K-groups of rings of algebraic integers and Iwasawa theory

Similar documents
VALUES AT s = 1 OF L-FUNCTIONS FOR RELATIVE QUADRATIC EXTENSIONS OF NUMBER FIELDS, AND THE FITTING IDEAL OF THE TAME KERNEL

L-VALUES AND THE FITTING IDEAL OF THE TAME KERNEL FOR RELATIVE QUADRATIC EXTENSIONS. Jonathan W. Sands

FORMAL GROUPS OF CERTAIN Q-CURVES OVER QUADRATIC FIELDS

ANTICYCLOTOMIC IWASAWA THEORY OF CM ELLIPTIC CURVES II. 1. Introduction

ANNIHILATION OF REAL CLASSES. Jean-Robert Belliard & Anthony Martin

The first layers of Z p -extensions and Greenberg s conjecture

THE COATES SINNOTT CONJECTURE AND EIGENSPACES OF K GROUPS. PIETRO CORNACCHIA and PAUL ARNE ØSTVÆR. Contents. 1. Introduction and summary of results

AWS 2018, Problem Session (Algebraic aspects of Iwasawa theory)

FITTING IDEALS OF IWASAWA MODULES AND OF THE DUAL OF CLASS GROUPS. Dedicated to Professor Ken-ichi Shinoda. 1. Introduction

Modularity of Galois representations. imaginary quadratic fields

KIDA S FORMULA AND CONGRUENCES

ON TAMELY RAMIFIED IWASAWA MODULES FOR THE CYCLOTOMIC p -EXTENSION OF ABELIAN FIELDS

Cristian D. Popescu 1

Galois groups with restricted ramification

p-adic gauge theory in number theory K. Fujiwara Nagoya Tokyo, September 2007

HILBERT MODULAR FORMS: MOD P AND P-ADIC ASPECTS

Iwasawa algebras and duality

CYCLOTOMIC FIELDS CARL ERICKSON

Reciprocity maps with restricted ramification

HIDA THEORY NOTES TAKEN BY PAK-HIN LEE

A MOD-p ARTIN-TATE CONJECTURE, AND GENERALIZED HERBRAND-RIBET. March 7, 2017

Imaginary Quadratic Fields With Isomorphic Abelian Galois Groups

Introduction to Kolyvagin systems

1 Intro and History. 2 Ingredients. Stark's Conjecture Talk notes. Motivating example: = ln(1 + 2)

KIDA S FORMULA AND CONGRUENCES

ON TRIVIAL p-adic ZEROES FOR ELLIPTIC CURVES OVER KUMMER EXTENSIONS. Daniel Delbourgo (Received 30 October, 2014)

MA 162B LECTURE NOTES: THURSDAY, FEBRUARY 26

l-adic Representations

ON GALOIS GROUPS OF ABELIAN EXTENSIONS OVER MAXIMAL CYCLOTOMIC FIELDS. Mamoru Asada. Introduction

ON THE EQUATION X n 1 = BZ n. 1. Introduction

CLASS FIELD THEORY WEEK Motivation

Kida s Formula and Congruences

Are ζ-functions able to solve Diophantine equations?

Problems on Growth of Hecke fields

Notes on p-divisible Groups

Modularity of Abelian Varieties

A short proof of Klyachko s theorem about rational algebraic tori

On metacyclic extensions

Top exterior powers in Iwasawa theory

The Main Conjecture. 1 Introduction. J. Coates, R. Sujatha. November 13, 2009

Ring theoretic properties of Hecke algebras and Cyclicity in Iwasawa theory

Pacific Journal of Mathematics

ON 3-CLASS GROUPS OF CERTAIN PURE CUBIC FIELDS. Frank Gerth III

Anti-cyclotomic Cyclicity and Gorenstein-ness of Hecke algebras

arxiv:math/ v1 [math.nt] 23 Dec 2002

Lemma 1.1. The field K embeds as a subfield of Q(ζ D ).

SERRE S CONJECTURE AND BASE CHANGE FOR GL(2)

KUMMER S CRITERION ON CLASS NUMBERS OF CYCLOTOMIC FIELDS

TWO-PRIMARY ALGEBRAIC K-THEORY OF RINGS OF INTEGERS IN NUMBER FIELDS

The Kronecker-Weber Theorem

On the theory of higher rank Euler and Kolyvagin systems

Growth of Hecke fields over a slope 0 family

INTERTWINING OF RAMIFIED AND UNRAMIFIED ZEROS OF IWASAWA MODULES

Vandiver s Conjecture via K-theory

The fractional Galois ideal for arbitrary order of vanishing

STARK S QUESTION ON SPECIAL VALUES OF L FUNCTIONS. Cristian D. Popescu 1

Up to twist, there are only finitely many potentially p-ordinary abelian varieties over. conductor

Hecke fields and its growth

NUNO FREITAS AND ALAIN KRAUS

arxiv: v2 [math.nt] 29 Mar 2017

arxiv: v2 [math.nt] 12 Dec 2018

Maximal Class Numbers of CM Number Fields

Galois Representations

Class Field Theory. Anna Haensch. Spring 2012

Group rings of finite strongly monomial groups: central units and primitive idempotents

ORAL QUALIFYING EXAM QUESTIONS. 1. Algebra

THE GAUSS HIGHER RELATIVE CLASS NUMBER PROBLEM

ACTA ARITHMETICA. Riemann{Hurwitz formula in basic Z S -extensions. Yi Ouyang (Hefei and Minneapolis, Minn.) and Fei Xu (Hefei)

Part II Galois Theory

COMPLEX MULTIPLICATION: LECTURE 15

Non CM p-adic analytic families of modular forms

On cohomology groups H 1 of G modules of finite type over cyclic groups

EKNATH GHATE AND VINAYAK VATSAL. 1. Introduction

15 Elliptic curves and Fermat s last theorem

The Birch & Swinnerton-Dyer conjecture. Karl Rubin MSRI, January

Class groups and Galois representations

On the Structure of Ideal Class Groups of CM-Fields

Class Field Theory. Travis Dirle. December 4, 2016

Global Units modulo Circular Units : descent without Iwasawa s Main Conjecture.

The GL 2 main conjecture for elliptic curves without complex multiplication. by Otmar Venjakob

Galois Theory of Several Variables

Galois Theory and Diophantine geometry ±11

Abstracts of papers. Amod Agashe

EXPLICIT COMPUTATION OF GROSS-STARK UNITS OVER REAL QUADRATIC FIELDS

Lifting Galois Representations, and a Conjecture of Fontaine and Mazur

REVIEW OF GALOIS DEFORMATIONS

ON THE EQUIVARIANT TAMAGAWA NUMBER CONJECTURE FOR TATE MOTIVES AND UNCONDITIONAL ANNIHILATION RESULTS

On the existence of unramified p-extensions with prescribed Galois group. Osaka Journal of Mathematics. 47(4) P P.1165

Galois Representations

Introduction to Elliptic Curves

A Version of the Grothendieck Conjecture for p-adic Local Fields

On The Structure of Certain Galois Cohomology Groups

Cristian D. Popescu 1

Triple product p-adic L-functions for balanced weights and arithmetic properties

Ordinary forms and their local Galois representations

M ath. Res. Lett. 15 (2008), no. 6, c International Press 2008

1. Artin s original conjecture

DUALITY, CENTRAL CHARACTERS, AND REAL-VALUED CHARACTERS OF FINITE GROUPS OF LIE TYPE

QUADRATIC CONGRUENCES FOR COHEN - EISENSTEIN SERIES.

Local root numbers of elliptic curves over dyadic fields

Transcription:

K-groups of rings of algebraic integers and Iwasawa theory Miho AOKI Okayama University of Science 1

F/Q : finite abelian extension O F : the ring of algebraic integers of F K n (O F ) (n 0) H i (O F, Z p (n)) := Het í (Spec(O F[1/p]), Z p (n)) (i = 0, 1, 2, n Z) H i (G Σ (F ), Z p (n)) (:= lim H i (G Σ (F ), Z/p m Z(n))) Σ : all Archimedean primes & primes above p F Σ /F : the maximal algebraic Σ-ramified extension G Σ (F ) : =Gal(F Σ /F ) 2

p: odd prime number Conjecture (Quillen-Lichtenbaum) n 1 p-adic Chern class maps : K 2n+1 (O F ) Z Z p H 1 (O F, Z p (n + 1)) K 2n (O F ) Z Z p H 2 (O F, Z p (n + 1)) are isomorphisms. Remarks surjectivity & finite kernel [Soulé(1 n p 1), Dwyer and Friedlander (n 1))] K: totally imaginary field & p = 2 [Kahn] 3

Lemmas on H i (i = 1, 2) fr Zp H i (O F, Z p (n)) := H i (O F, Z p (n))/tor Zp H i (O F, Z p (n)) F := F (µ p ) G :=Gal(F /F ) w n (F ) :=max{n Gal(F (µ N )/F ) n = {1}} (n 0) w n (F ) = p w(p) n (F ) A m := p-part of the Σ-class groups of F m := F (µ p m+1) X := lim A m 4

Lemma (H 1 ) n 0 (1) tor Zp H 1 (O F, Z p (n)) Q p /Z p (n) G µ n w (p) n (F ) (2) fr Zp H 1 (O F, Z p (n)) Hom(G Σ (F ) ab Z p, Z p (n)) G Lemma (H 2 ) n 1 loc 2 0 X (n 1) G H 2 (O F, Z p (n)) p p µ 1 n w (p) 1 n (F p) µ 1 n w (p) 1 n (F ) 0 ( ) :=Hom(, Q p /Z p ) loc 2 : H 2 (G Σ (F ), Z p (n)) p p H2 (G Fp, Z p (n)) Keys of the Proofs Duality & Long exact sequence of Poitou-Tate. 5

K-groups and cyclotomic Z p -extensions F : totally real number field F m := F (µ p m+1), F := F (µ p ) :=Gal(F 0 /F ), Γ m :=Gal(F m /F 0 ), Γ :=Gal(F /F 0 ) G m :=Gal(F m /F ) Γ m G :=Gal(F /F ) Γ κ : G Z p cyclotomic character i.e. ζ τ = ζ κ(τ) for τ G, ζ µ p Ĝ Γ κ = ω κ 6

For even character χ Ĝm, L p (χ, s) s.t. L p (χ, 1 n) = L(χω n, 1 n) p p (1 χω n (p)n(p) n 1 )) for all integers n 1 0 Conjecture (L p ) L p (χ, 1 n) 0 for all even cheracters χ Ĝm and integers n 0. d i (n) := rank Zp H i (O Fm, Z p (n)) = corank Zp H i (O Fm, Q p /Z p (n)) Conjecture (d 2 )) d 2 (n) = 0 (n 1) Conjecture (d 1 ) d 1 (n) = [F m : Q]/2 (n 0, 1) [F m : Q]/2 + 1 (n = 0) 7

Remarks d 2 (1) = {p p p} 1, d 1 (1) = d 2 (1) + [F m : Q]/2 Finiteness of even-numbered K-groups d 2 (n) = 0 (n 2) Conjecture (L p ) + µ = 0 Conjecture (d 2 ) Conjecture (d 1 ) 8

Conjecture m 0, n 2 : integers. For all integers j, (K 2n 2 (Z[µ p m+1]) Z Z p ) ωj (K 2n 1 (Z[µ p m+1]) Z Z p ) ωj 0 if n \ j (mod 2) or n j (mod p 1), ( Λ/(f ω n j, g (m) 1 n )e ω j n+1 ) (n 1) otherwise. µ n D p,n,j if n j (mod 2), Hom Zp (Λ/(g (m) n )e ω n j, Z p (n)) otherwise. g (m) n = γ pm κ n (γ pm ) Λ := Z p [Γ] N p,n,j, D p,n,j : the power of p such that ψ Γ m L p (1 n, ω n j ψ) = N p,n,j D p,n,j Q p (N p,n,j, D p,n,j Z p, v p (N p,n,j ) = 0 or v p (D p,n,j ) = 0, N p,n,j p N p,n,j and D p,n,j p D p,n,j ) f ω n j Λ Z p [[T ]] such that f ω n j((1 + p) s 1) = L p (s, ω n j ) 9

Brumer conjecture and Coates-Sinnott conjecture F : totally real number field K/F : finite abelian extension G :=Gal(K/F ) S : finite set of primes of F containing all Archimedean primes & primes which ramify in K Definition (Partial zeta function) For σ G, ζ F,S (σ, s) = Na s (Re(s) > 1). (a,k/f )=σ a is prime to S Theorem [Klingen and Siegel] For all integers n 0, ζ F,S (σ, n) Q. Definition (Higer Stickelberger elements) For an integer n 0, θ S (n) = σ G ζ F,S (σ, n)σ 1 Q[G]. 10

Theorem (Integrality) [Iwasawa, Coates, Sinnott, Cassou-Noguès, Deligne and Ribet] For all integers n 0, ann Z[G] (µ n+1 w n+1 (K) ) θ S(n) Z[G]. Lemma n 0 ann Z[G] (µ n+1 w n+1 (K) ) = Na n+1 (a, K/F ) integral ideals a prime to S and w n+1 (K) Z[G]. (Na n+1 (a, K/F ))θ S (n) = σ G δ n+1(σ, a)σ 1, where δ n+1 (σ, a) = Na n+1 ζ F,S (σ, n) ζ F,S (σ(a, K/F ), n). Then Theorem (Integrality) δ n+1 (σ, a) Z. 11

Theorem (Congruence) [Iwasawa, Coates, Sinnott, Doligne and Ribet] Assume S contains all primes above p. δ n+1 (σ, a) (Nb σ a) n δ 1 (σ, a) mod w n (K)Z p where b σ is an integral ideal of F s.t. (b σ, K/F ) = σ. Theorem [Coates] Theorem (Integrality) + Theorem (Congruence) p-adic L-function exsists. 12

Conjecture (Brumer) ann Z[G] (µ K ) θ S (0) ann Z[G] (Cl K ). Conjecture (Brumer-p)) p : prime number. ann Zp [G](µ K Z Z p ) θ S (0) ann Zp [G](Cl K Z Z p ). Remarks Conjecture (Brumer) F = Q [Stickelberger]. Conjecture (Brumer-p) CM fields K such that p [K : F ] [Wiles] Conjecture (Brumer-p) CM fields K under some assumptions including a condition on the µ-invariant. [Greither] 13

Conjecture (Coates-Sinnott) n 1 : integer (1) ann Z[G] (tor Z (K 2n+1 (O K ))) θ S (n) Z[G] (2) ann Z[G] (tor Z (K 2n+1 (O K ))) θ S (n) ann Z[G] (K 2n (O K )) Conjecuture (Coates-Sinnott-p) p: prime number, n 1: integer (1) ann Zp [G](tor Zp (K 2n+1 (O K ) Z Z p )) θ S (n) Z p [G] (2) ann Zp [G](tor Zp (K 2n+1 (O K ) Z Z p )) θ S (n) ann Zp [G](K 2n (O K ) Z Z p ) Remarks Conjecture (Quillen-Lichtenbaum) + Lemma (H 1 ) + Theorem (Integrality) Conjecture (Coates-Sinnott-p) (1) 14

In cases F = Q and finite abelian extensions K/Q For n = 1 and odd prime numbers p [Coates and Sinnott] For integers n and odd prime numbers p (under Conjecture(Q-L)) [Nguyen Quang Do] For all results below, assume Conjecture(Q-L) In cases finite abelian extensions K/F of totally real fields both F and K For even integers n and odd prime numbers p under some assumption on the µ-invariant [Nguyen Quang Do] In cases finite abelian extensions K/F of totally real fields F and CM fields K For odd prime numbers p under some assumptions [Burns and Greither] For odd integers n and odd prime numbers p v p such that p n[k : F ] w(p) n (K v ) [Banaszak] w n (p) (K) 15

Theorem p : odd prime number Assume: I. Conjecture (Quillen-Lichtenbaum). II. S contains all primes above p. III. Conjecture (Brumer-p) for K m /F (K m = K(µ p m+1)) with sufficiently large m. v p w(p) n (K v ) IV. w (p) n (K) = 1. Then, Conjecture (Coates-Sinnott-p) is true. Remarks on the condition IV In particular, the condition IV holds in the following cases p does not ramify in K and (p 1) n. p does not split in K. The condition yields that the localization map : H 2 ét(spec(o K [1/p]), Z p (n + 1)) v p H 2 (K v, Z p (n + 1)) is a zero map. 16

Outline of the proof Proposition Assume condition II. For all integers m, n 0 and integral ideals a which are coprime to S, (Na n+1 (a, K m /F )) ζ F,S (σ, n)σ 1 σ G m (Na n+1 (a, K m /F )) σ G m ζ F,S (σ, 0)κ m (σ) n σ 1 (mod p m+1 Z p ). (Proof: Use Theorem (Congruence)) By Condition I and IV, K 2n (O K ) Z Z p H 2 (O K, Z p (n + 1)) X (n) Gal(K /K) X /IX (n) where I = σ κ n (σ) σ Gal(K /K). Coose m 0 satisfying the following conditions: X /IX p m+1 All ramified primes in K /K m are totally ramified. ν m,e (X /IX ) = 0 (ν m,e = 1+γ pe +γ 2pe + +γ pm p e ) 17

Put ζ = ζ p m+1. For a ζ n (X /IX )(n) = (X /IX ) µ n p m+1, (Na n+1 (a, K/F ))θ S (n) (a ζ n ) = (Na n+1 (a, K m /F )) σ G m ζ F,S (σ, n)σ 1 (a ζ n ) = (Na n+1 (a, K m /F )) σ G m ζ F,S (σ, 0)κ m (σ) n σ 1 (a ζ n ) = {Na n (Na (a, K m /F )) σ G m ζ F,S (σ, 0)σ 1 a} ζ n = 0. 18

(1) p8 Conjecture (L p ) + µ = 0 Conjecture (d 2 ) Conjecture (d 1 ), µ = 0 (,, µ).. (2) p5 Lemma (H 1 )(H 2 ) [S] + ) (3) p7 Conjecture (L p ) [KNF] p687 Conjecture (D k ) + µ = 0 Conjecture (L p ). (4) p7 Conjecture (d 2 ) [KNF] p683 p683 Conjecture (C m ) [CL] p521 Conjecture 3.1 (5) p8 Conjecture(d 2 ) Conjecture(d 1 ) ( [S] p192 Satz 6) (6) p9 Conjecture ( [A1]) (7) p12 Theorem [Coates] ( [C] p319 Theorem 4.4) (8) Brumer conjecture and Coates-Sinnott conjecture ( [A2]) [A1] M. Aoki, On some exact sequences in the theory of cyclotomic fields, Journal of Algebra, 2008, 320, 4156-4177. [A2] M.Aoki, A note on the Coates-Sinnott conjecture, to appear in Bull. Lond. Math. Soc. [C] J. Coates, p-adic L-functions and Iwasawa s theory, Algebraic Number Fields : L-functions and Galois properties (ed. A. Fröhlich), Academic Press, London (1977) 269-353. [CL] J. Coates and S. Lichtenbaum, On l-adic zeta functions, Ann. of Math. (2), 98 (1973)498-550. [KNF] M. Kolster, T. Nguyen Quang Do and V. Fleckinger, Twisted S-units, p-adic class number formulas, and the Lichtenbaum conjectures, Duke Math. J. 84 (1996), 679-717. [S] P. Schneider, Über gewisse Galoiscohomologiegruppen, Math. Z. 168 (1979) 181-205. 19