Rock mass classification

Some Aspects on the Design of Near Surface. Tunnels - Theory and Practice. Thomas Marcher¹, Taner Aydogmus²

Stability Assessment of a Heavily Jointed Rock Slope using Limit Equilibrium and Finite Element Methods

STABILITY CHECK AND SUPPORT DESIGNING FOR THE GR-2011 EXPLORATION DRIFT

Deformability Modulus of Jointed Rocks, Limitation of Empirical Methods and Introducing a New Analytical Approach

ISSN (Print) Research Article

ENGINEERING GEOLOGY AND ROCK ENGINEERING

Haulage Drift Stability Analysis- A Sensitivity Approach

Methods of Interpreting Ground Stress Based on Underground Stress Measurements and Numerical Modelling

Kinematic Analysis Underground Wedges

EXAMINATION PAPER MEMORANDUM

Technical Note Rock Wedge Stability Analysis Using System Reliability Methods

Excavation method in Goushfill mine

Assessment of rock slope stability using remote sensing technique in the Gold Coast area, Australia

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building

SYLLABUS AND REFERENCES FOR THE STRATA CONTROL CERTIFICATE. METALLIFEROUS MINING OPTION Updated November 1998

ENGINEERING GEOLOGY AND ROCK MECHANICS

Numerical modelling for estimation of first weighting distance in longwall coal mining - A case study

Correlation between Rock mass rating, Q-system and Rock mass index based on field data

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

SYLLABUS AND REFERENCES FOR THE STRATA CONTROL CERTIFICATE COAL MINING OPTION

NNN99. Rock Engineering for the Next Very Large Underground Detector. D. Lee Petersen CNA Consulting Engineers

Further Research into Methods of Analysing the October 2000 Stability of Deep Open Pit Mines EXECUTIVE SUMMARY

STRESS DROP AS A RESULT OF SPLITTING, BRITTLE AND TRANSITIONAL FAULTING OF ROCK SAMPLES IN UNIAXIAL AND TRIAXIAL COMPRESSION TESTS

H.Öztürk & E.Ünal Department of Mining Engineering, Middle East Technical University, Ankara, Turkey

Stability of Blocks Around Circular Openings

A new design approach for highway rock slope cuts based on ecological environment protection

Geotechnical data from optical and acoustic televiewer surveys

Behaviour of Blast-Induced Damaged Zone Around Underground Excavations in Hard Rock Mass Problem statement Objectives

The effect of installation angle of rock bolts on the stability of rock slopes

1 of 57 Erik Eberhardt UBC Geological Engineering EOSC 433 (2017) 1. Yes, review of stress and strain but also

Chapter 6 Bearing Capacity

SUPPORT MEASURES EFFECTIVENESS DURING THE EXCAVATION OF SYMBOL MOUNTAIN S TUNNEL

Received 9 February 2015; accepted 6 March 2015; published 12 March 2015

In situ fracturing mechanics stress measurements to improve underground quarry stability analyses

Estimates of rock mass strength and deformation modulus

Reservoir Geomechanics and Faults

CONTROLLING FACTORS BASIC ISSUES SAFETY IN OPENCAST MINING WITH SPECIAL REFERENCE TO SLOPE STABILITY

Theme 7. Metamorphic rocks. Distinguishing rock types

The Mine Geostress Testing Methods and Design

ROCK SLOPE STABILITY ANALYSES

A modified model of a single rock joint s shear behavior in

ROCK MASS PROPERTIES FOR TUNNELLING


Seismic Analysis of Concrete Dams Workshop Field investigations and foundation material properties USSD Annual Conference April 6-7, 2017

Potential collapse due to geological structures influence in Seropan Cave, Gunung Kidul, Yogyakarta, Indonesia

J. Paul Guyer, P.E., R.A.

Unwedge Geometry and Stability Analysis of Underground Wedges. Sample Problems

SLOPE STABILITY EVALUATION AND ACCEPTANCE STANDARDS

Module 9 : Foundation on rocks. Content

Analysis in Geotechnical Engineering

Rock mechanics as a significant supplement for cross-section balancing (an example from the Pavlov Hills, Outer Western Carpathians, Czech Republic)

Analysis of Blocky Rock Slopes with Finite Element Shear Strength Reduction Analysis

Huaman A., Cabrera J. and Samaniego A. SRK Consulting (Peru) Introduction ABSTRACT

Horizontal Stress. US Stress Regimes: In the eastern United States:

University of Colorado, Dept. of Civil Engineering Boulder CO

Applicability of geomechanical classifications for estimation of strength properties in Brazilian rock masses

Borehole Camera And Extensometers To Study Hanging Wall Stability Case Study Using Voussoir beam - Cuiabá Mine

Empirical Design in Geotechnical Engineering

ROCK MASS CHARATERISATION: A COMPARISON OF THE MRMR AND IRMR CLASSIFICATION SYSTEMS. G P Dyke AngloGold Ashanti 1

Stress and Strain. Stress is a force per unit area. Strain is a change in size or shape in response to stress

Flin Flon Mining Belt

Rock slope rock wedge stability

7. Foundation and Slope Stability

Seismic analysis of horseshoe tunnels under dynamic loads due to earthquakes

Open Pit Rockslide Runout

Tectonics. Lecture 12 Earthquake Faulting GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD

PROGRESSIVE FAILURE MECHANISMS IN JOINTED ROCK: INSIGHT FROM 3D DEM MODELLING

Application of a transversely isotropic brittle rock mass model in roof support design

Building on Past Experiences Worker Safety

Risk assessment of collapse in shallow caverns using numerical modeling of block interactions with DDA: Suggested approach and case studies

Geology for Engineers Rock Mechanics and Deformation of Earth Materials

Materials and Methods The deformation within the process zone of a propagating fault can be modeled using an elastic approximation.

1. classic definition = study of deformed rocks in the upper crust

Uniaxial Compressive Strength Variation for Multi-point Support Design and Discontinuity..

Transcription:

International Journal of the Physical Sciences Vol. 6(31), pp. 7132-7138, 30 November, 2011 Available online at http://www.academicjournals.org/ijps DOI: 10.5897/IJPS11.777 ISSN 1992-1950 2011 Academic Journals Full Length Research Paper The effect of discontinuities on stability of rock blocks in tunnel Hamed A. Keykha*, Bujang B. K. Huat, Afshin Asadi and Hossein Moayedi Department of Civil Engineering, Faculty of Engineering, University Putra Malaysia, Malaysia. Accepted 19 October, 2011 This paper presents the results of an investigation that was carried out using important parameters such as discontinuities in forming rock block and instability in tunnel. The discontinuities like bedding and joints are one of the most important factors compared with parameters such as engineering features of rock mass. In this review, numerous features like Rock Quality Designation (RQD), rock classification (RMR), stress and strain, and distributions of discontinuities in a sample tunnel were evaluated. However, most of them were suitable in the tunnel, but because of creating more intersection points in critical zone, the movement of blocks in tunnel roof and wall of the tunnel are possible. It also demonstrates the simple factors such as step-over joints in rock mass, having important effect in instability. Key words: Step-over joint, rock quality designation, rock mass rating, stress and strain, discontinuity significant index (DSI). INTRODUCTION For the stability analysis of tunnels, there are so many parameters which should be taken into account. The parameters may have the same effects in stability and/or different action. The most important of the parameters are rock mass strength, geology structures, main stress and strain, rock classification, discontinuities, etc. All of these may have an impact on tunnel stability. If some are suitable, and only just one is troubled, it can be due to instability in tunnel. It is remarkable to regard all parameters from less significant to the most important. One of the most serious problems in tunnel excavation is the accidental falling of rock blocks that are formed by the intersection of the tunnel surface and discontinuities in the rock mass (Lee and Song, 1998). The discontinuities are structures such as bedding planes and joints with usually several sets in very different directions which separate the rock mass into discrete but interlock pieces (Jaeger and Cook, 1979). Because of the low shear and tensile strength, the rock blocks are easy to sliding along structural plan. The most common types of failure are those involving wedges falling from the roof or sliding out of the sidewalls of the openings. When a free face is *Corresponding author. E-mail:hamed_geology@yahoo.com. created by the excavation of the opening, the constraint from the surrounding rock is removed. The analysis of rock blocks is detected by block theory. Block theory is presented by Goodman and Shi (1985) as an effective method in stability analysis of rock engineering. Block theory states fractures in rock mass to be planed, analyzed on the basis of potentiality of removable blocks and key blocks for achieving the desirable reinforcement stability. In this theory, features of key blocks are estimated. There are several blocks in excavation section (Figure 1). 1. Type I being moveable. 2. TypeII having key potential to move. 3. TypeIII has no movement because of its position in basement. 4. TypeIV has no movement because of blocking with around blocks. 5. Type,V a jointed block without any free space in rock mass (Hammett and Hoek, 1981). The key blocks (I and II) described as instable block in rock mass should be taken into great consideration. These blocks are evaluated by kinematic method. Chan and Goodman (1987) calculated the average number and volume removable blocks using the Baecher

Keykha et al. 7133 Figure 2. Two dimensional representations of planes and poles in horizontal plane. Figure 1. Type of blocks around the excavation section. disk model (Baecher et al., 1977). Mauldon (1993) studied the change in joint pyramids according to the variation of joint set orientations. Hoerger and Young (1990) applied the Baecher disk model with a bivariate normal distribution of joint orientation to the analysis of block occurrence around a tunnel. METHODS The kinematic analysis of rigid blocks is used by stereographic projection. Every block is produced with at least 4 planes which crossed each other. In general, the block in rock mass is created by 3 discontinuities and one free face which may be the excavation surface. The blocks depend on their positions let it be stable or instable. When the direction of planes set in free face, the block is instable. It can move as sliding and falling. For analyzing of block stability, it needs to define the position of discontinuities and features such as friction angle of planes. Every discontinuity plane is detected by Dip and Dip direction which is evaluated by geological compass. Then, the data are analyzed by a stereographic method. In this way, an analysis of three dimensional data can be carried out in two dimensions as lines and poles to a horizontal surface (Figure 2). Also, the friction angle is estimated by test on rock sample. The blocks which are instable and portable possess planes with potential movement. When the dip plane move direct on free face, the plane can slide. For example, there are 3 lines of intersection in a tetrahedral block. If lines put in free space, they could have the possibility to move and enjoying more discontinuity significant index (DSI). Figure 3 shows three discontinuities in a rock mass along with free face. The free face is defined by amount of friction angle measured by shear test of rock sample. The dark zone is free space or critical zone illustrated by relationship between dip of slope or excavation face (ψ) and friction angle (φ). A point is line of Figure 3. The relationship of planes with friction circle in free face of rock mass. intersection between two planes, which are put in critical zone. It can slide in free face direction. But B and C points are not in critical zone and may have possibility to move. CASE STUDY: STABILITY ANALYSIS IN A TUNNEL OF IRAN To analyze the stability in a rail way tunnel in the eastern part of Iran, so many features have been studied. The tunnel had operated in sandstone mass with vertical bedding that had about 250 m length (Figure 4). The significant parameters studied were rock quality designation (RQD), Rock mass rating (RMR), discontinuities, stress, strain and strength of rock mass. The tunnel collapsed in 150 to 160 m of its length. The results of this research are illustrated as follows.

7134 Int. J. Phys. Sci. Figure 4. The tunnel with vertical bedding in sandstone mass. Table 1. Estimated RQD in every 25 m length of tunnel. Section RQD 1 8 89 2 9 85 3 8 89 4 10 82 5 10 82 6 10 82 7 11 78 8 9 85 9 7 91 10 10 82 Total 85 Description Very good RQD evaluation RQD is counted by joint sets (discontinuities) per unit volume. Table 1 shows the estimated RQD in every 25 m of length of the tunnel picked up from the wall and roof. The RQD is counted with Equation 1. This evaluation indicates that the RQD is more than 80 and condition of rock mass is desirable. (1) achieved RMR for the tunnel. The assessment states that the condition of rock mass is appropriate for the purpose of tunneling. Stress and strain in rock mass Induced stresses in result of the weight of overlying strata are relatively impressive. The weight of the vertical column of rock resting on this element is the product of the depth and the unit weight of the overlying rock. This stress is estimated from the simple relationship: Rock mass rating (RMR) The classification of rock mass of the tunnel has been done on the basis of RMR presented by Bieniawski in 1989 (Bieniawski, 1989). In this study, several features like RQD, unaxial strength, groundwater conditions, spacing, condition and orientation of discontinuities, have been noticed. Table 2 shows the average where the vertical stress is which is the unit weight of the overlying rock and z is the depth below surface (Hoek, 2006). The stresses as sample are estimated in collapsing zone. Figure 5 shows a graph of vertical stresses from ground surface to floor of

Depth below surface, z (m) Keykha et al. 7135 Table 2. The average of RMR for the tunnel. No. Parameter Value Rating 1 unaxial strength 79.8 Mpa 7 2 RQD 85 17 3 Spacing of discontinuity 30 cm 10 4 Condition of discontinuity Slightly rough surfaces separation < 1 mm 25 5 Orientation of discontinuity Favorable -2 6 groundwater conditions Completely dry 15 Total 72 Class no. II Description Good rock Vertical stress (KN/m 2 ) Figure 5. The relationship between vertical stress and depth above the tunnel. tunnel in about 50 m. The three-dimensional analysis of stresses and displacements in the surrounding rock mass in this tunnel has been carried out. The stress distribution in the rock mass indicated in a cross section in collapsing zone (Figure 6). It seems that because of lack of water table and good rock condition, the induced stress after tunneling is suitable in rock mass causing the deformation or strain in rock mass. Evaluations of strain in rock mass can be interpreted by the displacement around the tunnel. As the shown in Figure 7, the displacement in this tunnel is too small (0.54 mm). Stability analysis of rock block In the first step, the features of joint sets and discontinuities are collected. In this survey, about two types of joint and bedding are recognized. There were the numbers of fractures between bedding named step-over fractures. The step-over fractures are joints in the left or right at the bedding contact. In fact, the strength of bedding contacts controls the type of resulting fracture intersection. Fracture termination is favored at very weak bedding contacts, whereas fractures propagate straight through strong contacts. Most sedimentary contacts will fall between these two end-members. Fracture termination is more likely under conditions of shallower burial depth, lower effective layer-parallel tension, and fluid-driven propagation, rather than equivalent remote layer-parallel tension. Thicker beds and greater effective layer-parallel tension may produce greater amounts of step-over than thinner beds and more compressive layers (Cooke and Underwood, 2001). The fractures often have sliding that may give rise to block movement (Figure 8). In the second step, the data are estimated by computer program for the tunnel wall and roof. As the analysis of rock wedges indicates, there were several portable blocks in the wall and roof. Figure 9 shows some planes with intersection points in tunnel walls located in critical zone. These blocks can have possibility to slide around the wall. In other words, it will probably split out as wedge blocks. In addition, the evaluation of stability in tunnel roof displays that toppling is created by intersection points of discontinuities in

7136 Int. J. Phys. Sci. Figure 6. The stress distribution surrounding the tunnel in a cross section. Figure 7. Total displacement of rock mass around the tunnel.

Keykha et al. 7137 Figure 10. Analysis stability of rock blocks in tunnel roof. critical zone (Figure 10). DISCUSSION Figure 8. Sliding of (a) step-over fracture, and (b) step-over fracture in wall of tunnel. Figure 9. Analysis stability of rock blocks in tunnel wall. However, there are several factors to analyze of the stability in rock tunnel, but many of them may seem simple and unimportant. Always, the most critical parameters are not most original ones. In stability analysis of tunnel, the suitable features have been recognized, but also there has been simple parameter to be taken into account. It has been shown that though critical parameters may be strong, other features such as joints and discontinuities lead to weakness. It has been the aim of this paper to present the ability of simple parameters such as joints and discontinuities in stability analysis of rock blocks in the tunnel. Moreover, there were so many researches about probabilistic models for analyzing rock block stability with using joints features. The rock block stability is mainly dependent upon the characteristics of discontinuities; the random properties of discontinuities play a critical role in probabilistic analysis of rock stability (Park and West, 2000). The rock blocks generated from the joints are analyzed for their volume, height, perimeter, safety factor, and probability of occurrence (Songa et al., 2001). The numerical analysis indicates that both the dip angle of joints and the lateral pressure coefficient have significant impacts on the failure mode and displacement characters of tunnel (Jia and Tang, 2008). In this case study, many characteristic of rock tunnel are estimated, and the results are shown. The outcomes

7138 Int. J. Phys. Sci. of this survey will be demonstrated as follows: 1. The results of RQD and RMR show that the quality of rock is quite acceptable and the strength of rock mass can be stable. 2. Mainly analysis of stress and strain defines a normal distribution of stress, and small displacement in rock mass cannot have negative instability. 3. The step-over fractures between the bedding is considered to be an important factor in stability analysis of this tunnel. The fractures increase the risk of rock block movement because of creating more intersection points of discontinuities and more DSI. Considerably, in this study the discontinuity parameter compared to other factors, and serious effect of it has been studied. It shows that all the parameters in analysis of rock block tunnel must be taken into consideration. Conclusion Results of stability analysis on the tunnel show that there are so many significant factors in this study. It surveyed the importance of discontinuities in stability of rock block in tunnel, comprising other parameters, and has been investigated. Therefore, rock quality designation, rock classification, distribution of stress and displacements are estimated. However, many parameters like RQD, RMR and stress and strain are suitable, but because of the increase of step-over fractures between the bedding and DSI increase in critical zone, the movement of rock blocks in roof and wall will occur. REFERENCES Baecher GB, Einstein HH, Lanney NA (1977). Statistical description of rock properties and sampling. In: Proceedings of the 18th US Symposium on Rock Mechanics, pp. 1-8. Bieniawski ZT (1989). Engineering rock mass classifications. New York: Wiley. 251p. Chan L, Goodman RE (1987). Predicting the number of dimensions of key blocks of an excavation using block theory and joint statistics. Proc., 28th U.S. Symp. Rock Mech., pp. 81-87. Cooke M L, Underwood CA (2001). Fracture termination and step-over at bedding interfaces due to frictional slip and interface opening. J. Struct. Geol., 23: 223-238. Goodman RE, Shi G (1985). Block theory and its application to rock engineering, Englewood Cliffs. NJ: Prentice-Hall, p. 338. Hammett RD, Hoek E (1981). Design of large underground caverns for hydroelectric projects, with reference to structurally controlled failure mechanisms. Proc. American Soc. Civil Engineers. Int. Conf. on Recent Developments in Geotechnical Engineering for Hydro Projects. New York: ASCE, pp. 92-296. Hoek E (2006). Characterizing Rock Masses by the RMi for Use. Practical Rock Engineering, pp. 167-170. Hoerger SF, Young DS (1990). Probabilistic prediction of key block occurrences. Proc., 31st U.S. Symp. Rock Mech., 229-236. Jaeger JC, Cook NGW (1979). Fundamentals of Rock Mechanics. Third ed. Halsted Press, NY. 112p. Jia P, Tang CA (2008). Numerical study on failure mechanism of tunnel in jointed rock mass. Tunneling and Underground Space Technology. 23: 500 507. Lee CI, Song JJ (1998). Stability analysis of rock blocks around a tunnel. Proc., 3rd Int. Conf. Mech. Jointed Faulted Rock ŽMJFR3: 443-448. Mauldon M (1993). Variation of joint orientation in block theory analysis. Int. J. Rock Mech. Mining Sci., 30: 1585-1590. Park H, West TR (2000). Development of a probabilistic approach for rock wedge failure. Eng. Geol., 59: 233±251 Songa JJ, Leeb C, Setoa M (2001). Stability analysis of rock blocks around a tunnel using a statistical joint modeling technique. Tunneling Underground Space Technol., 16(Ž): 341-351.