TERMODINAMIKA, BIOENERGETIKA

Similar documents
Chemical Thermodynamics. Chapter 18

Biological Thermodynamics

The Second Law of Thermodynamics (Chapter 4)

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry

Lecture 3: Thermodynamics

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry S H 2 = S H 2 R ln P H2 P NH

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics

Energy is the capacity to do work

7/19/2011. Models of Solution. State of Equilibrium. State of Equilibrium Chemical Reaction

1 What is energy?

Ch 17 Free Energy and Thermodynamics - Spontaneity of Reaction

Chemistry and the material world Unit 4, Lecture 4 Matthias Lein

Thermodynamics II. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemistry 102 Spring 2016 Discussion #12, Chapter 17 Student name TA name Section. Things you should know when you leave Discussion today: ( G o f

Principles of Bioenergetics. Lehninger 3 rd ed. Chapter 14

MECHANICAL EFFICIENCY, WORK AND HEAT OUTPUT IN RUNNING UPHILL OR DOWNHILL

Ch. 19 Entropy and Free Energy: Spontaneous Change

Energetics of metabolism

4. Basics of statistical mechanics and chemical kinetics in biophysical processes

Unit 12. Thermochemistry

BIOCHEMISTRY. František Vácha. JKU, Linz.

Chem 1B Dr. White 1 Chapter 17: Thermodynamics. Review From Chem 1A (Chapter 6, section 1) A. The First Law of Thermodynamics

Homework Problem Set 8 Solutions

Chem Lecture 4 Enzymes Part 1

Physics is time symmetric Nature is not

Gibb s Free Energy. This value represents the maximum amount of useful work (non PV-work) that can be obtained by a system.

Gibbs Free Energy. Evaluating spontaneity

Chapter 27. Energy and Disorder

Thermodynamics. Chem 36 Spring The study of energy changes which accompany physical and chemical processes

Lecture 20. Chemical Potential

ENTROPY HEAT HEAT FLOW. Enthalpy 3/24/16. Chemical Thermodynamics. Thermodynamics vs. Kinetics

Entropy, Free Energy, and Equilibrium

Chapter 3: Energy and Work. Energy and Work, con t. BCH 4053 Spring 2003 Chapter 3 Lecture Notes. Slide 1. Slide 2


Chemistry 102 Spring 2017 Discussion #13, Chapter 17 Student name TA name Section. Things you should know when you leave Discussion today: ( G o f

Chem 1A, Fall 2015, Midterm Exam 3. Version A November 17, 2015 (Prof. Head-Gordon) 2. Student ID: TA:

Lecture #14. Chapter 17 Free Energy and Equilibrium Constants

AP CHEMISTRY 2007 SCORING GUIDELINES (Form B)

Disorder and Entropy. Disorder and Entropy

reduction kj/mol

Chapter 19 Chemical Thermodynamics

Department of Chemistry and Biochemistry University of Lethbridge. Biochemistry II. Bioenergetics

THERMODYNAMICS. Dr. Sapna Gupta

Chemical Equilibrium. Chapter 8

Lecture 28 Thermodynamics: Gibbs Free Energy, Equilibrium Constants and the Entropy Change for a Bimolecular Reaction

CHM 2046 Test #4 Review: Chapter 17 & Chapter 18

Thermodynamics: Free Energy and Entropy. Suggested Reading: Chapter 19

Lecture 6 Free Energy

Chapter 9 in Chang Text

Chemical reaction equilibria

Unit 5: Spontaneity of Reaction. You need to bring your textbooks everyday of this unit.

Lecture 2: Biological Thermodynamics [PDF] Key Concepts

Chapter 11 Spontaneous Change and Equilibrium

Chapter 17: Spontaneity, Entropy, and Free Energy

Chemical thermodynamics the area of chemistry that deals with energy relationships

Chapter 19. Entropy, Free Energy, and Equilibrium

H = DATA THAT YOU MAY USE. Units Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = 1.

where R = universal gas constant R = PV/nT R = atm L mol R = atm dm 3 mol 1 K 1 R = J mol 1 K 1 (SI unit)

Chemistry 102 Spring 2017 Discussion #13, Chapter 17 Student name Key TA name Section. Things you should know when you leave Discussion today: ( G o f

Physical Chemistry I FINAL EXAM SOLUTIONS

Termodinamika. FIZIKA PSS-GRAD 29. studenog Copyright 2015 John Wiley & Sons, Inc. All rights reserved.

Exergy. What s it all about? Thermodynamics and Exergy

A proposed mechanism for the decomposition of hydrogen peroxide by iodide ion is: slow fast (D) H 2 O

Applications of Free Energy. NC State University

A Chemist s View of the Universe. System what we care about Surroundings everything else Boundary separates system from surroundings

CHEMICAL THERMODYNAMICS. Nature of Energy. ΔE = q + w. w = PΔV

Chapter 19. Chemical Thermodynamics. Chemical Thermodynamics

3/30/2017. Section 17.1 Spontaneous Processes and Entropy Thermodynamics vs. Kinetics. Chapter 17. Spontaneity, Entropy, and Free Energy

10 NEET 31 Years 11. The enthalpy of fusion of water is kcal/mol. The molar entropy change for the melting of ice at

Exp.3 Determination of the Thermodynamic functions for the Borax Solution

= 16! = 16! W A = 3 = 3 N = = W B 3!3!10! = ΔS = nrln V. = ln ( 3 ) V 1 = 27.4 J.

2. In the frog muscle of the rectus abdominous concentrations of ATP, ADP, and phosphate are M, M, and M, respectively.

ENERGY AND MASS SPECTROSCOPY OF IONS AND NEUTRALS IN COLD PLASMA

OCR Chemistry A H432

This test is closed note/book. One 8.5 x 11 handwritten crib sheet (one sided) is permitted.

CHAPTER THERMODYNAMICS

The Laws of Thermodynamics

General Chemistry revisited

Chem 116 POGIL Worksheet - Week 12 - Solutions Second & Third Laws of Thermodynamics Balancing Redox Equations

CHEMICAL THERMODYNAMICS

To what extent a reaction will achieve completion?

Chapter 17: Energy and Kinetics

CY T. Pradeep. Lectures 11 Theories of Reaction Rates

10, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics)

8 A Microscopic Approach to Entropy

Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition

I.G Approach to Equilibrium and Thermodynamic Potentials

Thermodynamics 2013/2014, lecturer: Martin Zápotocký

SCORING. The exam consists of 5 questions totaling 100 points as broken down in this table:

3.1 Metabolism and Energy

1.8. ΔG = ΔH - TΔS ΔG = ΔG + RT ln Q ΔG = - RT ln K eq. ΔX rxn = Σn ΔX prod - Σn ΔX react. ΔE = q + w ΔH = ΔE + P ΔV ΔH = q p = m Cs ΔT

TOPLJENEC ASOCIIRA LE V VODNI FAZI

Physical Chemistry I Exam points

Theme Music: Duke Ellington Take the A Train Cartoon: Lynn Johnson For Better or for Worse

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments

Second Law of Thermodynamics

Chapter 10 Lecture Notes: Thermodynamics

Transcription:

TERMODINAMIKA, BIOENERGETIKA Osnovni termodinamski koncepti Fizikalni pomen termodinamskih količin ph in standardni pogoji Sklopljeni procesi Energijsko bogate biomolekule Osnovni termodinamski koncepti Sistem: del celote, ki ga obravnavamo (vprašanje kriterijev za določitev sistema, struktura sistema, dinamika sistema) Okolje: vse izven sistema Izolirani sistem ne izmenjuje z okoljem snovi ali energije Zaprti sistem izmenjuje samo energijo Odprti sistem izmenjuje tako snovi kot energijo Sistem opišemo s termodinamskimi spremenljivkami T, p, V, n Glavne termodinamske funkcije so entalpija, entropija in prosta energija Toplota, q Toplota, q Snov, m Okolje Okolje Okolje 1

1.zakon termodinamike Celotna energija izoliranega sistema je konstantna! U (ali E) je notranja energija kinetična in potencialna energija omogoča prenos toplote in opravlja delo U je neodvisna od poti (funkcija stanja) U 2 -U 1 = Δ U = q w (-w: iz sistema v okolje!) q je toplota, absorbirana v sistem iz okolja w je delo, ki ga opravi sistem na okolje (npr. tenzijska sila mišičnega vlakna) U je enaka izmenjani toploti pri konst. V Eksotermni procesi- ko se toplota sprošča Endotermni procesi- ko sistem privzema toploto ENTALPIJA- H Funkcija pri konst. p Definicija: H = U + p.v ΔH = ΔU + p.δv (1) ΔH je toplota q absorbirana pri konst. p Volumen V je ~ konst. v biokemijskih sistemih (raztopinah) Velja tudi: w = p.δv + w (2) (w =drugo delo) Iz (1) in (2) ΔH= ΔU + p.δv = q p w + p.δv = = q p (p.δv + w ) + p.δv = q p w Če w ~ 0 (pri npr. kemijskih reakcijah) UΔ ~ ΔH ~ q p ΔH >0 endotermna toplota se porablja (npr. razpad vezi) ΔH <0 eksotermna toplota se sprošča (npr. tvorba vezi) 2

2.zakon termodinamike Sistemi stremijo k neredu! Sistemi težijo od urejenega proti neurejenemu stanju (npr. število ekvivalentnih načinov kako uredimo komponente sistema) L. Boltzmann 1877: S = k B.lnW k B =Boltzmannova konst., W=število vseh možnih stanj sistema ENTROPIJA- S Mera za neurejenost stanja Urejeno stanje: majhna entropija Neurejeno stanje: velika entropija R. Clausius, 1864: Pri T = konst. Spontani, ireverzibilni proces: ds irev. dq/t (T=absolutna T pri kateri pride do spremembe) Sistem v ravnotežju med procesom (reverzibilni): ds rev. = dq/t Pri konst. T (tipični za biološke procese) ΔS q/t 3

3.zakon termodinamike Entropija popolnoma urejene snovi pri temperaturi absolutne ničle je 0 Entropija popolnoma urejene snovi se bliža vrednosti 0 J/K, če T 0K Pri T = 0 K S = 0 J/K Za proces pri p = konst. velja: C p = ΔH/ΔT C p je toplotna kapaciteta pri konst. p GIBBSOVA PROSTA ENERGIJA- G Gibbs, 1878 ; Hipotetična, vendar koristna količina omogoča oceniti spontanost reakcije (smer reakcije) G je funkcija stanja sistema aditivna G = H T.S Za vsak proces pri p, V = konst. velja: ΔG = ΔH T.ΔS = q -T.ΔS Če ΔG = 0, je reakcija v kem. Ravnotežju; če ΔG < 0, je reakcija spontana (poteka, kot je napisana; dogovor: L D strani) Eksergoni procesi ΔG < 0 Endergoni procesi ΔG > 0 4

Sprememba proste energije ΔG in standardne proste energije ΔG o Standardni pogoji T=25 o C, ph=7, 1 atm (=101, 3 kpa), 1M koncentracije oznake: ΔG o, ΔH o, ΔS o Biokemijski standardni pogoji [H + ] = 10-7 M ph = 7,0; [H 2 O] = 55,5 M Oznake: ΔG o, ΔH o, ΔS o Za poljubno reakcijo: aa + bb cc + dd velja: ΔG = ΔG 0 ' + c [ C].[ D] R. T.ln a b [ A].[ B] Pri kemijskem ravnotežju velja: a) ΔG = 0 in b) K r =([C r ] c.[d r ] d /[A r ] a.[b r ] b ) 0 = ΔG o + RT ln K r ΔG o = - RT ln K r d 5

Zveza med K r in T (van t Hoff) van t Hoffova enačba omogoča določitev temodinamskih količin ΔH in ΔS Če velja: ΔG 0 =ΔH 0 -T. ΔS 0 in ΔG 0 = -RT ln K r -RT ln K r =ΔH 0 -T. ΔS 0 ln Kr ΔH = R 0 1. T + ΔS R 0 6

van t Hoffov graf, K r = f(1/t) 0 ΔH 1 ΔS ln Kr =. + R T R y = a. x + b Naklon = ΔH 0 R 0 Kalorimeter merjenje q p (q p ~ ΔH) 7

O'Brien R & Haq I (2004) Applications of Biocalorimetry: Binding, Stability and Enzyme Kinetics. In Biocalorimetry 2 (Ladbury JE & Doyle M, eds.). ITC Isothermal titration calorimetry DSC Differential scanning calorimetry O'Brien R & Haq I (2004) Applications of Biocalorimetry: Binding, Stability and Enzyme Kinetics. In Biocalorimetry 2 (Ladbury JE & Doyle M, eds.). 8

Prenos energije v bioloških sistemih Problem endergonih reakcij Snovi, ki so kemijsko nestabilne njihov razpad (hidroliza) je zelo eksergon (eksotermen), spontan ΔG0 << 0! Sodelovanje dvoje vrst biomolekul: Reducirani koencimi (NADPH, FADH 2 ) Energetsko bogate spojine (npr. fosfati) Energijsko sklopljene reakcije V biol.sistemih je endergona reakcija mogoča, če je energijsko sklopljena z eksergono! Splošni primer: ΔG 0 A+B C+D + 50 kj/mol C+F G - 70 kj/mol Σ A+B+F D+G - 20 kj/mol 9

Sklopljene reakcije, ki vključujejo ATP Fosforilacije glukoze, nastane glukoza-6-fosfat in ADP. Energijsko bogate molekule - primeri Standardna prosta energija fosfatnih skupin nekaterih biološko pomembnih spojin 10

Kemijska narava energijsko bogatih snovi Kemijsko nestabilne spojine nestabilna vez, velik potencial za oddajo skupine Kemijska delitev: fosfoanhidridi (ATP, PPi, itd.) fosfo-acilni anhidridi (Acetilfosfat, 1,3-BFG) enol-fosfati (PEP) gvanidino-fosfati (kreatinfosfat, fosfoarginin) Stabilizacija produktov pri hidrolizi zmanjšanje elektrostatskega odboja (ATP) ionizacija (ATP, 1,3-BPG, acetilcoa) tautomerija (fosfoenolpiruvat) resonančna stabilizacija (ATP, 1,3-BFG, fosfokreatin, acetil CoA) Resonančna in elektrostatska stabilizacija fosfoanhidridov in hidrolitskih produktov 11

Hidroliza fosfoenolpiruvata Resonančna stabilizacija fosfogvanidinov 12