An Extended van der Waals Equation of State Based on Molecular Dynamics Simulation

Similar documents
Thermodynamics of Three-phase Equilibrium in Lennard Jones System with a Simplified Equation of State

Phase Equilibrium Calculations by Equation of State v2

Imperfect Gases. NC State University

Chapter 2 Experimental sources of intermolecular potentials

Comparison of different mixing rules for prediction of density and residual internal energy of binary and ternary Lennard Jones mixtures

G : Statistical Mechanics

Gases and the Virial Expansion

Ideal Gas Behavior. NC State University

MOLECULAR DYNAMICS STUDY OF THE NUCLEATION OF BUBBLE

SIMULATIONAL ANALYSIS OF GLASSES PREPARED VIA DIFFERENT INTERATOMIC POTENTIALS

Intermolecular Potentials and The Second Virial Coefficient

Equation of State for Free Energy of Homogeneous Nucleation in Supersaturated Lennard-Jones Vapor Phase Derived by Monte Carlo Simulations

5.62 Physical Chemistry II Spring 2008

EQUATION OF STATE DEVELOPMENT

CH.7 Fugacities in Liquid Mixtures: Models and Theories of Solutions

ChE 524 A. Z. Panagiotopoulos 1

Phase transitions of quadrupolar fluids

Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases

Binary Hard-Sphere Mixtures Within Spherical Pores

Analysis of the simulation

Pre-yield non-affine fluctuations and a hidden critical point in strained crystals

CHEM-UA 652: Thermodynamics and Kinetics

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics

Thermodynamic study of liquid with solver ζ & suitable η max as a pole in basic two parameter Khasare s equation of state

A New Uniform Phase Bridge Functional: Test and Its Application to Non-uniform Phase Fluid

MOLECULAR DYNAMICS SIMULATION OF HETEROGENEOUS NUCLEATION OF LIQUID DROPLET ON SOLID SURFACE

Critical Properties of Isobaric Processes of Lennard-Jones Gases

Chemical Potential of Benzene Fluid from Monte Carlo Simulation with Anisotropic United Atom Model

Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon. Supporting Information. Part 2: Statistical Mechanical Model

On the Calculation of the Chemical Potential. Using the Particle Deletion Scheme

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany

Final Exam, Chemistry 481, 77 December 2016

CE 530 Molecular Simulation

Supplemental Material for Temperature-sensitive colloidal phase behavior induced by critical Casimir forces

Thermodynamic behaviour of mixtures containing CO 2. A molecular simulation study

A MOLECULAR DYNAMICS SIMULATION OF A BUBBLE NUCLEATION ON SOLID SURFACE

Variational Approach to the Equilibrium Thermodynamic Properties of Simple Liquids. I*

arxiv: v1 [cond-mat.soft] 20 Jun 2008

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below

Three Semi-empirical Analytic Expressions for the Radial Distribution Function of Hard Spheres

CH 240 Chemical Engineering Thermodynamics Spring 2007

Introduction to molecular dynamics

Theoretical comparative study on hydrogen storage of BC 3 and carbon nanotubes

Fig. 3.1? Hard core potential

of Nebraska - Lincoln

Theory of infinite dilution chemical potential

Molecular Interactions F14NMI. Lecture 4: worked answers to practice questions

Multiple time step Monte Carlo

Scientific Computing II

MD simulation of methane in nanochannels

A new algorithm for Reverse Monte Carlo simulations

Monte Carlo Calculations of Effective Surface Tension for Small Clusters


UB association bias algorithm applied to the simulation of hydrogen fluoride

2. Derive ideal mixing and the Flory-Huggins models from the van der Waals mixture partition function.

Elastic constants and the effect of strain on monovacancy concentration in fcc hard-sphere crystals

1. Thermodynamics 1.1. A macroscopic view of matter

Computer simulation study of liquid CH 2 F 2 with a new effective pair potential model

MOLECULAR DYNAMICS SIMULATION OF VAPOR BUBBLE NUCLEATION ON A SOLID SURFACE. Tatsuto Kimura and Shigeo Maruyama

Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations

Molecular Dynamics Study on the Binary Collision of Nanometer-Sized Droplets of Liquid Argon

510 Subject Index. Hamiltonian 33, 86, 88, 89 Hamilton operator 34, 164, 166

CARBON 2004 Providence, Rhode Island. Adsorption of Flexible n-butane and n-hexane on Graphitized Thermal Carbon Black and in Slit Pores

Development of a Water Cluster Evaporation Model using Molecular Dynamics

Introduction Statistical Thermodynamics. Monday, January 6, 14

Polymer Solution Thermodynamics:

to satisfy the large number approximations, W W sys can be small.

Sunyia Hussain 06/15/2012 ChE210D final project. Hydration Dynamics at a Hydrophobic Surface. Abstract:

How the Nonextensivity Parameter Affects Energy Fluctuations. (Received 10 October 2013, Accepted 7 February 2014)

Statistical physics. Emmanuel Trizac LPTMS / University Paris-Sud

Density dependence of dielectric permittivity of water and estimation of the electric field for the breakdown inception

Velocity cross-correlations and atomic momentum transfer in simple liquids with different potential cores

Derivation of Van der Waal s equation of state in microcanonical ensemble formulation

Structure of the First and Second Neighbor Shells of Water: Quantitative Relation with Translational and Orientational Order.

hydrate systems Gránásy Research Institute for Solid State Physics & Optics H-1525 Budapest, POB 49, Hungary László

Atomic and molecular interaction forces in biology

Hyeyoung Shin a, Tod A. Pascal ab, William A. Goddard III abc*, and Hyungjun Kim a* Korea

A theory for calculating the number density distribution of. small particles on a flat wall from pressure between the two

From Dynamics to Thermodynamics using Molecular Simulation

Perturbation approach for equation of state for hard-sphere and Lennard Jones pure fluids

What is Classical Molecular Dynamics?

Structural transition and solid-like behavior of alkane films confined in nano-spacing

Monte Carlo Methods. Ensembles (Chapter 5) Biased Sampling (Chapter 14) Practical Aspects

Statistical Theory and Learning from Molecular Simulations

Surface Tension of the Vapor Liquid Interface with Finite Curvature

2. Thermodynamics. Introduction. Understanding Molecular Simulation

Multiphase Flow and Heat Transfer

Scattering Properties of Gas Molecules on a Water Adsorbed Surface

Guest-Guest Interactions between Small Molecules and THF in Binary Clathrate Hydrates

DENSITY FUNCTIONAL THEORY FOR STUDIES OF MULTIPLE STATES OF INHOMOGENEOUS FLUIDS AT SOLID SURFACES AND IN PORES.

Statistical Physics. Solutions Sheet 11.

On the calculation of solvation free energy from Kirkwood- Buff integrals: A large scale molecular dynamics study

Multiscale Materials Modeling

From Atoms to Materials: Predictive Theory and Simulations

Gibbs ensemble simulation of phase equilibrium in the hard core two-yukawa fluid model for the Lennard-Jones fluid

Lennard-Jones as a model for argon and test of extended renormalization group calculations

Properties of real fluids in critical region: third virial coefficient

Molecular Dynamics Simulation of Diffusion of Gases and Liquids in Conditions of Phase Transition

Pressure Dependent Study of the Solid-Solid Phase Change in 38-Atom Lennard-Jones Cluster

Transcription:

J. Comput. Chem. Jpn., Vol. 8, o. 3, pp. 97 14 (9) c 9 Society of Computer Chemistry, Japan An Extended van der Waals Equation of State Based on Molecular Dynamics Simulation Yosuke KATAOKA* and Yuri YAMADA Department of Chemical Science and Technology, Faculty of Bioscience and Applied Chemistry, Hosei University 3-7- Kajino-cho, Koganei, Tokyo 184-8584, Japan *e-mail: kataoka@hosei.ac.jp (Received: February 9, 9; Accepted for publication: July 7, 9; Advance publication: August 4, 9) Molecular dynamics simulations on the Lennard-Jones system are performed to obtain the pvt and UVT relations. An extended van der Waals equation of state (EOS) is derived by statistical mechanics on the perturbation approximation. A hard sphere system is used as the reference system. The attraction energy term in the canonical ensemble partition function is extended by a cluster expansion. The new EOS includes three parameters, two of which are the interaction parameters in the Lennard-Jones interaction. The last parameter is the effective volume of the hard sphere system. The extended van der Waals EOS reproduces the pvt and UVT relations, at least qualitatively, whereas the original van der Waals EOS can explain only the pvt relation. Keywords: Extended van der Waals equation of state, Lennard-Jones system, Molecular dynamics simulation 1 Introduction The van der Waals EOS is well known in physical chemistry because it has a very simple form and explains the characteristics of a real gas [1]. The following pvt relation also explains the vapor-liquid critical point: p(,v,t ) = kt ( ) V b a. (1) V here a and b are constants that characterize the molecules. The variables, V, and T are the number of molecules, the volume, and the temperature of the system. The Boltzmann constant is denoted as k. The vapor-liquid transition point is estimated by the Maxwell construction in the van der Waals loop region in the pvt relation, where the unstable state is also found [1]. This loop appears because van der Waals theory assumes a single phase. Molecular simulation also treats the phase as a single phase in a conventional method. This loop is found in molecular simulations with 1-1, molecules [ 6]. The loop appears in molecular simulation because the molecular system has uniform structure on the macroscopic scale under the periodic boundary condition. In this sense, the van der Waals EOS is important in the understanding of the molecular simulation results. On the other hand, the UVT relation in the van der Waals EOS is too simple [6]. The internal energy U is described as follows in the van der Waals EOS [7]: U(,V,T ) = 3 a kt V. () The heat capacity under the constant volume C V of real liquid depends on temperature, as confirmed by macroscopic and molecular observations [1]. The present study proposes an extended form of the van der Waals EOS to explain the pvt and UVT relations of the gas and liquid phase of the spherical molecules by a simple treatment of the attraction part in the canonical ensemble partition function. The formulation follows the perturbation theory with the hard sphere system as a reference system [7]. Although the original van der Waals EOS includes only the averaged value of the attraction energy, the extended van der Waals EOS represents the attraction part by a cluster expansion in an intuitive manner, whereby the Lennard-Jones interaction is assumed as typical in the spherical molecules. The extended van der Waals EOS for the Lennard- Jones system has only three parameters, two of which are the Lennard-Jones parameters. The remaining parameter is the effective volume of the hard sphere of the reference system. The pvt and UVT relations will be compared with those of the molecular dynamics [MD] simulation on the Lennard-Jones system. DOI: 1.477/jccj.H1 97

The present paper follows the statistical mechanical theory on the original van der Waals EOS [7], which is then extended to explain, at least qualitatively, the UVT relation in a broad region in the temperature-density domain. Finally, the theoretical and simulation results are compared. Theory of van der Waals EOS The theory of van der Waals EOS [7] is reviewed in this section and will be extended in the following section. A molecular system with spherical molecules of mass m at temperature T and volume V is considered. The canonical partition function Q(,V,T) is given as follows: Q(,V,T ) = 1 ( ) πmkt 3/! h Z, (3) Z Z = e U(r 1,,r )/kt dr 1 dr. (4) V Here, the potential energy of the system is written as U(r 1, r,, r ). The quantity Z is called the configuration integral. In the case of a perfect gas, Z is given as follows, because no interaction is assumed: Z = V. (5) The thermodynamic quantities are written by the partition function as follows: A(,V,T ) = kt lnq(,v,t ), (6) ( ) lnq p = kt. (7) V,T According to this formula, in the case of a perfect gas, the pressure is given as follows: p = kt V. (8) The interaction energy is approximated by the van der Waals approximation. The statistical mechanical theory on van der Waals EOS adopts the perturbation approximation. The total potential energy is divided into two parts: U = U () +U(1), (9) where U () (1) and U are the potential energy of the reference system and that of the perturbed system. The quantity β is the inverse of temperature: β = 1/kT. The configuration integral is as follows: Z Z ( Z = e β U () ) +U(1) dr 1 dr Z Z Z = e βu() ( R β R e dr 1 dr U () ) +U(1) dr 1 dr R. (1) R e βu () dr 1 dr This equation can be rewritten as follows: ( ) Z = Z () exp βu (1). (11) The reference system is the hard sphere system, and its pair potential function u HS (r) is as follows: u HS (r) =, r σ HS u HS (r) =, r > σ HS. (1) The pair correlation function g(r) of the hard sphere system is approximated as follows: g HS (r) =, r σ HS g HS (r) = 1, r > σ HS. (13) When ( βu (1) ) is sufficiently small, the term exp βu (1) in the configuration integral Z can be rewritten as follows: ( exp ) 1 β The average βu (1) U (1) = exp U (1) βu (1) (14) is estimated by the above pair correlation function as follows: U (1) πρ V Z u (1) (r)g HS (r)r dr σ HS a = π = aρ, Z Here u (1) (r) is the pair potential: U (1) σ HS u (1) (r)r dr (15) = u (1) (r). (16) i< j In this manner, the configuration integral can be written as follows: Z = Z () eβaρ. (17) In addition, Z () Z () is approximated as follows: = (V b), b = πσ3 HS. (18) 3 Using this configuration integral, one can write the pressure as follows: ( ) lnq p = kt V,T p = kt (19) 1 bρ aρ. 98 J. Comput. Chem. Jpn., Vol. 8, o. 3 (9)

The internal energy U is derived from the partition function as follows: Q(,V,T ) = 1 ( ) πmkt 3/! h (V b) e a /V kt, ( ) lnq(,v,t ) U = kt, T,V () U = 3 kt aρ. (1) 3 Extension of van der Waals EOS In this section, van der Waals EOS is extended by a cluster expansion of the attractive term Z (1) in the canonical partition function in the perturbation scheme described in the previous section. There may be monomers, dimers, trimers, etc., in the system according to the temperature and density. The largest cluster in the system is assumed to be an M-mer. The structure and energy of the J-mer cluster is simplified as follows. The J-mer cluster has (J 1) bonds that start from the central molecule being considered. Each bond has energy ε. The energy of the J-mer cluster is then 1 (J 1)ε. The factor 1/ appears because the present theory is a one-body approximation, and this factor is necessary in order to obtain a reasonable total energy for the system. Therefore, in the present theory, the J-mer cluster has the Boltzmann factor exp ( 1 β(j 1)ε ) according to the temperature of the system. The geometrical probability of its being found in the system is proportional to the pre-exponential factor ( ν ) (J 1)/3 ν. Here, ν is the volume per molecule, and ν is that in the case of the closest packing. The exponent (J 1)/3 is assumed because the finding probability of the J-mer cluster is proportional to the ratio of the length of the closest packing structure to that of the characteristic length of the volume per molecule of the system. Based on this assumption the partition function is written as follows: Z = Z () Z(1) Z () = (V b) () ( Z (1) = ν ) ( ) ] (J 1)/3 1 exp ν β(j 1)ε. M J=1 [ M J=1 ext, we introduce the molecular partition function of the attractive term q a as follows: [ ] q a = Z (1) 1/ ) ( ) (J 1)/3 (3) 1 = exp β(j 1)ε. ( ν ν This molecular partition function is compared with that of the original EOS, e β aρ. For this molecular partition function, the attractive term of the internal energy U a is obtained as follows: ( ) U a = kt lnqa T U a = 1 q a M J=1,V 1 ( (J 1)ε ν ν exp, ) (J 1)/3 ( 1 β(j 1)ε ). (4) The contribution of the attractive interaction to pressure is as follows: ( ) lnqa p a = kt V p a = kt 1 q a [ M J=1,T, (J 1) ( ν ) (J 1)/3 1 3 ν ν ( ) ] 1 exp β(j 1)ε. (5) The total internal energy and pressure are as follows: U = 3 kt + U a, p = kt V b + p a. (6) The Helmholtz free energy and entropy are calculated by the standard method from the partition function. If we express the molecular interaction in the Lennard-Jones form, the parameters in the attractive part are given by the Lennard-Jones parameters. The Lennard-Jones potential is written as follows: u(r) = 4ε LJ [ (σ r ) 1 ( σ r ) 6 ]. (7) The constant ε in Eq. () is equal to ε LJ in Eq. (7). The closest packing structure in the Lennard-Jones system has the following volume: ν = σ3. (8) This value is used in Eq. (). The last parameter in the present model is the effective volume of the hard sphere b in Eq. (). We adjust this parameter to fit the calculated pressure and internal energy with the observed pressure and internal energy (macroscopic or molecular observations). DOI: 1.477/jccj.H1 99

4 Molecular Dynamics Simulation VT MD simulations [8] on fluid argon were performed at several temperatures to obtain the average pressure p and internal energy U as a function of volume V. The Lennard-Jones potential is adopted as shown in Table 1. The time step is 1 fs, and the standard MD length is 1,, steps. The velocity scaling method was used to control temperature. The number of molecules in the cell is 1,. A periodic boundary condition is assumed on the cubic basic cell [8]. The assumed initial configuration is the simple cubic lattice, in which only the density varies according to the volume. The Materials Explorer (v4 and v5) program was used for the present simulation [9]. The obtained pvt and UVT relations are shown in Figure 1 and Figure. The abscissa shows the density Table 1. Lennard-Jones potential parameters for argon [9]. ε/(kcal/mol) (ε/k)/k σ/m.483 15 3.43E-1 ρ = /V. The obtained pressure qualitatively resembles the van der Waals EOS (see Eq. (19)). The pressure is given in units of ε/σ 3 as well as in units of atm [1]. On the other hand, the calculated internal energy depends on temperature and density in a different manner than the van der Waals EOS shown in Eq. (1). This difference is discussed in the next section. 5 pvt and UVT relations in the extended van der Waals EOS The adjustable parameter b is chosen by trial and error as σ 3 through a comparison of the extended EOS with the results of MD simulation. The fitted pvt and UVT relations are described in Figure 3 and Figure 4 on the extended van der Waals EOS. The pvt relation in Figure 3 is globally very similar to that in Figure 1. On the whole, the internal energy in Figure 4 also resembles that of the Lennard-Jones system shown in Figure. A more direct comparison is shown in Figure 5 and Figure 6. The pvt and UVT relations in Figure 5 and Figure 6 mean that the extended EOS can reproduce, at least qualitatively, the MD simulation results. Figure 1. The pvt relation calculated by MD simulation on fluid argon using the Lennard-Jones model. The ordinate shows pressure p given in Lennard-Jones units ε/σ 3 (Table 1) and in atm [1]. The abscissa shows the number density /V and the mass density ρ in units of g/cm 3. The constant temperature curves are shown at T = 1, 5, 1, 175, 5, and 5 K. Figure. The UVT relation calculated by MD simulation on fluid argon using the Lennard-Jones model as a function of density. The ordinate shows the internal energy per molecule U/ in Lennard-Jones units ε (Table 1) and in units of kj/mol. The abscissa shows the number density /V and the mass density ρ in units of g/cm 3. The constant temperature curves are shown at T = 1, 5, 1, 175, 5, and 5 K. 1 J. Comput. Chem. Jpn., Vol. 8, o. 3 (9)

Figure 3. The pvt relation calculated by the extended van der Waals EOS. The ordinate is pressure p in Lennard-Jones units ε/σ 3 (Table 1). The abscissa is the number density /V. The constant temperature curves are shown at T = 1, 5, 1, 175, 5, 75, and 5 K. Figure 5. The pvt relation calculated by the extended van der Waals EOS compared with that obtained by MD simulation. The ordinate shows pressure p in Lennard- Jones units ε/σ 3 (Table 1). The abscissa shows the number density /V. The constant temperature curves are shown at T = 5,, and 5 K. Figure 4. The UVT relation calculated by the extended van der Waals EOS as a function of density. The ordinate shows the internal energy per molecule U/ in Lennard- Jones units ε (Table 1). The abscissa shows the number density /V. The constant temperature curves are shown at T = 1, 5, 1, 175, 5, 75, and 5 K. Figure 6. The UVT relation calculated by the extended van der Waals EOS compared with that obtained by MD simulation. The ordinate shows the internal energy per molecule in Lennard-Jones units ε (Table 1). The abscissa shows the number density /V. The constant temperature curves are shown at T = 5,, and 5 K. DOI: 1.477/jccj.H1 11

6 Extended EOS compared with MD simulation The calculated results are compared with the MD simulations in Figure 5 and Figure 6. In these figures, the present EOS provides reasonable results for pressure and internal energy, although the agreement is only semiquantitative. Since we have only three parameters in the present EOS, the agreement is satisfactory. Although the function is not so simple as the original van der Waals EOS, the physical meanings of the three parameters are clear in the present case. The construction rule is also unambiguous in the canonical partition function. Table. The critical point determined by the extended van der Waals EOS is compared with that in the fitted EOS of MD simulations on Lenard-Jones system. T c /(ε/k) p c /(ε/σ 3 ) ρ c /σ -3 icolas et al [11] 1.35.14.35 Kolafa & ezbeda [1] 1.3396.145.318 Present Study 1.8.13.33 T c /K p c /atm V c /(cm 3 /mol) icolas et al [11] 169 6. 69 Kolafa & ezbeda [1] 167 59.4 78 Present Study 5 9. 74 The simulation results are usually fitted by EOS with several fitting parameters [11, 1]. The critical point is determined by such EOS [11, 1]. The critical point determined by the present EOS is compared with that shown in Table. The obtained result does not differ greatly from the MD simulation results even with only three parameters in the present extended EOS. As shown in Figure 7, the extended EOS pressure is different from the MD results at low temperatures. The effect of attractive interaction is not well incorporated in this case. This is due to the simplified cluster structure, which is determined by the short-range term in the molecular interaction. The original van der Waals EOS also yields poor results at low temperatures, as shown in Figure 7. This curve shows that the attractive force is too strong in this EOS. The van der Waals coefficients used in Figure 7 and Figure 8 are shown in Table 3 [1]. A comparison of internal energy values is shown in Figure 8 at low temperatures. Table 3. The van der Waals coefficients for fluid argon [1]. a/(atm L /mol ) b/(l/mol) 1.345 3.E- Figure 7. Pressures are compared for the extended van der Waals EOS, the original van der Waals EOS, and the MD results on the Lennard-Jones system as a model of argon at T = 1 K =.8 ε/k. The abscissa shows the number density /V. Figure 8. Average potential energies per molecule U e / = U/ 1.5kT are compared for the extended van der Waals EOS, the original van der Waals EOS, and the MD results on the Lennard-Jones system as a model of argon at T = 1 K =.8 ε/k. The abscissa shows the number density /V. 1 J. Comput. Chem. Jpn., Vol. 8, o. 3 (9)

The value 6ε shown in Figure 8 of the present study is obtained from the 1 nearest neighbors in the FCC lattice. With respect to the internal energy, the extended van der Waals EOS is better than the original van der Waals EOS, as shown in Figure 8. The shortcomings in the present study (as shown in Figure 7 and Figure 8) may be overcome by the inclusion of the long-range part of the attractive interaction. 7 Conclusion An extended van der Waals EOS is obtained by a statistical mechanical treatment on the Lennard-Jones system. The new EOS reproduces the pvt and UVT relations calculated by molecular dynamics simulations, at least qualitatively. As the effective Lennard-Jones parameters are known for many molecular systems, the new EOS is useful to estimate the pvt and UVT relations on such systems. The authors would like to thank the Research Center for Computing and Multimedia Studies, at Hosei University for use of computers. References [1] P. W. Atkins, Physical Chemistry, 6th edition, Oxford Univ. Press (1998). [] R. Yamamoto, H. Tanaka, K. akanishi, and X. C. Zeng, Chem. Phys. Lett., 31, 41 (1994). [3] R. Yamamoto and K. akanishi, Phys. Rev. B, 49, 14958 (1994). [4] R. Yamamoto, O. Kitao, and K. akanishi, Mol. Phys., 84, 757 (1995). [5] R. Yamamoto and K. akanishi, Phys. Rev. B, 51, 715 (1995). [6] R. Yamamoto and K. akanishi, Mol. Simulation, 16, 119 (1996). [7] D. A. McQuarrie, Statistical Mechanics, Harper Collins (1976). [8] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford Univ. Press, Oxford (1987). [9] http://software.fujitsu.com/jp/materials-explorer/ [1] The relation between the units of pressure is given as follows: 1 atm = 11,35 Pa. [11] J. J. icolas, K. E. Gubbins, W. B. Streett, and D. J. Tildesley, Mol. Phys., 37, 149 (1979). [1] J. Kolafa and I. ezbeda, Fluid Phase Equil., 1, 1 (1994). DOI: 1.477/jccj.H1 13

14 J. Comput. Chem. Jpn., Vol. 8, o. 3 (9)