Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory

Similar documents
ELEMENTARY BAND THEORY

Introduction to Engineering Materials ENGR2000. Dr.Coates

The electronic structure of solids. Charge transport in solids

Chapter 1 Overview of Semiconductor Materials and Physics

Resistance (R) Temperature (T)

Semiconductor Physics and Devices Chapter 3.

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

Introduction to Condensed Matter Physics

Ga and P Atoms to Covalent Solid GaP

Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together.

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states:

EECS130 Integrated Circuit Devices

The Semiconductor in Equilibrium

Ionic Bonding. Example: Atomic Radius: Na (r = 0.192nm) Cl (r = 0.099nm) Ionic Radius : Na (r = 0.095nm) Cl (r = 0.181nm)

Minimal Update of Solid State Physics

EE301 Electronics I , Fall

We have arrived to the question: how do molecular bonds determine the band gap? We have discussed that the silicon atom has four outer electrons.

Electronic Devices & Circuits

Microscopic Ohm s Law

3C3 Analogue Circuits

ISSUES TO ADDRESS...

Ch. 2: Energy Bands And Charge Carriers In Semiconductors

Electro - Principles I

SEMICONDUCTOR PHYSICS

Unit IV Semiconductors Engineering Physics

So why is sodium a metal? Tungsten Half-filled 5d band & half-filled 6s band. Insulators. Interaction of metals with light?

Lecture 2 Electrons and Holes in Semiconductors

FREQUENTLY ASKED QUESTIONS February 21, 2017

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

Semiconductor device structures are traditionally divided into homojunction devices

From Last Time. Several important conceptual aspects of quantum mechanics Indistinguishability. Symmetry

12/10/09. Chapter 18: Electrical Properties. View of an Integrated Circuit. Electrical Conduction ISSUES TO ADDRESS...

Conductivity and Semi-Conductors

Crystal Properties. MS415 Lec. 2. High performance, high current. ZnO. GaN

Electronics The basics of semiconductor physics

Semiconductors. Semiconductors also can collect and generate photons, so they are important in optoelectronic or photonic applications.

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Chem 241. Lecture 21. UMass Amherst Biochemistry... Teaching Initiative

Three Most Important Topics (MIT) Today

Lecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 1-1

CLASS 12th. Semiconductors

EE130: Integrated Circuit Devices

Free Electron Model for Metals

ECE440 Nanoelectronics. Lecture 07 Atomic Orbitals

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced.

The Electromagnetic Properties of Materials

CLASS 1 & 2 REVISION ON SEMICONDUCTOR PHYSICS. Reference: Electronic Devices by Floyd

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1

Population inversion occurs when there are more atoms in the excited state than in the ground state. This is achieved through the following:

Classification of Solids

EE143 Fall 2016 Microfabrication Technologies. Evolution of Devices

EECS143 Microfabrication Technology

V = IR or R = V I. R = ρ l A

Chemical bonding in solids from ab-initio Calculations

Section 12: Intro to Devices

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications

Molecules and Condensed Matter

半導體元件與物理. Semiconductor Devices and physics 許正興國立聯合大學電機工程學系 聯大電機系電子材料與元件應用實驗室

Lecture Number - 01 Metals, Semiconductors and Insulators

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur

EE 446/646 Photovoltaic Devices I. Y. Baghzouz

Semiconductor physics I. The Crystal Structure of Solids

Chapter 14: Phenomena

ECE 442. Spring, Lecture -2

Free Electron Model for Metals

Advantages / Disadvantages of semiconductor detectors

Chapter 3 Properties of Nanostructures

UConn ECE 4211, Semiconductor Devices and Nanostructures Lecture Week 1 January 17, 2017

Unit III Free Electron Theory Engineering Physics

Lecture 1. Introduction to Electronic Materials. Reading: Pierret 1.1, 1.2, 1.4,

Calculating Band Structure

Surfaces, Interfaces, and Layered Devices

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today MOS MOS. Capacitor. Idea

Chapter 9 Molecular Geometry and Bonding Theories

Semiconductors 1. Explain different types of semiconductors in detail with necessary bond diagrams. Intrinsic semiconductors:

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

GaN based transistors

! Previously: simple models (0 and 1 st order) " Comfortable with basic functions and circuits. ! This week and next (4 lectures)

Semiconductor Device Physics

ITT Technical Institute ET215 Devices I Unit 1

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1)

Solid State Device Fundamentals

KATIHAL FİZİĞİ MNT-510

ELEC311( 물리전자, Physical Electronics) Course Outlines:

General Chemistry I (2012) Lecture by B. H. Hong

16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor:

Chapter 12: Semiconductors

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Electrical Properties

Modern Physics for Frommies IV The Universe - Small to Large Lecture 4

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV

Solid State Device Fundamentals

8. Which of the following could be an isotope of chlorine? (A) 37 Cl 17 (B) 17 Cl 17 (C) 37 Cl 17 (D) 17 Cl 37.5 (E) 17 Cl 37

Atoms? All matters on earth made of atoms (made up of elements or combination of elements).

DO PHYSICS ONLINE ELECTRIC CURRENT FROM IDEAS TO IMPLEMENTATION ATOMS TO TRANSISTORS ELECTRICAL PROPERTIES OF SOLIDS

Basic cell design. Si cell

Energy bands in solids. Some pictures are taken from Ashcroft and Mermin from Kittel from Mizutani and from several sources on the web.

Transcription:

Chapter 4: Bonding in Solids and Electronic Properties Free electron theory Consider free electrons in a metal an electron gas. regards a metal as a box in which electrons are free to move. assumes nuclei stay fixed on their lattice sites surrounded by core electrons, while the valence electrons move freely through the solid. Ignoring the core electrons, one can treat the outer electrons with a quantum mechanical description. Taking just one electron, the problem is reduced to a particle in a box. Electron is confined to a line of length a. Schrodinger equation m e d ( E V ) dx d mee dx Electron is not allowed outside the box, so the potential is outside the box. Energy is quantized, with quantum numbers n. n h h n E a nb nc In 1d: In 3d: E 8mea 8me a b c 1

Each set of quantum numbers n a, n b, and n c will give rise to an energy level. In three dimensions, there are multiple combination of energy levels that will give the same energy, whereas in one-dimension n and n are equal in energy. n a /a n b /b n c /c n a /a + n b /b + n c /c The number of states with the same energy is known as the degeneracy. 6 6 6 108 10 108 10 108 10 108 When dealing with a crystal with ~10 0 atoms, it becomes difficult to work out all the possible combinations. A quantity called the wave vector is used and assumed to be continuous. Substitute k x, k y, k z for n a p/a, n b p/b, and n c p/c. k x, k y, k z are considered as components of a vector, k. h n a nb nc 8me a b c k is the wave vector and is related to the momentum of the electron wave. Compare to E = p /m, where p is the momentum and m is the mass. E x y z E ( k k k ) / m e All of the combinations of the quantum numbers giving rise to one particular energy correspond to a wave vector of the same length k. These possible combinations for a specific energy produce vectors whose ends lie on the surface of a sphere of radius k. The total number of wave vectors with energies up to and including that with the given energy is given by the volume of the sphere 4pk 3 /3, where k is written as k. To convert this to the number of states with energies up to the given energy, use the relationships between the components of k and the quantum numbers n a, n b, and n c. Need to multiply the volume by abc/p 3. In order to determine the number of states with a particular energy, define the number of states in a narrow range of k values, dk. The number of states up to and including those of the wave vector length k + dk is 4/3p V(k+dk) 3 where V (= abc) is the volume of the crystal. The number with values between k and k + dk is 4/3p V[(k+dk) 3 -k 3 ], leading to 4/p V k dk and this quantity is known as the density of states, N(k)dk. In terms of energy, the DOS is given by: ( 3 3 m e ) E ( V / π h ) de

Density of States based on the free electron model. -note how the density of states increases with increasing energy (there are more states in the interval de). -In metals, the valence electrons fill up the states from the lowest energy with paired spins. For Na (sodium), each atom contributes one 3s electron and the electrons occupy all the states until fully used up. The highest occupied level is called the Fermi level (E F ). Density of states can be experimentally determined using X-ray emission spectroscopy. High energy X-rays can remove core electrons. The core energy levels are essentially atomic energy levels and have a discrete well-defined energy level. Electrons from the conduction band can now fall to the energy level, emitting an X-ray. The X-ray energy depends on the level of the conduction band of the falling electron. A scan across the emitted X-rays will correspond to scan across the filled levels. The intensity depends on the number of electrons with that particular energy. X-ray emission spectra X-ray emission spectra 3

Density of States for non-simple metals is more complex. Density of states may reach a maximum and then start to decrease with energy for more complex metals. Extensions can be made to the model by including atomic nuclei and core electrons using a potential function (plane wave) to extend to semiconductors and insulators. Limitations of the free electron model Electrical Conductivity Wave vectors, k, is important in understanding electrical conductivity in metals. k is a vector with direction as well as magnitude. There may be many different energy levels with the same value of k (same E), but different k x, k y, and k z and thus a different direction to the momentum. In the absence of an electric field, all directions of the wave vector k are equally likely, so equal number of electrons are moving in all directions. 4

If an electric field is produced (battery), then an electron traveling in the direction of the field will be accelerated and the energies of those levels with a net momentum in this direction is lowered. Electrons moving in the opposite direction will have the energies raised and some of those electrons will fall into the levels of lower energy corresponding to momentum in the opposite direction. More electrons will be moving in the direction of the field than in other directions, which is the electric current. *Empty levels close to the Fermi level must be available. Metals have finite resistance, governed by Ohm s Law (V = ir) Resistance of metals increases with temperature for a given field the current decreases as temperature is raised. To account for electrical resistance, it is necessary to consider the ionic cores. Most crystals contain some imperfections and these can scatter the electrons. This reduces the electron s momentum and the current drops. Even in perfect crystals, above 0 K the ionic cores will be vibrating, a set which is known as phonons. Like vibrations in a molecule, each crystal vibration has a set of quantized energy vibrational levels. Conduction electrons are scattered by these phonons and lose some energy to the phonons, lowering conductivity. The energy loss to the phonons increase the vibrational energy of the crystal, converting electrical energy into thermal energy. In some cases, this is useful for electrical heating. 5

Lattice at low temperature As the temperature rises the atoms vibrate, acting as though they are larger. Lattice at high temperature The conduction electrons are scattered by the vibrating ionic cores and lose some energy to the phonons, reducing electron flow and increasing the crystal s vibrational energy. The net effect is to convert electrical energy to thermal energy. Conductor Conductivity Semiconductor Temperature 6

s Orbitals p Orbitals d Orbitals degenerate nondegenerate 7

Sigma ( ) Bonds Hybrid Orbitals four degenerate sp 3 orbitals. 8

Molecular Orbital (MO) Theory Bond Order 1 ( - 0) = 1 1 ( - ) = 0 9

For atoms with both s and p orbitals, there are two types of interactions: The s and the p orbitals that face each other overlap in fashion. The other two sets of p orbitals overlap in p fashion. The resulting MO diagram looks like this. There are both and p bonding molecular orbitals and * and p* antibonding molecular orbitals. 10

The smaller p-block elements in the second period have a sizeable interaction between the s and p orbitals. This flips the order of the s and p molecular orbitals in these elements. 11

Molecular Orbital Theory Not all solids conduct electricity (insulators, semiconductors), so the free electron model is not a valid description for all solids. Molecular Orbital theory treats all solids as a very large collection of atoms bonded together and try to solve the Schrödinger equation for a periodically repeating system. The difficulty is that exact solutions have not yet been found for even small molecules, and certainly not for 10 16 atoms. One approximation that may be used in the linear combination of atomic orbitals (LCAO). H Molecule Chain of 5 H atoms E Antibonding c 0 c 1 c c 3 c 4 4 c 1 c 3 Nonbonding 1 Bonding 0 # of Nodes 1

For N hydrogen atoms there will be N molecular orbitals. In between, there are (N-) molecular orbitals with some in-phase and some out-of-phase combinations. As the number of atoms increases, the number of levels increases, but the spread of energies increase slowly and is leveling off for long chains. A metal crystal contains on the order of 10 16 atoms and a range of energies of 10-19 J. The average separation between layers would be approximately 10-35 J. Compared to the energy separation of energy levels in a hydrogen atom (10-18 J), these separations are so small they may be thought of as a continuous range of energies know as an energy band. It isn t feasible to include all 10 16 atoms in a calculation, so the periodicity of the crystal is used. The electron density and wave function for each unit cell is identical, so we form combinations of orbitals for the unit cell that reflect the periodicity of the crystal. The LCAO expression for molecular orbitals is: Y(i) = S n c ni φ n where the sum is over all n atoms, Ψ(i) is the ith orbital, and c ni is the coefficient of the orbital of the nth atom for the ith molecular orbital. The LCAO expression for solids is: Y k = S n e ikr na nk φ n where k is the wave vector, r is the position vector of the nucleus in the lattice, and a nk is the coefficient of the orbital on the nth atom for a wave vector of k. 13

A hydrogen chain has only an occupied 1s orbital, but for most other atoms in the periodic table it is necessary to include other atomic orbitals in addition to the 1s. The allowed energy levels form a series of energy bands separated by ranges of forbidden energies, known as band gaps. Aluminum (Al) has the electron configuration 1s s p 6 3s 3p 1. Expected to form a 1s band, a s band, a p band, a 3s band, and a 3p band, with each separated by a band gap. The core orbitals 1s, s, p (lower energy bands) are very narrow and may be considered as a set of localized atomic orbitals. These orbitals are concentrated very close to the nuclei and there is little overlap between orbitals on nearby nuclei. In molecules, a greater orbital overlap leads to a greater energy difference between the bonding and anti-bonding orbitals. In solids, a greater overlap results in a greater spread of energies (bandwidth) of the resulting band. Electrons are assigned to levels starting with the lowest energy. Each orbital can take two electrons of opposed spin. If N atomic orbitals were combined to make the band orbitals, then N electrons are needed to fill the band. The highest occupied level at 0 K is the Fermi level, just like in the free electron model. Simple Metal High coordination number in the metal (bcc) gives rise to strong orbital overlap. The ns and np bands are very wide, due to the large amount of overlap. The bands are also close in energy. The two bands merge, forming one continuous band ns/np. A crystal of N atoms the ns/np band contains 4N energy levels and up to 8N electrons. Simple metals have 1N, N, 3N electrons and a partly full band. Energy Levels exist near the Fermi level and the metals are good electronic conductors. 14

Semiconductors Si and Ge Carbon (diamond), silicon, and germanium form structures with tetrahedrally coordinated atoms. (low C.N.) The ns/np bands overlap, but are split into two. Each of the two bands contains N orbitals (accommodate 4N electrons). Bonding and anti-bonding orbitals. The lower band is known as the valence band, which are the electrons bonding the solid together. bcc metal diamond Elements with few valence electrons tend to adopt a high coordination structure and are metallic, whereas those with 4 or more electrons are expected to adopt a lower coordination structure with a split ns/np band and only the lower bonding band is occupied. However, consider Sn and Pb (metals). These have a larger separation of the s-p energy levels and have less overlap of the s and p orbitals. Sn (diamond structure, tetrahedral coordination, <91 K) has two s-p bands, but the band gap is almost zero. Above this temperature, a higher coordination number (6) is favored. In Pb, the overlap between the s and p orbitals is even smaller. It is more favorable for Pb to adopt a cubic close packed structure. Pb has N electrons available for the p band, so it is metallic. Pb also exhibits the exhibits the inert pair effect, where the s electrons act as core electrons. Explains the common occurrence of Pb +. 15

Si and Ge have a completely full valence band and are expected to be insulators, but these are known as semiconductors. The electrical conductivity, σ, is: σ = nzem where n is the number of charge carriers per unit volume, Ze is the charge (the charge of an electron), and m is the mobility Conductivity Conductivity of metallic conductors decreases with temperature. As the temperature rises. the phonons gain energy and the lattice vibrations have larger amplitude. The displacement of ionic cores from the lattice sites is greater and the electrons are scattered more, reducing the net current by reducing the mobility (m) of the electrons. Conductivity of intrinsic semiconductors (e.g. Si or Ge) increases with temperature. Conduction can only occur if electrons are promoted to a higher s/p band known as the conduction band, because only then will there be a partially full band. The current in semiconductors will depend on n, which is the number of electrons free to transport charge. The number of electrons able to transport charge is given by the number of e - promoted to the conduction band plus the number of e- in the valence band that were freed to move. 16

As the temperature increases in an intrinsic semiconductor, the number of electrons promoted increases and the current increases. The magnitude of the increase depends on the band gap. At any specific temperature, a solid with a small band gap will have more electrons promoted than one for a solid with a large band gap. The number of electrons promoted varies exponentially with temperature, so a small change in band gap may have a large effect on the number of electrons promoted and the number of current carriers. The change in resistivity with temperature is utilized in thermistors found in thermometers and fire alarm circuits. R k T Photoconductivity Light can also promote electrons, if the energy (E = hu) of the incoming photon is greater than the band gap. Valence electrons will be promoted to conduction band and the conductivity will increase. Photoconductors are nonconducting in the dark, but conducting in light. Electrophotography works by this process (photocopy) 17

Doped Semiconductors Deliberate introduction of a very low concentration of certain impurities alters the properties. Doped or extrinsic semiconductors. A semiconductor doped with fewer valence electrons than the bulk is known as a p-type semiconductor. Conductivity A semiconductor doped with more valence electrons than the bulk is known as an n-type semiconductor. The n stands for negative charge carriers or electrons. 18

p-n Junction p-n junctions are prepared either by doping (CVD) different regions of a single crystal with different atoms or by depositing one type of a material on top of another. Both n and p-type are electrically neutral, by the n-type has a greater concentration of electrons than the p-type. To try to equalize the electron concentration, electrons diffuse from n- to p-type, which produces a positive electric charge on the n-type and a negative electric charge on the p-type. The regions immediately to either side of the junction are known as the depletion regions, because there are fewer current carriers in these regions. Field-Effect Transistors Electrodes are attached to p-type block (gate) and the n-type channel (source and drain). A low voltage is applied (~6V) across the source and drain electrodes. A transistor (amplifier or switch), uses a voltage applied to the gate electrode, causing electrons to flow into the p-type semiconductor, but can t cross the p-n junction because the valence band is full in the n-type. If the voltage is reduced, then electrons flow out of the p-type, depletion zones shrink, and current passes through the n-type channel. Varying the magnitude of the voltage across the gate electrode, the current in the n-type channel is turned off or on. 19

Metal Oxide Semiconductor Field-Effect Transistors MOSFETs Field effect transistors with a thin film of silicon dioxide between the gate electrode and the semiconductor The charge on the SiO controls the size of the depletion zone in the p-type semiconductor. Bands in Compounds - GaAs Gallium arsenide rivals Si in some semiconductor applications. known as III/V semiconductors (there are also II-VI semiconductors) has partial ionic character, since there is partial transfer of electrons from Ga to As. 0

Bands in d-block Compounds Monoxides of the first-row transition metals, MO (M = Ti, V, Mn, Fe, Co, Ni) are metallic conductors or semiconductors O p orbitals form a filled valence band and the 4s orbitals fill another band. In the NaCl structure type, symmetry enables three of the five d orbitals (t g ) on different atoms to overlap. The other two d-orbitals (e g ) overlap with orbitals on adjacent oxygens. Guide to predict whether overlap is likely to be good between d- orbitals of transition metal compounds: 1) Formal charge on the cation should be small ) Cation should occur early in the transition metal series 3) The cation should be in the second (or third) transition series 4) The difference in electronegativity between the cation and ions should be small 1