Numerical Solutions to Partial Differential Equations

Similar documents
Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations

Finite difference method for elliptic problems: I

Finite Difference Methods for Boundary Value Problems

2 Two-Point Boundary Value Problems

Numerical Solutions to Partial Differential Equations

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of,

Simple Examples on Rectangular Domains

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Numerical Analysis of Differential Equations Numerical Solution of Elliptic Boundary Value

PDEs, part 1: Introduction and elliptic PDEs

Lecture 4.2 Finite Difference Approximation

INTRODUCTION TO PDEs

Discretization of PDEs and Tools for the Parallel Solution of the Resulting Systems

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations

The Dirichlet boundary problems for second order parabolic operators satisfying a Carleson condition

Numerical Solutions to Partial Differential Equations

Hamburger Beiträge zur Angewandten Mathematik

Scientific Computing I

Divergence Formulation of Source Term

Non-Constant Stable Solutions to Reaction- Diffusion Equations in Star-Shaped Domains

CONVERGENCE THEORY. G. ALLAIRE CMAP, Ecole Polytechnique. 1. Maximum principle. 2. Oscillating test function. 3. Two-scale convergence

Applied Mathematics 205. Unit III: Numerical Calculus. Lecturer: Dr. David Knezevic

u xx + u yy = 0. (5.1)

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C.

The Dirichlet boundary problems for second order parabolic operators satisfying a Carleson condition

Local discontinuous Galerkin methods for elliptic problems

Lecture Introduction

On semilinear elliptic equations with measure data

Partial Differential Equations

Lehrstuhl Informatik V. Lehrstuhl Informatik V. 1. solve weak form of PDE to reduce regularity properties. Lehrstuhl Informatik V

A very short introduction to the Finite Element Method

Introduction to Boundary Value Problems

Numerical Analysis and Methods for PDE I

Module 7: The Laplace Equation

Theory of PDE Homework 2

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

GREEN S IDENTITIES AND GREEN S FUNCTIONS

Math 4263 Homework Set 1

ENO and WENO schemes. Further topics and time Integration

Numerical Solutions to Partial Differential Equations

Chapter 5 A priori error estimates for nonconforming finite element approximations 5.1 Strang s first lemma

Additive Manufacturing Module 8

Some Aspects of Solutions of Partial Differential Equations

5. FVM discretization and Solution Procedure

Multivariable Calculus

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

Introduction LECTURE 1

Divergence Theorem and Its Application in Characterizing

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs)

Maximum Principles for Parabolic Equations

Finite Differences for Differential Equations 28 PART II. Finite Difference Methods for Differential Equations

Second Order Elliptic PDE

Partial Differential Equations

Part I. Discrete Models. Part I: Discrete Models. Scientific Computing I. Motivation: Heat Transfer. A Wiremesh Model (2) A Wiremesh Model

Finite Volume Method

AM 205: lecture 14. Last time: Boundary value problems Today: Numerical solution of PDEs

ECE539 - Advanced Theory of Semiconductors and Semiconductor Devices. Numerical Methods and Simulation / Umberto Ravaioli

Dirichlet s principle and well posedness of steady state solutions in peridynamics

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov,

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1

In this chapter we study elliptical PDEs. That is, PDEs of the form. 2 u = lots,

Finite Difference Methods (FDMs) 1

Chapter 2. General concepts. 2.1 The Navier-Stokes equations

HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS

and finally, any second order divergence form elliptic operator

Finite Difference Method for PDE. Y V S S Sanyasiraju Professor, Department of Mathematics IIT Madras, Chennai 36

Tutorial 2. Introduction to numerical schemes

4 Divergence theorem and its consequences

On some numerical convergence studies of mixed finite element methods for flow in porous media

Basic Aspects of Discretization

Module 3: BASICS OF CFD. Part A: Finite Difference Methods

The method of lines (MOL) for the diffusion equation

Mixed Hybrid Finite Element Method: an introduction

Numerical Solutions to Partial Differential Equations

FINITE VOLUME METHOD: BASIC PRINCIPLES AND EXAMPLES

First, Second, and Third Order Finite-Volume Schemes for Diffusion

Table of Contents. II. PDE classification II.1. Motivation and Examples. II.2. Classification. II.3. Well-posedness according to Hadamard

Boundary conditions. Diffusion 2: Boundary conditions, long time behavior

Krein-Rutman Theorem and the Principal Eigenvalue

Accuracy-Preserving Source Term Quadrature for Third-Order Edge-Based Discretization

Modeling using conservation laws. Let u(x, t) = density (heat, momentum, probability,...) so that. u dx = amount in region R Ω. R

The Embedded Boundary Integral Method (EBI) for the Incompressible Navier-Stokes equations

Section 12.6: Non-homogeneous Problems

HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN

INTRODUCTION TO FINITE ELEMENT METHODS

Computation Fluid Dynamics

An Introduction to Numerical Methods for Differential Equations. Janet Peterson

Nonlinear Diffusion in Irregular Domains

Problem Set 6: Solutions Math 201A: Fall a n x n,

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche

AE/ME 339. K. M. Isaac. 9/22/2005 Topic 6 FluidFlowEquations_Introduction. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

Notes on theory and numerical methods for hyperbolic conservation laws

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 13

Block-Structured Adaptive Mesh Refinement

Transcription:

Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University

Numerical Methods for Partial Differential Equations Finite Difference Methods for Elliptic Equations Finite Difference Methods for Parabolic Equations Finite Difference Methods for Hyperbolic Equations Finite Element Methods for Elliptic Equations

1 Introduction 2 A Finite Difference Method for a Model Problem 3 General Finite Difference Approximations 4 Stability and Error Analysis of Finite Difference Methods

Introduction The definitions of the elliptic equations The definitions of the elliptic equations 2nd order A general second order linear elliptic partial differential equation with n independent variables has the following form: n ±L(u) ± 2 n a ij + b i + c u = f, (1) x i x j x i i,j=1 with (the key point in the definition) n n a ij (x)ξ i ξ j α(x) ξi 2, α(x)>0, ξ R n \{0}, x Ω. (2) i,j=1 i=1 Note that (2) says the matrix A = (a ij (x)) is positive definite. i=1 4 / 39

Introduction The definitions of the elliptic equations The definitions of the elliptic equations 2nd order L the 2nd order linear elliptic partial differential operator; a ij, b i, c coefficients, functions of x = (x 1,..., x n ); f right hand side term, or source term, a function of x; The operator L and the equation (1) are said to be uniformly elliptic, if inf α(x) = α > 0. (3) x Ω n n a ij (x)ξ i ξ j α ξi 2, α > 0, ξ R n \ {0}, x Ω. i,j=1 i=1 5 / 39

Introduction The definitions of the elliptic equations The definitions of the elliptic equations 2nd order For example, = n i=1 2 is a linear second order uniformly xi 2 elliptic partial differential operator, since we have here and the Poisson equation a ii = 1, i, a ij = 0, i j, u(x) = f (x) is a linear second order uniformly elliptic partial differential equation. 6 / 39

Introduction The definitions of the elliptic equations The definitions of the elliptic equations 2m-th order A general linear elliptic partial differential equations of order 2m with n independent variables has the following form: 2m n ±L(u) ± k a i1,...,i k + a 0 u = f, (4) x i1... x ik k=1 i 1,...,i k =1 with (the key point in the definition) n a i1,...,i 2m (x)ξ i1 ξ i2m α(x) i 1,...,i 2m =1 n i=1 ξ 2m i, α(x) > 0, ξ R n \ {0}, x Ω. (5) Note that (5) says the 2m order tensor A = (a i1,...,i 2m ) is positive definite. 7 / 39

Introduction The definitions of the elliptic equations The definitions of the elliptic equations 2m-th order L the 2m-th order linear elliptic partial differential operator; a i1,...,i k, a 0 coefficients, functions of x = (x 1,..., x n ); f right hand side term, or source term, a function of x; The operator L and the equation (4) are said to be uniformly elliptic, if inf α(x) = α > 0. (6) x Ω n n a i1,...,i 2m (x)ξ i1 ξ i2m α ξi 2m, i 1,...,i 2m =1 i=1 α > 0, ξ R n \ {0}, x Ω. 8 / 39

Introduction The definitions of the elliptic equations The definitions of the elliptic equations As a typical example, the 2m-th order harmonic equation ( ) m u = f is a linear 2m-th order uniformly elliptic partial differential equation, and m is a linear 2m-th order uniformly elliptic partial differential operator, since we have here a i1,...,i 2m (x) = 1, if the indexes appear in pairs; a i1,...,i 2m (x) = 0, otherwise. In particular, the biharmonic equation 2 u = f is a linear 4th order uniformly elliptic partial differential equation, and 2 is a linear 4-th order uniformly elliptic partial differential operator. 9 / 39

Introduction Steady state convection-diffusion problem a model problem for elliptic partial differential equations Steady state convection-diffusion equation 1 x Ω R n ; 2 v(x): the velocity of the fluid at x; 3 u(x): the density of certain substance in the fluid at x; 4 a(x) > 0: the diffusive coefficient; 5 f (x): the density of the source or sink of the substance. 6 J: diffusion flux (measured by amount of substance per unit area per unit time) 7 Fick s law: J = a(x) u(x). 10 / 39

Introduction Steady state convection-diffusion problem a model problem for elliptic partial differential equations Steady state convection-diffusion equation For an arbitrary open subset ω Ω with piecewise smooth boundary ω, Fick s law says the substance brought into ω by diffusion per unit time is given by J ( ν(x)) ds = a(x) u(x) ν(x) ds, ω while the substance brought into ω by the flow per unit time is u(x)v(x) ( ν(x)) ds ω and the substance produced in ω by the source per unit time is f (x) dx. ω ω 11 / 39

Introduction Steady state convection-diffusion problem a model problem for elliptic partial differential equations Steady state convection-diffusion equation Therefore, the net change of the substance in ω per unit time is d u(x) dx = a(x) u(x) ν(x) ds dt ω ω u(x)v(x) ν(x) ds + f (x) dx. ω ω d By the steady state assumption, dt ω u(x) dx = 0, for arbitrary ω, and by the divergence theorem (or Green s formula or Stokes formula), this leads to the steady state convection-diffusion equation in the integral form { (a u u v) + f } dx = 0, ω ω 12 / 39

Introduction Steady state convection-diffusion problem a model problem for elliptic partial differential equations Steady state convection-diffusion equation The term [a(x) u(x) u(x)v(x)] is named as the substance flux, since it represents the speed that the substance flows. Assume that (a u u v) + f is smooth, then, we obtain the steady state convection-diffusion equation in the differential form (a(x) u(x) u v) = f (x), x Ω. In particular, if v = 0 and a = 1, we have the steady state diffusion equation u = f. 13 / 39

Introduction Boundary conditions Boundary conditions for the elliptic equations For a complete steady state convection-diffusion problem, or problems of elliptic equations in general, we also need to impose proper boundary conditions. Three types of most commonly used boundary conditions: First type u = u D, x Ω; Second type u ν = g, x Ω; Third type u + αu = g, ν x Ω; where α 0, and α > 0 at least on some part of the boundary (physical meaning: higher density produces bigger outward diffusion flux). 14 / 39

Introduction Boundary conditions Boundary conditions for the steady state convection-diffusion equation 1st type boundary condition Dirichlet boundary condition; 2nd type boundary condition Neumann boundary condition; 3rd type boundary condition Robin boundary condition; Mixed-type boundary conditions different types of boundary conditions imposed on different parts of the boundary. 15 / 39

Introduction General framework of Finite Difference Methods General framework of Finite Difference Methods 1 Discretize the domain Ω by introducing a grid; 2 Discretize the function space by introducing grid functions; 3 Discretize the differential operators by properly defined difference operators; 4 Solve the discretized problem to get a finite difference solution; 5 Analyze the approximate properties of the finite difference solution. 16 / 39

A Finite Difference Method for a Model Problem A Model Problem Dirichlet boundary value problem of the Poisson equation { u(x) = f (x), x Ω, u(x) = u D (x), x Ω, where Ω = (0, 1) (0, 1) is a rectangular region. 17 / 39

A Finite Difference Method for a Model Problem Finite Difference Discretization of the Model Problem Discretize Ω by introducing a grid 1 Space (spatial) step sizes: x = y = h = 1/N; 2 Index set of the grid nodes: J = {(i, j) : (x i, y j ) Ω}; 3 Index set of grid nodes on the Dirichlet boundary: J D = {(i, j) : (x i, y j ) Ω}; 4 Index set of interior nodes: J Ω = J \ J D. For simplicity, both (i, j) and (x i, y j ) are called grid nodes. 18 / 39

A Finite Difference Method for a Model Problem Finite Difference Discretization of the Model Problem Discretize the function space by introducing grid functions u i,j = u(x i, y j ), exact solution restricted on the grid; f i,j = f (x i, y j ), source term restricted on the grid; U i,j, numerical solution on the grid; V i,j, a grid function. 19 / 39

A Finite Difference Method for a Model Problem Finite Difference Discretization of the Model Problem Discretize differential operators by difference operators u i 1,j 2u i,j + u i+1,j x 2 2 x u; u i,j 1 2u i,j + u i,j+1 y 2 2 y u; The poisson equation u(x) = f (x) is discretized to the 5 point difference scheme L h U i,j 4U i,j U i 1,j U i,j 1 U i+1,j U i,j+1 h 2 = f i,j, (i, j) J Ω. The Dirichlet boundary condition is discretized to U i,j = u D (x i, y j ), (i, j) J D. 20 / 39

A Finite Difference Method for a Model Problem Finite Difference Discretization of the Model Problem Solution of the discretized problem The discrete system L h U i,j 4U i,j U i 1,j U i,j 1 U i+1,j U i,j+1 h 2 = f i,j, (i, j) J Ω, U i,j = u D (x i, y j ), (i, j) J D, is a system of linear algebraic equations, whose matrix is symmetric positive definite. Consequently, there is a unique solution. 21 / 39

A Finite Difference Method for a Model Problem Analysis of the Finite Difference Solutions of the Model Problem Analyze the Approximate Property of the Discrete Solution 1 Approximation error: e i,j = U i,j u i,j ; 2 The error equation: L h e i,j 4e i,j e i 1,j e i,j 1 e i+1,j e i,j+1 h 2 = T i,j, (i, j) J Ω ; 3 The local truncation error T i,j := [(L h L)u] i,j = L h u i,j (Lu) i,j = L h u i,j +f i,j, (i, j) J Ω. 4 e h = ( L h ) 1 T h ( L h ) 1 T h. 22 / 39

A Finite Difference Method for a Model Problem Analysis of the Finite Difference Solutions of the Model Problem Truncation Error of the 5 Point Difference Scheme Suppose that the function u is sufficiently smooth, then, by Taylor series expansion of u on the grid node (x i, y j ), we have u i±1,j = [u ± h x u + h2 2 2 x u ± h3 6 3 x u + h4 24 4 x u ± h5 ] 120 5 x u + i,j u i,j±1 = [u ± h y u + h2 2 2 y u ± h3 6 3 y u + h4 24 4 y u ± h5 ] 120 5 y u + i,j Since T i,j = L h u i,j + f i,j and f i,j = u i,j, we obtain T i,j := 1 12 h2 ( 4 x u+ 4 y u) i,j + 1 360 h4 ( 6 x u+ 6 y u) i,j +O(h 6 ), (i, j) J Ω. 23 / 39

A Finite Difference Method for a Model Problem Analysis of the Finite Difference Solutions of the Model Problem Consistency and Order of Accuracy of L h 1 Consistent condition of the scheme (or L h to L) in l -normµ lim T h = lim max T i,j = 0, h 0 h 0 (i,j) J Ω 2 The order of the approximation accuracy of the scheme (or L h to L): 2nd order approximation accuracy, since T h = O(h 2 ) 24 / 39

A Finite Difference Method for a Model Problem Analysis of the Finite Difference Solutions of the Model Problem Stability of the Scheme Remember that e h = ( L h ) 1 T h ( L h ) 1 T h lim T h = lim max T i,j = 0, h 0 h 0 (i,j) J Ω therefore lim h 0 e h = 0, if ( L h ) 1 is uniformly bounded, i.e. there exists a constant C independent of h such that ( ) max U i,j C max f i,j + max (u D ) i,j. (i,j) J (i,j) J Ω (i,j) J D ( L h ) 1 C is the stability of the scheme in l -norm. 25 / 39

Convergence and the Accuracy of the Scheme Remember that L h U i,j = 4U i,j U i 1,j U i,j 1 U i+1,j U i,j+1 h 2 = f i,j, (i, j) J Ω. L h e i,j 4e i,j e i 1,j e i,j 1 e i+1,j e i,j+1 h 2 = T i,j, (i, j) J Ω. therefore, since max (i,j) JD e i,j = 0, ( ) implies also max e i,j C (i,j) J max U i,j C (i,j) J max f i,j + max (u D ) i,j (i,j) J Ω (i,j) J D max T i,j C T h C h 2 (i,j) J Ω max (x,y) Ω. (M xxxx + M yyyy ), where M xxxx = max (x,y) Ω 4 x u, M yyyy = max (x,y) Ω 4 y u.

The Maximum Principle and Comparison Theorem Maximum principle of L h : for any grid function Ψ, L h Ψ 0, i.e 4Ψ i,j Ψ i 1,j + Ψ i+1,j + Ψ i,j 1 + Ψ i,j+1, implies that Ψ can not assume nonnegative maximum in the set of interior nodes J Ω, unless Ψ is a constant. Comparison Theorem: Let F = max (i,j) JΩ f i,j and Φ(x, y) = (x 1/2) 2 + (y 1/2) 2, take a comparison function Ψ ± i,j = ±U i,j + 1 4 F Φ i,j, (i, j) J. It is easily verified that L h Ψ ± 0. Thus, noticing that Φ 0 and by the maximum principle, we obtain ±U i,j ±U i,j + 1 4 F Φ i,j max (i,j) J D (u 0 ) i,j + 1 8 F, (i, j) J Ω. Consequently, U 1 8 max (i,j) J Ω f i,j + max (i,j) JD (u 0 ) i,j,

A Finite Difference Method for a Model Problem Analysis of the Finite Difference Solutions of the Model Problem The Maximum Principle and Comparison Theorem Apply the maximum principle and comparison theorem to the error equation L h e i,j 4e i,j e i 1,j e i,j 1 e i+1,j e i,j+1 h 2 = T i,j, (i, j) J Ω. we obtain e max e i,j + 1 (i,j) J D 8 T h, where T h = max (i,j) JΩ T i,j is the l -norm of the truncation error. 28 / 39

General Finite Difference Approximations Grid and multi-index of grid Grid and multi-index of grid 1 Discretize Ω R n : introduce a grid, say by taking the step sizes h i = x i, i = 1,..., n, for the corresponding coordinate components; 2 The set of multi-index: J = {j = (j 1,, j n ) : x = x j (j 1 h 1,, j n h n ) Ω}; 3 The index set of Dirichlet boundary nodes: J D = {j J : x = (j 1 h 1,, j n h n ) Ω D }; 4 The index set of interior nodes: J Ω = J \ J D. For simplicity, both (i, j) and (x i, y j ) are called grid nodes. 29 / 39

General Finite Difference Approximations Grid and multi-index of grid Regular and irregular interior nodes with respect to L h 1 Adjacent nodes: j, j J are adjacent, if n k=1 j k j k = 1; 2 D Lh (j): the set of nodes other than j used in calculating L h U j 3 Regular interior nodes (with respect to L h ): j J Ω such that D Lh (j) Ω; 4 Regular interior set J Ω : the set of all regular interior nodes; 5 Irregular interior set: J Ω = J Ω \ J Ω ; 6 Irregular interior nodes (with respect to L h ): j J Ω. 30 / 39

General Finite Difference Approximations Control volume, Grid functions and Norms The control volume, grid functions and norms 1 Control volume of the node j J: ω j = {x Ω : (j i 1 2 )h i x i < (j i + 1 2 )h i, 1 i n}, and denote V j = meas(ω j ); 2 Grid function U(x): extend U j to a piecewise constant function defined on Ω U(x) = U j, x ω j. 3 L p (Ω) (1 p ) norms of U(x): { U p = V j U j p} 1/p, j J U = max j J U j. 31 / 39

General Finite Difference Approximations Construction of Finite Difference Schemes Basic Difference Operators 1 1 st -order forward: +x v(x, x ) := v(x + x, x ) v(x, x ); 2 1 st -order backward: x v(x, x ) := v(x, x ) v(x x, x ); 3 1 st -order central: on one grid step δ x v(x, x ) := v(x + 1 2 x, x ) v(x 1 2 x, x ), and on two grid steps 0x v(x, x ) := 1 2 ( +x + x ) v(x, x ) = 1 2 [ v(x + x, x ) v(x x, x ) ] 4 2nd order central: δ 2 xv(x, x ) = δ x (δ x v(x, x )) = v(x + x, x ) 2v(x, x ) + v(x x, x ). 32 / 39

A FD Scheme for the Steady State Convection-Diffusion Equation (a(x, y) u(x, y))+ (u(x, y) v(x, y)) = f (x, y), (x, y) Ω, Substitute the differential operators by difference operators: 1 (au x ) x i,j δ x (a i,j δ x u i,j )/( x) 2 : where δ x (a i,j δ x u i,j ) = a i+ 1 2,j(u i+1,j u i,j ) a i 1 2,j(u i,j u i 1,j ); 2 (au y ) y i,j δ y (a i,j δ y u i,j )/( y) 2 : where δ y (a i,j δ y u i,j ) = a i,j+ 1 (u i,j+1 u i,j ) a 2 i,j 1 (u i,j u i,j 1 ); 2 3 (uv 1 ) x i,j 2 x 0x (uv 1 ) i,j = (uv 1 ) i+1,j (uv 1 ) i 1,j ; 4 (uv 2 ) y i,j 2 y 0y (uv 2 ) i,j = (uv 2 ) i,j+1 (uv 2 ) i,j 1 ;

General Finite Difference Approximations Construction of Finite Difference Schemes A FD Scheme for the Steady State Convection-Diffusion Equation we are lead to the following finite difference scheme for the steady state convection-diffusion equation: a i+ 1 2,j(U i+1,j U i,j ) a i 1 2,j(U i,j U i 1,j ) ( x) 2 a i,j+ 1 2 (U i,j+1 U i,j ) a i,j 1 (U i,j U i,j 1 ) 2 ( y) 2 + (Uv 1 ) i+1,j (Uv 1 ) i 1,j 2 x + (Uv 2 ) i,j+1 (Uv 2 ) i,j 1 2 y = f i,j. 34 / 39

A Finite Volume Scheme for the Steady State Convection-Diffusion Equation in Conservation Form (a(x, y) u(x, y) u(x, y)v(x, y)) ν(x, y) ds+ f (x, y) dxdy = 0. ω ω Take a proper control volume ω and substitute the differential operators by appropriate difference operators, and integrals by appropriate numerical quadratures: 1 for the index (i, j) J Ω, taking the control volume ω i,j = { (x, y) Ω {[(i 1 2 )h x, (i + 1 2 )h x) [(j 1 2 )h y, (j + 1 } 2 )h y )} ; 2 Applying the middle point quadrature on ω i,j as well as on its four edges; 3 ν u(x i+ 1, y j ) (u i+1,j u i,j )/h x, etc.; 2

A Finite Volume Scheme for the Steady State Convection-Diffusion Equation in Conservation Form we are lead to the following finite volume scheme for the steady state convection-diffusion equation: a i+ 1,j(U i+1,j U i,j ) a 2 i 1,j(U i,j U i 1,j ) 2 ( x) 2 a i,j+ 1 (U i,j+1 U i,j ) a 2 i,j 1 (U i,j U i,j 1 ) 2 ( y) 2 + (U i+1,j + U i,j )v 1 i+ 1 2,j (U i,j + U i 1,j )v 1 i 1 2,j 2 x (U i,j+1 + U i,j )v 2 (U i,j+ + 1 i,j + U i,j 1 )v 2 i,j 1 2 2 2 y which is also called a conservative finite difference scheme. = f i,j,

General Finite Difference Approximations Construction of Finite Difference Schemes A Finite Volume Scheme for Partial Differential Equations in Conservation Form Finite volume methods: 1 control volume; 2 numerical flux; 3 conservative form. 37 / 39

General Finite Difference Approximations Construction of Finite Difference Schemes More General Finite Difference Schemes In more general case, say for triangular grid, hexagon grid, nonuniform grid, unstructured grid, and even grid less situations, in principle, we could still establish a finite difference scheme by 1 Taking proper neighboring nodes J(P); 2 Approximating Lu(P) by L h U P := i J(P) c i(p)u(q i ); 3 Determining the weights c i (P) according to certain requirements, say the order of the local truncation error, local conservative property, discrete maximum principle, etc.. 38 / 39

SK 1µ1, 3 Thank You!